E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	84
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	24К х 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 1x12b, 3x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f373vbt7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 49.	ESD absolute maximum ratings
Table 50.	Electrical sensitivities
Table 51.	I/O current injection susceptibility
Table 52.	I/O static characteristics
Table 53.	Output voltage characteristics
Table 54.	I/O AC characteristics
Table 55.	NRST pin characteristics
Table 56.	I2C characteristics
Table 57.	I ² C analog filter characteristics
Table 58.	SPI characteristics
Table 59.	I ² S characteristics
Table 60.	ADC characteristics
Table 61.	R_{SBC} max for f_{ADC} = 14 MHz
Table 62.	ADC accuracy
Table 63.	DAC characteristics
Table 64.	Comparator characteristics
Table 65.	Temperature sensor calibration values
Table 66.	TS characteristics
Table 67.	V _{BAT} monitoring characteristics
Table 68.	TIMx characteristics
Table 69.	IWDG min/max timeout period at 40 kHz (LSI) 106
Table 70.	WWDG min-max timeout value @72 MHz (PCLK)
Table 71.	USB startup time
Table 72.	USB DC electrical characteristics
Table 73.	USB: Full-speed electrical characteristics
Table 74.	SDADC characteristics
Table 75.	VREFSD+ pin characteristics
Table 76.	UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array
	package mechanical data
Table 77.	UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)
Table 78.	LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package
	mechanical data
Table 79.	LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat
	package mechanical data
Table 80.	LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
	mechanical data
Table 81.	Package thermal characteristics
Table 82.	Ordering information scheme
Table 83.	Document revision history

Figure 44.	LQFP64 P _D max vs. T _A	
	2	

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F373xx microcontrollers.

This STM32F373xx datasheet should be read in conjunction with the RM0313 reference manual. The reference manual is available from the STMicroelectronics website www.st.com.

For information on the Cortex[®]-M4 with FPU core, please refer to:

- Cortex[®]-M4 with FPU Technical Reference Manual, available from www.arm.com.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from <u>www.st.com</u>.

3.12 12-bit analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, V_{BAT} voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.12.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 65: Temperature sensor calibration values on page 105*.

3.12.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.12.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.17 Timers and watchdogs

The STM32F373xx includes two 32-bit and nine 16-bit general-purpose timers, three basic timers, two watchdog timers and a SysTick timer. The table below compares the features of the advanced control, general purpose and basic timers.

Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/ compare channels	Complementary outputs
General- purpose	TIM2 TIM5	32-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	0
General- purpose	TIM3, TIM4, TIM19	16-bit	Up, Down, Up/Down	Any integer between 1 and 65536	Yes	4	0
General- purpose	TIM12	16-bit	Up	Any integer between 1 and 65536	No	2	0
General- purpose	TIM15	16-bit	Up	Any integer between 1 and 65536	Yes	2	1
General- purpose	TIM13, TIM14	16-bit	Up	Any integer between 1 and 65536	No	1	0
General- purpose	TIM16, TIM17	16-bit	Up	Any integer between 1 and 65536	Yes	1	1
Basic	TIM6, TIM7, TIM18	16-bit	Up	Any integer between 1 and 65536	Yes	0	0

