

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	36
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 1x12b, 3x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f373cct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 44. LQFP64 P _D max vs. T _A	129
---	-----

3.12 12-bit analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, V_{BAT} voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.12.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 65: Temperature sensor calibration values on page 105*.

3.12.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.12.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.13 **16-bit sigma delta analog-to-digital converters (SDADC)**

Three 16-bit sigma-delta analog-to-digital converters are embedded in the STM32F373xx. They have up to two separate supply voltages allowing the analog function voltage range to be independent from the STM32F373xx power supply. They share up to 21 input pins which may be configured in any combination of single-ended (up to 21) or differential inputs (up to 11).

The conversion speed is up to 16.6 ksps for each SDADC when converting multiple channels and up to 50 ksps per SDADC if single channel conversion is used. There are two conversion modes: single conversion mode or continuous mode, capable of automatically scanning any number of channels. The data can be automatically stored in a system RAM buffer, reducing the software overhead.

A timer triggering system can be used in order to control the start of conversion of the three SDADCs and/or the 12-bit fast ADC. This timing control is very flexible, capable of triggering simultaneous conversions or inserting a programmable delay between the ADCs.

Up to two external reference pins (VREFSD+, VREFSD-) and an internal 1.2/1.8 V reference can be used in conjunction with a programmable gain (x0.5 to x32) in order to fine-tune the input voltage range of the SDADC. VREFSD - pin is used as negative signal reference in case of single-ended input mode.

3.14 Digital-to-analog converter (DAC)

The devices feature two 12-bit buffered DACs with three output channels that can be used to convert three digital signals into three analog voltage signal outputs. The internal structure is composed of integrated resistor strings and an amplifier in inverting configuration.

This digital Interface supports the following features:

- Two DAC converters with three output channels:
 - DAC1 with two output channels
 - DAC2 with one output channel.
- 8-bit or 10-bit monotonic output
- Left or right data alignment in 12-bit mode
- Synchronized update capability
- Noise-wave generation (DAC1 only)
- Triangular wave generation (DAC1 only)
- Dual DAC channel independent or simultaneous conversions (DAC1 only)
- DMA capability for each channel
- External triggers for conversion

3.17.3 Independent watchdog (IWDG)

The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.17.4 System window watchdog (WWDG)

The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB1 clock (PCLK1) derived from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.17.5 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- A 24-bit down counter
- Autoreload capability
- Maskable system interrupt generation when the counter reaches 0
- Programmable clock source

3.18 Real-time clock (RTC) and backup registers

The RTC and the backup registers are supplied through a switch that takes power either from V_{DD} supply when present or through the V_{BAT} pin. The backup registers are thirty two 32-bit registers used to store 128 bytes of user application data.

They are not reset by a system or power reset, and they are not reset when the device wakes up from the Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format.
- Automatic correction for 28th, 29th (leap year), 30th and 31st day of the month.
- 2 programmable alarms with wake up from Stop and Standby mode capability.
- Periodic wakeup unit with programmable resolution and period.
- On-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize it with a master clock.
- Digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy.
- 3 anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection.
- Timestamp feature which can be used to save the calendar content. This function can triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection.

Table 11. STM32F373xx	pin definitions	(continued)
-----------------------	-----------------	-------------

Pi	n nun	nber	S					Pin func	<i>,</i>		
LQFP100	UFBGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	9		Additional functions		
91	C5	57	41	PB5	I/O	FT	-	SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, I2C1_SMBAI, USART2_CK, TIM16_BKIN, TIM3_CH2, TIM17_CH1, TIM19_ETR	-		
92	В5	58	42	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TIM3_CH3, TIM4_CH1, TIM19_CH1, TIM15_CH1, TSC_G5_IO3	-		
93	B4	59	43	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM17_CH1N, TIM3_CH4, TIM4_CH2, TIM19_CH2, TIM15_CH2, TSC_G5_IO4			
94	A4	60	44	BOOT0	Ι	В	-	Boot memory	selection		
95	A3	61	45	PB8	I/O	FTf	-	SPI2_SCK/I2S2_CK, I2C1_SCL, USART3_TX, CAN_RX, CEC, TIM16_CH1, TIM4_CH3, TIM19_CH3, COMP1_OUT, TSC_SYNC	-		
96	В3	62	46	PB9	I/O	FTf	-	SPI2_NSS/I2S2_WS, I2C1_SDA, USART3_RX, CAN_TX, IR_OUT, TIM17_CH1, TIM4_CH4, TIM19_CH4, COMP2_OUT			
97	C3	-	-	PE0	I/O	FT	(2)	USART1_TX, TIM4_ETR -			
98	A2	-	-	PE1	I/O	FT	(2)	USART1_RX	-		
99	D3	63	47	VSS_1	S	-	-	Groui	nd		
100	C4	64	48	VDD_1	S	-	-	Digital power supply			

1.

PC13, PC14 and PC15 are supplied through the power switch. Since the switch sinks only a limited amount of current (3 mA), the use of GPIO PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF - These GPIOs must not be used as current sources (e.g. to drive an LED) After the first backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the Backup registers which is not reset by the main reset. For details on how to manage these GPIOs, refer to the Battery backup domain and BKP register description sections in the RM0313 reference manual.

2. When using the small packages (48 and 64 pin packages), the GPIO pins which are not present on these packages, must not be configured in analog mode.

3. these pins are powered by VDDSD12.

4. these pins are powered by VDDSD3.

The following relationship must be respected between V_{REFSD+} and V_{DDSD12}, V_{DDSD3}: V_{REFSD+} must be lower than V_{DDSD3}.

Depending on the SDADCx operation mode, there can be more constraints between V_{REFSD+} , V_{DDSD12} and V_{DDSD3} which are described in reference manual RM0313.

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all VDD_x and VDDSDx power lines (source) ⁽¹⁾	160	
ΣI _{VSS}	Total current out of sum of all VSS_x and VSSSD ground lines $({\rm sink})^{(1)}$	-160	
I _{VDD(PIN)}	Maximum current into each VDD_x or VDDSDx power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS_x or VSSSD ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	mA
N I	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

Table 20. Current character	ristics
-----------------------------	---------

 VDDSD12 is the external power supply for the PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to V_{SS}). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to V_{SS}). V_{DD} (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is internally connected to V_{SS}).

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

- 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 19: Voltage characteristics* for the maximum allowed input voltage values.
- A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 62*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 21. Thermal characteristics

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{APB1} = f_{AHB}/2$, $f_{APB2} = f_{AHB}$
- When f_{HCLK} > 8 MHz PLL is ON and PLL inputs is equal to HSI/2 = 4 MHz (if internal clock is used) or HSE = 8 MHz (if HSE bypass mode is used)

The parameters given in *Table 28* to *Table 34* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

		All peripherals enabled				abled	All peripherals disabled					
Symbol	Parameter	Conditions	f _{HCLK}	_к _	Max @ T _A ⁽²⁾			Tun	Max @ T _A ⁽²⁾			Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	63.1	70.7	71.5	73.4	29.2	31.1	31.7	34.2	
		HSE	64 MHz	56.3	63.3	64.1	64.9	26.1	27.8	28.4	30.4	
		bypass,	48 MHz	42.5	48.5	48.0	50.1	19.9	22.6	21.9	23.1	
		PLL on	32 MHz	28.8	31.4	32.2	34.3	13.1	16.1	14.9	16.2	
	Supply		24 MHz	21.9	24.4	24.4	25.8	10.1	10.9	11.9	12.4	
	current in	HSE	8 MHz	7.3	8.0	9.3	9.3	3.7	4.1	4.4	5.0	
I _{DD}	Run mode, code	bypass, PLL off	1 MHz	1.1	1.5	1.8	2.3	0.8	1.1	1.4	1.9	mA
	executing from Flash		64 MHz	51.7	57.7	58.0	60.4	25.8	27.6	28.1	30.1	
	HSI clock, PLL on	48 MHz	38.6	45.9	43.5	46.9	19.8	21.9	21.7	22.8		
		32 MHz	26.4	31.1	29.7	31.9	13.1	15.7	14.8	16.2		
		24 MHz	20.3	22.6	22.6	23.7	6.9	7.5	8.1	8.8		
		HSI clock, PLL off	8 MHz	7.0	7.6	8.8	8.8	3.7	4.1	4.4	5.0	