 Table 5. Timer feature comparison

41/137

5

	Table 12. Alternate functions for port PA													
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF14	AF15
PA0	-	TIM2_ CH1_ ETR	TIM5_ CH1_ ETR	TSC_ G1_IO1	-	-	-	USART2_CTS	COMP1 _OUT	-	-	TIM19 _CH1	-	EVENT OUT
PA1	RTC_ REFIN	TIM2_ CH2	TIM5_ CH2	TSC_ G1_IO2	-	-	SPI3_SCK/ I2S3_CK	USART2_RTS	-	TIM15_ CH1N	-	TIM19 _CH2	-	EVENT OUT
PA2	-	TIM2_ CH3	TIM5_ CH3	TSC_ G1_IO3	-	-	SPI3_MISO/ I2S3_MCK	USART2_TX	COMP2 _OUT	TIM15_ CH1	-	TIM19 _CH3	-	EVENT OUT
PA3	-	TIM2_ CH4	TIM5_ CH4	TSC_ G1_IO4	-	-	SPI3_MOSI /I2S3_SD	USART2_RX	-	TIM15_ CH2	-	TIM19 _CH4	-	EVENT OUT
PA4	-	-	TIM3_ CH2	TSC_ G2_IO1	-	SPI1_NSS/ I2S1_WS	SPI3_NSS/ I2S3_WS	USART2_CK	-	-	TIM12 _CH1	-	-	EVENT OUT
PA5	-	TIM2_ CH1_ ETR	-	TSC_ G2_IO2	-	SPI1_SCK/ I2S1_CK	-	CEC	-	TIM14_ CH1	TIM12 _CH2	-	-	EVENT OUT
PA6	-	TIM16_ CH1	TIM3_ CH1	TSC_ G2_IO3	-	SPI1_MISO /I2S1_MCK	-	-	COMP1 _OUT	TIM13_ CH1	-	-	-	EVENT OUT
PA7	-	TIM17_ CH1	TIM3_ CH2	TSC_ G2_IO4	-	SPI1_MOSI /I2S1_SD	-	-	COMP2 _OUT	TIM14_ CH1	-	-	-	EVENT OUT
PA8	МСО	-	TIM5_ CH1_ ETR	-	I2C2_ SMBA	SPI2_SCK/ I2S2_CK	-	USART1_CK	-	-	TIM4_ ETR	-	-	EVENT OUT
PA9	-	-	TIM13 _CH1	TSC_ G4_IO1	I2C2_ SCL	SPI2_MISO /I2S2_MCK	-	USART1_TX	-	TIM15_ BKIN	TIM2_ CH3	-	-	EVENT OUT
PA10	-	TIM17_ BKIN	-	TSC_ G4_IO2	I2C2_ SDA	SPI2_MOSI /I2S2_SD	-	USART1_RX	-	TIM14_ CH1	TIM2_ CH4	-	-	EVENT OUT
PA11	-	-	TIM5_ CH2	-	-	SPI2_NSS/ I2S2_WS	SPI1_NSS/ I2S1_WS	USART1_CTS	COMP1 _OUT	CAN_ RX	TIM4_ CH1	-	-	EVENT OUT
PA12	-	TIM16_ CH1	TIM5_ CH3	-	-	-	SPI1_SCK/ I2S1_CK	USART1_RTS	COMP2 _OUT	CAN_TX	TIM4_ CH2	-	-	EVENT OUT

STM32F373xx

47/137

Table 17. Alternate functions for port PF AF0 AF2 AF3 AF4 Pin Name AF1 AF5 AF6 AF7 PF0 I2C2_SDA -------PF1 -I2C2_SCL ------PF2 EVENTOUT I2C2 SMBA ------PF4 EVENTOUT -------PF6 EVENTOUT TIM4_CH4 I2C2_SCL SPI1_MOSI/I2S1_SD USART3_RTS ---PF7 EVENTOUT I2C2 SDA USART2 CK -----PF9 EVENTOUT TIM14_CH1 ------PF10 EVENTOUT -------

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 52: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC and SDADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode. Under reset conditions all I/Os are configured in input floating mode - so if some inputs do not have a defined voltage level then they can generate additional consumption. This consumption is visible on V_{DD} supply and also on V_{DDSDx} supply because some I/Os are powered from SDADCx supply (all I/Os which have SDADC analog input functionality).

I/O dynamic current consumption

In addition to the internal peripheral current consumption (see *Table 36: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the MCU supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DD} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load V_{DD} is the MCU supply voltage

f_{SW} is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Symbol Parameter		Conditions	Typ @V _{DD} = V _{DDA}						Unit
		Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	WIAX	om
	Wakoup from Stop	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	4.5	
t _{WUSTOP}	mode	Regulator in low power mode	7.9 6.7 6.1 5.7 5.4 8.6				8.6	μs	
t _{WUSTANDB} Y	Wakeup from Standby mode	LSI and IWDG off	62.6	53.7	49.2	45.7	42.7	100	
t _{WUSLEEP}	Wakeup from Sleep mode	After WFE instruction			6				CPU clock cycles

Table 37.	Low-power	mode	wakeup	timings
-----------	-----------	------	--------	---------

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 12*.