Table 28. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V⁽¹⁾

			• •		Тур		
Symbol	Parameter	Conditions	fhclk	Peripherals enabled	Peripherals disabled	Unit	
			72 MHz	42.8	6.9		
I _{DD}		Running from HSE	64 MHz	38.2	6.2		
		crystal clock 8 MHz, code executing	48 MHz	28.9	4.8		
		from Flash or RAM,	32 MHz	19.5	3.4		
		PLL on	24 MHz	14.7	2.7		
	Supply current in Sleep mode from		16 MHz	10.2	2.0	mA	
	V _{DD} supply		8 MHz	5.2	1.2	ШA	
		Running from HSE	4 MHz	3.4	1.1		
		crystal clock 8 MHz, code executing from Flash or RAM, PLL off	2 MHz	2.2	0.9		
			1 MHz	1.6	0.9		
			500 kHz	1.4	0.8		
			125 kHz	1.1	0.8		
			72 MHz	242.9	241.5		
		Running from HSE	64 MHz	213.7	212.7		
		crystal clock 8 MHz,	48 MHz	158.8	158.0		
		code executing from Flash or RAM,	32 MHz	107.6	107.3		
		PLL on	24 MHz	82.7	82.6		
ı (1)	Supply current in Sleep mode from		16 MHz	58.3	58.2		
I _{DDA} ⁽¹⁾	V _{DDA} supply		8 MHz	1.2	1.2	μA	
		Running from HSE	4 MHz	1.2	1.2		
		crystal clock 8 MHz,	2 MHz	1.2	1.2		
		code executing from Flash or RAM,	1 MHz	1.2	1.2		
		PLL off	500 kHz	1.2	1.2		
			125 kHz	1.2	1.2		

1. V_{DDA} monitoring is off, V_{DDSD12} monitoring is off.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Symbol	Parameter	Conditions		Мах	Unit				
Symbol	Farameter		= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	_	Unit
	Wakoup from Stop	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	4.5	
twustop Wakeup from Stop mode		Regulator in low power mode	7.9	6.7	6.1	5.7	5.4	8.6	μs
t _{WUSTANDB} Y	Wakeup from Standby mode	LSI and IWDG off	62.6	53.7	49.2	45.7	42.7	100	
t _{WUSLEEP}	Wakeup from Sleep mode	After WFE instruction			6				CPU clock cycles

Table 37. L	Low-power mode wakeup timings
-------------	-------------------------------

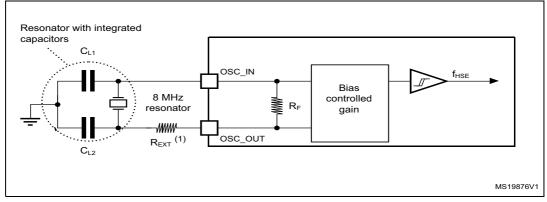
6.3.7 External clock source characteristics

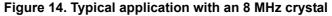
High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 12*.

Symbol	Parameter ⁽¹⁾	Conditions	Min	Тур	Мах	Unit			
f _{HSE_ext}	User external clock source	CSS is on or PLL is used	1	8	32	MHz			
	frequency	CSS is off, PLL not used	0	0	52				
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{DD}$	-	V _{DD}	v			
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	0.3 V _{DD}	v			
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	15	-	-	ns			
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	_	20	115			


Table 38	. High-speed	external	user clock	characteristics
----------	--------------	----------	------------	-----------------


1. Guaranteed by design.

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 14*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on electing the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

1. R_{EXT} value depends on the crystal characteristics.

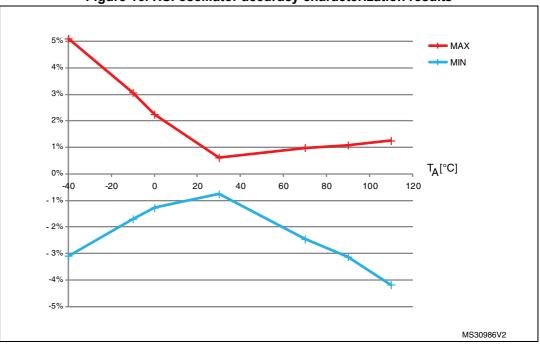


Figure 16. HSI oscillator accuracy characterization results

Low-speed internal (LSI) RC oscillator

Table 43. LSI oscillator characteristics⁽¹⁾

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	60	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DD(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μΑ

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

6.3.9 PLL characteristics

The parameters given in *Table 44* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

Symbol	Parameter		Unit		
	Faidilleter	Min	Тур	Мах	
f _{PLL_IN}	PLL input clock ⁽¹⁾	1 ⁽²⁾	-	24 ⁽²⁾	MHz
	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	72	MHz
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs
Jitter	Cycle-to-cycle jitter	-	-	300 ⁽²⁾	ps

1. Take care of using the appropriate multiplier factors so as to have PLL input clock values compatible with the range defined by $f_{PLL_{OUT}}$.

2. Guaranteed by design.

DocID022691 Rev 7

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under the conditions summarized in *Table 22*. All I/Os are CMOS and TTL compliant.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit	
		TC and TTa I/O	-	-	0.3V _{DD} +0.07 ⁽²⁾		
	Low level input	FT and FTf I/O	-	-	0.475V _{DD} -0.2 ⁽²⁾		
V _{IL}	voltage	BOOT0	-	-	0.3V _{DD} -0.3 ⁽²⁾		
		All I/Os except BOOT0 pin	-	-	0.3V _{DD}	V	
		TC and TTa I/O	0.445V _{DD} +0.398 ⁽²⁾	-	-	V	
V	High level input	FT and FTf I/O	0.5V _{DD+0.2} ⁽²⁾	-	-		
V _{IH}	voltage	BOOT0	0.2V _{DD} +0.95 ⁽²⁾	-	-		
		All I/Os except BOOT0 pin	0.7V _{DD}	-	-		
	Schmitt trigger hysteresis	TC and TTa I/O	-	200 ⁽²⁾	-		
V _{hys}					-	mV	
		BOOTO		300 ⁽²⁾	-		
		TC, FT and FTf I/O TTa in digital mode V _{SS} < V _{IN} < V _{DD}	-	-	±0.1		
l _{lkg}	Input leakage current ⁽³⁾	TTa in digital mode V _{DD} ≤ V _{IN} ≤V _{DDA}	-	-	1	μA	
		TTa in analog mode V _{SS} ≤V _{IN} ≤V _{DDA}	-	-	±0.2		
		FT and FTf I/O ⁽³⁾ V _{DD} ≤V _{IN} ≤5 V	-	-	10		
R _{PU}	Weak pull-up equivalent resistor ⁽⁴⁾	V _{IN} = V _{SS}	25	40	55	kΩ	
R _{PD}	Weak pull-down equivalent resistor ⁽⁴⁾	V _{IN} = V _{DD}	25	40	55	K22	
C _{IO}	I/O pin capacitance	-	-	5	-	pF	

Table 52. I/O static characteri	stics ⁽¹⁾
---------------------------------	----------------------

 VDDSD12 is the external power supply for the PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to VSS). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to VSS). For those pins all V_{DD} supply references in this table are related to their given VDDSDx power supply.

2. Guaranteed by design.

3. Leakage could be higher than maximum value, if negative current is injected on adjacent pins.

4. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

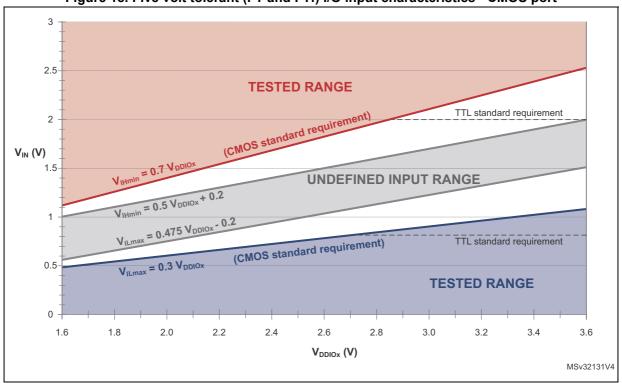
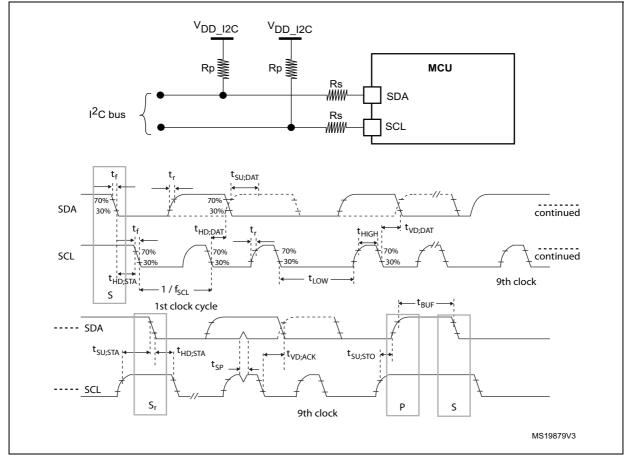