Symbol	Parameter ⁽¹⁾	Conditions	Min	Тур	Max	Unit
f	User external clock source	CSS is on or PLL is used	1	8	30	MH-
^I HSE_ext	frequency	CSS is off, PLL not used	0	0	52	
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{DD}$	-	V_{DD}	V
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	0.3 V _{DD}	v
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	15	_	-	ne
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	_	20	115

	Table 3	8. High-s	speed extern	al user clock	characteristics
--	---------	-----------	--------------	---------------	-----------------

1. Guaranteed by design.

Figure 13. Low-speed external clock source AC timing diagram

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 40*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
I _{DD}		V _{DD} = 3.3 V, Rm= 30 Ω CL= 10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm= 45 Ω CL= 10 pF@8 MHz	-	0.5	-	
	HSE current consumption	V _{DD} = 3.3 V, Rm= 30 Ω CL=5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm= 30 Ω CL= 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm= 30 Ω CL= 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
t _{SU(HSE)} ⁽⁴⁾	Startup time	V _{DD} is stabilized	-	2	-	ms

Table 40. HSE c	oscillator	characteristics
-----------------	------------	-----------------

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design.

3. This consumption level occurs during the first 2/3 of the $t_{SU(HSE)}$ startup time

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin
- A current injection is applied to each input, output and configurable I/O pin

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table	50.	Electrical	sensitivities
IUNIC	vv .	LICCUICUI	30113111411103

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	T_A = +105 °C conforming to JESD78A	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DD} (for standard, 3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5μ A/+0 μ A range), or other functional failure (for example reset occurrence or oscillator frequency deviation).

The test results are given in Table 51.

Note: I/O pins are powered from V_{DD} voltage except pins which can be used as SDADC inputs:

- The PB2, PB10 and PE7 to PE15 I/O pins are powered from V_{DDSD12}.

- PB14 to PB15 and PD8 to PD15 I/O pins are powered from V_{DDSD3}. All I/O pin ground is internally connected to V_{SS}.

 V_{DD} mentioned in the Table 52 represents power voltage for a given I/O pin (V_{DD} or V_{DDSD12} or V_{DDSD3}).

All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 17* for standard I/Os, and in *Figure 18* for 5 V tolerant I/Os. The following curves are design simulation results, not tested in production.

Figure 17. TC and TTa I/O input characteristics - CMOS port

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 58* for SPI or in *Table 59* for I²S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit	
f _{scк}	SDI alaak fraguanay	Master mode	-	18	MHz	
$1/t_{c(SCK)}^{(1)}$	SFI Clock liequency	Slave mode	-	18		
^t r(SCK) t _{f(SCK)} (1)	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns	
DuCy(SCK) ⁽¹⁾	SPI slave input clock duty cycle	Slave mode	30	70	%	
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	2Tpclk	-		
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	4Tpclk	-		
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 - 3	Tpclk/2 + 3		
t _{su(MI)} (1) t _{su(SI)} (1)	Data input setup time	Master mode	5.5	-		
		Slave mode	6.5	-		
t _{h(MI)} ⁽¹⁾	Data input hold time	Master mode	5	-		
t _{h(SI)} ⁽¹⁾		Slave mode	5	-	ns	
t _{a(SO)} (1)(2)	Data output access time	Slave mode, f _{PCLK} = 24 MHz	0	4Tpclk		
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	0	24		
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	39		
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	3		
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	15	-		
t _{h(MO)} ⁽¹⁾		Master mode (after enable edge)	4	-		

1. Guaranteed by characterization results.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

1. Measurement points are done at $0.5V_{DD}$ level and with external C_L = 30 pF

Symbol	Parameter	Conditions	Min	Мах	Unit
DuCy(SCK) ⁽¹⁾	I2S slave input clock duty cycle	Slave mode	30	70	%
f _{CK} ⁽¹⁾	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.528	1.539	MH-7
^{1/1} c(CK)		Slave mode	0	12.288	
$t_{r(CK)}^{(1)}$ $t_{f(CK)}$	I ² S clock rise and fall time	Capacitive load C _L = 30 pF	-	8	
t _{v(WS)} ⁽¹⁾	WS valid time	Master mode	4	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Master mode	4	-	
t _{su(WS)} ⁽¹⁾	WS setup time	Slave mode	2	-	
t _{h(WS)} ⁽¹⁾	WS hold time	Slave mode	-	-	
t _{w(CKH)} ⁽¹⁾	I2S clock high time	Master f _{PCLK} = 16 MHz, audio frequency = 48 kHz	306	-	
t _{w(CKL)} ⁽¹⁾	I2S clock low time		312	-	
t _{su(SD_MR)} ⁽¹⁾	Dete input optur time	Master receiver	6	-	
t _{su(SD_SR)} ⁽¹⁾	Data input setup time	Slave receiver	3	-	ns
t _{h(SD_MR)} ⁽¹⁾	Dete insut held time	Master receiver	1.5	-	
t _{h(SD_SR)} ⁽¹⁾		Slave receiver	1.5	-	
t _{v(SD_ST)} ⁽¹⁾	Data output valid time	Slave transmitter (after enable edge)	-	16	
t _{h(SD_ST)} ⁽¹⁾	Data output hold time	Slave transmitter (after enable edge)	16	-	
t _{v(SD_MT)} ⁽¹⁾	Data output valid time	Master transmitter (after enable edge)	-	2	
t _{h(SD_MT)} ⁽¹⁾	Data output hold time	Master transmitter (after enable edge)	0	-	

Table 59. I²S characteristics

1. Guaranteed by characterization results.

Equation 1: $R_{SRC} \max_{T}$ formula

$$R_{SRC} < \frac{\Gamma_{S}}{f_{ADC} \times C_{ADC} \times \ln(2^{N+2})} - R_{ADC}$$

The formula above (*Equation 1*) is used to determine the maximum external signal source impedance allowed for an error below 1/4 of LSB. Here N = 12 (from 12-bit resolution).

T _s (cycles)	t _S (μs)	R _{SRC} max (kΩ)
1.5	0.11	0.4
7.5	0.54	5.9
13.5	0.96	11.4
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	50
239.5	17.1	50

Table 61.	R _{SRC} ma	x for fADC	= 14 MHz ⁽¹⁾
-----------	---------------------	------------	-------------------------

1. Guaranteed by design.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±3	
EO	Offset error	f _{ADC} = 14 MHz, R _{SRC} < 10 kΩ	±1	±2	
EG	Gain error	$V_{DDA} = 3 V \text{ to } 3.6 V$	±0.5	±1.5	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{ADC} = 14 MHz, R _{SRC} < 10 kΩ, V _{DDA} = 2.7 V to 3.6 V	±1.9	±2.8	
EG	Gain error		±2.8	±3	LSB
ED	Differential linearity error	T _A = -40 to 105 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{ADC} = 14 MHz, R _{SRC} < 10 kΩ V _{DDA} = 2.4 V to 3.6 V	±1.9	±2.8	
EG	Gain error		±2.8	±3	LSB
ED	Differential linearity error	T _A = 25 °C	±0.7	±1.3	1
EL	Integral linearity error]	±1.2	±1.7	1

Table 62. ADC accuracy^{(1)(2) (3)}

1. ADC DC accuracy values are measured after internal calibration.

1. Dimensions are expressed in millimeters.

Device marking for LQFP64

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Figure 40. LQFP64 marking example (package top view)

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering samples to run qualification activity.

8 Part numbering

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 82. Or	dering info	rmation	scheme
--------------	-------------	---------	--------

Example:	STM32	F	373	R	8	Т	6	2
Device family								
STM32 = ARM-based 32-bit microcontroller								
Product type								
F = General-purpose								
Sub-family								
373 = STM32F373xx								
Pin count								
C = 48 pins								
R = 64 pins								
V = 100 pins								
Code size								
8 = 64 Kbytes of Flash memory								
B = 128 Kbytes of Flash memory								
C = 256 Kbytes of Flash memory								
Package								
T = LQFP								
H = BGA								
Temperature range								
6 = Industrial temperature range, -40 to 85 °C								
7 = Industrial temperature range, –40 to 105 $^\circ\text{C}$								
2 //								