Figure 18. Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to ± 8 mA, and sink or source up to ± 20 mA (with a relaxed $V_{OL}/V_{OH})$.

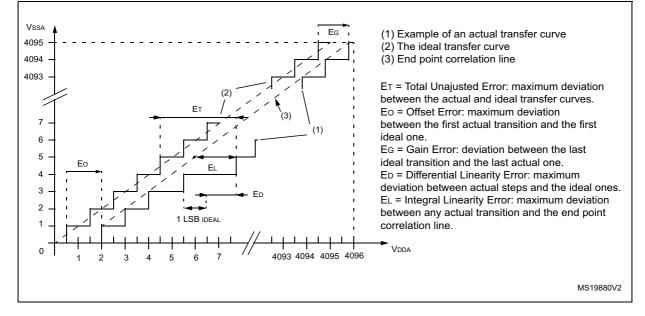
In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in *Section 6.2*:

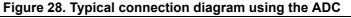

- The sum of the currents sourced by all the I/Os on all VDD_x and VDDSDx, plus the maximum Run consumption of the MCU sourced on V_{DD} cannot exceed the absolute maximum rating SI_{VDD} (see *Table 20*).
- The sum of the currents sunk by all the I/Os on all VSS_x and VSSSD, plus the maximum Run consumption of the MCU sunk on V_{SS} cannot exceed the absolute maximum rating SI_{VSS} (see *Table 20*).

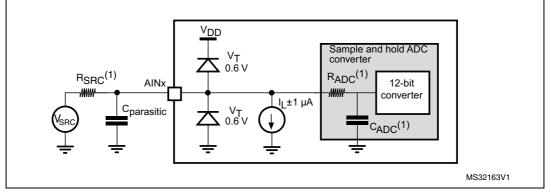
Symbol	Parameter	Min	Max	Unit
t _{AF}	Maximum pulse width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

1. Guaranteed by design.

- 2. Spikes width below $t_{AF}(min)$ are filtered.
- 3. Spikes width above $t_{AF}(max)$ are not filtered.

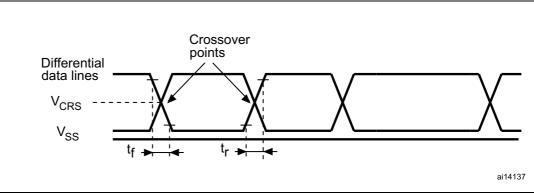



1. Legend: Rs: Series protection resistors. Rp: Pull-up resistors. V_{DD_12C}: I2C bus supply.



- ADC accuracy vs. negative injection current: Injecting a negative current on any analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.
 Any positive injection current within the limits specified for lawyour and Σlawyour in Section 6.3.14 does not
 - Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.14 does not affect the ADC accuracy.
- 3. Better performance may be achieved in restricted V_{DDA}, frequency and temperature ranges.
- 4. Guaranteed by characterization results.

Figure 27. ADC accuracy characteristics


1. Refer to *Table 60* for the values of R_{SRC} , R_{ADC} and C_{ADC} .

 C_{parasitic} represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high C_{parasitic} value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 9*. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

Figure 31. USB timings: definition of data signal rise and fall time

Table 73. USB: Full-speed electrical characteristics ⁽¹⁾										
Symbol	Parameter	Conditions	Min	Тур	Max	Unit				
Driver charac	teristics									
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns				
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns				
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%				
V _{CRS}	Output signal crossover voltage	-	1.3	-	2.0	V				
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω				

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver.

6.3.24 CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

6.3.25 SDADC characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Note
V _{DDSDx} Power supply	Power	Slow mode (f_{ADC} = 1.5 MHz)	2.2	-	V_{DDA}	v	-
	supply	Normal mode ($f_{ADC} = 6 \text{ MHz}$)	2.4	-	V _{DDA}	v	-
f _{ADC}	SDADC clock frequency	Slow mode (f _{ADC} = 1.5 MHz)	0.5	1.5	1.65		-
		Normal mode (f _{ADC} = 6 MHz)	0.5	6	6.3	MHz	-
V _{REFSD+}	Positive ref. voltage	-	1.1	-	V _{DDSDx}	V	-

Table 74. SDADC characteristics ⁽¹⁾

Symbol	Parameter			Con	ditions		Min	Тур	Max	Unit	Note															
				f _{ADC} = 1.5 MHz		$V_{\text{REFSD}^+} = 3.3^{(3)}$	84	85	-																	
		a)	gain = 1	f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	86	88	-																	
		Differential mode	0,	6 MHz		V _{REFSD+} = 3.3	88	92	-																	
		ifferent		f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	76	78	-																	
	Signal to noise ratio	Δ	gain =	f _{ADC} = 6 MHz		V _{REFSD+} = 3.3	82	86	-		-															
SNR ⁽⁵⁾				f _{ADC} = 1.5 MHz	V _{DDSDx} = 3.3	V_{REFSD^+} = 3.3 ⁽³⁾	76	80	-	dB																
		Single ended mode		f _{ADC} = 1.5 MHz		V _{REFSD+} = 3.3	80	84	-																	
			ended mode	ended mode	ended mode	ended mode	ended mode	ended mode	mode	mode	mode	mode	mode	mode	mode	mode	mode	gain = 1	f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	77	81	-		
									0	0,	0,		6 MHz		V _{REFSD+} = 3.3	85	90	-								
			= 8	f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	66	71	-																	
					gain =	6 MHz		V _{REFSD+} = 3.3	74	78	-															

Table 74. SDADC characteristics (continued)⁽¹⁾

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
С	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
ССС	-	-	0.080	-	-	0.0031

Table 80. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

7.5 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 22: General operating conditions*.

The maximum chip-junction temperature, T_J max, in degrees Celsius, may be calculated using the following equation:

 $T_J max = T_A max + (P_D max x Q_{JA})$

Where:

- T_A max is the maximum ambient temperature in °C,
- Q_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $P_{I/O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \mathsf{S} \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \mathsf{S}((\mathsf{V}_{\mathsf{DD}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
Θ _{JA}	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	°C/W
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP100 - 14 × 14 mm / 0.5 mm pitch	46	
	Thermal resistance junction-ambient UFBGA100 - 7 x 7 mm	59	

Table 81. Package thermal characteristics

7.5.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

Date	Revision	Changes
Date 21-Dec-2012		Updated Table 2: Device overview, capacitive sensing channels peripheral added. Updated Table 3: Capacitive sensing GPIOs available on STM32F373xx devices Updated Section 3.19: Inter-integrated circuit interface (I2C) Updated the function names in Table 11: STM32F373 pin definitions Updated Table 20: Current characteristics Updated Table 30: Typical and maximum VDD consumption in Stop and Standby modes Updated Table 32: Typical and maximum current consumption from VBAT supply Added Figure 11: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') Updated Table 33: Typical current consumption in Run mode, code with data processing running from Flash and Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM Added Table 36: Peripheral current consumption, Figure 16: HSI oscillator accuracy characterization results Updated Table 37: Low-power mode wakeup timings Updated Table 51: I/O current injection susceptibility Updated Table 52: I/O static characteristics Updated Table 52: UO static characteristics Updated Table 53: Output voltage characteristics Updated Table 55: NRST pin characteristics Updated Table 55: NAC port and Figure 20: Five volt tolerant (FT and FTf) I/O input characteri
		profile quad flat package outline, Figure 35: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and

Table 83. Document revision history (continued)