Options

xxx = programmed parts

TR = tape and reel

Date	Revision	Changes
Date	Revision	Changes Updated Table 2: Device overview, capacitive sensing channels peripheral added. Updated Table 3: Capacitive sensing GPIOs available on STM32F373xx devices Updated Section 3.19: Inter-integrated circuit interface (I2C) Updated the function names in Table 11: STM32F373 pin definitions Updated Table 20: Current characteristics Updated Table 20: Current characteristics Updated Table 22: General operating conditions Updated Table 30: Typical and maximum VDD consumption in Stop and Standby modes Updated Table 32: Typical and maximum current consumption from VBAT supply Added Figure 11: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00')
21-Dec-2012	3	Updated Table 33: Typical current consumption in Run mode, code with data processing running from Flash and Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM Added Table 35: Switching output I/O current consumption Added Table 36: Peripheral current consumption, Figure 16: HSI oscillator accuracy characterization results Updated Section 6.3.6: Wakeup time from low-power mode Updated Table 37: Low-power mode wakeup timings Updated Table 47: EMS characteristics Updated Table 51: I/O current injection susceptibility Updated Table 52: I/O static characteristics Updated , Figure 18: TC and TTa I/O input characteristics - TTL port, Figure 18: Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port and Figure 20: Five volt tolerant (FT and ETf) I/O input characteristics - TTL port
		Updated Table 53: Output voltage characteristics Updated Table 53: Output voltage characteristics Updated Table 54: I/O AC characteristics Updated Table 55: NRST pin characteristics Updated Table 63: DAC characteristics Updated Table 74: SDADC characteristics Updated Figure 32: LQFP100 – 14 x 14 mm 100-pin low- profile quad flat package outline, Figure 35: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and Figure 38: LQFP48 – 7 x 7 mm, 48-pin low-profile quad flat package outline Updated Table 72: LQPF100 – 14 x 14 mm low-profile quad flat package mechanical data, Table 73: LQFP64 – 10 x 10 mm low-profile quad flat package mechanical data and Table 74: LQFP48 – 7 x 7 mm, low-profile quad flat package mechanical data Added Figure 16: HSI oscillator accuracy characterization results

Table 83. Document revision history (continued)

Date	Revision	Changes
		Replaced "Cortex-M4F" with "Cortex-M4" throughout the document. Removed part number STM32F372xx. Added "1.25 DMIPS/MHz (Dhrystone 2.1)" in <i>Features</i> . Updated <i>Introduction</i> . Added reference to the STMTouch touch sensing firmware library in <i>Section 3.16: Touch sensing controller (TSC)</i> . Added "All I2S interfaces can operate in half-duplex mode only." in <i>Section 3.21: Serial peripheral interface (SPI)/Inter- integrated sound interfaces (I2S)</i> . Added row "I2S full-duplex mode" to <i>Table 9: STM32F373xx</i> <i>SPI/I2S implementation</i> . Modified introduction of <i>I2C interface characteristics</i> . Added alternate function RTC_REFIN and removed additional
		function RTC_REF_CLK_IN to pins PA1 and PB15. Replaced alternate function JNTRST with NJTRST for pin
		In <i>Table 12: Alternate functions for port PA</i> : replaced alternate function JTMS-SWDIO with SWDIO-JTMS for pin PA13, and JTCK-SWCLK with SWCLK-JTCK for pin PA14.
19-Sep-2013	4	Added rows V _{REF+} and V _{REFSD+} to <i>Table 22: General operating conditions</i> .
		Replaced " $f_{APB1} = f_{AHB/2}$ " with " $f_{APB1} = f_{AHB}$ " for "When the peripherals are enabled" in <i>Typical current consumption</i> . Added COMP in <i>Table 36: Peripheral current consumption</i> Added conditions for f_{HSE_ext} in <i>Table 38: High-speed external</i>
		Added Min and Max values for ACC _{HISI} in <i>Table 42: HSI</i>
		Replaced reference "JESD22-C101" with "ANSI/ESD STM5.3.1" in Table 49: ESD absolute maximum ratings.
		Removed pins PB0 and PB1 in description of I _{INJ} in <i>Table 51: I/O current injection susceptibility</i> .
		Updated Table 56: I2C characteristics.
		SDADC characteristics.
		Corrected typo in <i>Figure 19: I/O AC characteristics definition</i> .
		measurement circuit
		Added I _{DDA(ADC)} and footnote 1 in <i>Table 60: ADC</i> characteristics

Table 83. Document revision history (continued)

