

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 1x12b, 3x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-UFBGA
Supplier Device Package	100-UFBGA (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f373vch6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F373xx microcontrollers.

This STM32F373xx datasheet should be read in conjunction with the RM0313 reference manual. The reference manual is available from the STMicroelectronics website www.st.com.

For information on the Cortex[®]-M4 with FPU core, please refer to:

- Cortex[®]-M4 with FPU Technical Reference Manual, available from www.arm.com.
- STM32F3xxx and STM32F4xxx Cortex[®]-M4 programming manual (PM0214) available from <u>www.st.com</u>.

3 Functional overview

3.1 ARM® Cortex®-M4 core with embedded Flash and SRAM

The ARM Cortex-M4 processor is the latest generation of ARM processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts.

The ARM Cortex-M4 32-bit RISC processor features exceptional code-efficiency, delivering the high-performance expected from an ARM core in the memory size usually associated with 8- and 16-bit devices.

The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution.

Its single precision FPU speeds up software development by using metalanguage development tools, while avoiding saturation.

With its embedded ARM core, the STM32F373xx family is compatible with all ARM tools and software.

Figure 1 shows the general block diagram of the STM32F373xx family.

3.2 Memory protection unit

The memory protection unit (MPU) is used to separate the processing of tasks from the data protection. The MPU can manage up to 8 protection areas that can all be further divided up into 8 subareas. The protection area sizes are between 32 bytes and the whole 4 gigabytes of addressable memory.

The memory protection unit is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (real-time operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed.

The MPU is optional and can be bypassed for applications that do not need it.

The Cortex-M4 processor is a high performance 32-bit processor designed for the microcontroller market. It offers significant benefits to developers, including:

- Outstanding processing performance combined with fast interrupt handling
- Enhanced system debug with extensive breakpoint and trace capabilities
- Efficient processor core, system and memories
- Ultralow power consumption with integrated sleep modes
- Platform security robustness with optional integrated memory protection unit (MPU).

With its embedded ARM core, the STM32F373xx devices are compatible with all ARM development tools and software.

3.7.4 Low-power modes

The STM32F373xx supports three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

• Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves the lowest power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode.

The device can be woken up from Stop mode by any of the EXTI line. The EXTI line source can be one of the 16 external lines, the PVD output, the USARTs, the I2Cs, the CEC, the USB wakeup, the COMPx and the RTC alarm.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the Backup domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pin, or an RTC alarm occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.8 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example with failure of an indirectly used external oscillator).

Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and the low speed APB (APB1) domains. The maximum frequency of the AHB and the high speed APB domains is 72 MHz, while the maximum allowed frequency of the low speed APB domain is 36 MHz.

3.9 General-purpose input/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high current capable except for analog inputs.

The I/Os alternate function configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.12 12-bit analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, V_{BAT} voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.12.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 65: Temperature sensor calibration values on page 105*.

3.12.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.12.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.15 Fast comparators (COMP)

The STM32F373xx embeds 2 comparators with rail-to-rail inputs and high-speed output. The reference voltage can be internal or external (delivered by an I/O).

The threshold can be one of the following:

- DACs channel outputs
- External I/O
- Internal reference voltage (V_{REFINT}) or submultiple (1/4 V_{REFINT}, 1/2 V_{REFINT} and 3/4 V_{REFINT})

The comparators can be combined into a window comparator.

Both comparators can wake up the device from Stop mode and generate interrupts and breaks for the timers.

3.16 Touch sensing controller (TSC)

The devices provide a simple solution for adding capacitive sensing functionality to any application. Capacitive sensing technology is able to detect the presence of a finger near an electrode which is protected from direct touch by a dielectric (glass, plastic, ...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists of charging the electrode capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage this acquisition is directly managed by the hardware touch sensing controller and only requires few external components to operate.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Up to 24 touch sensing electrodes can be controlled by the TSC. The touch sensing I/Os are organized in 8 acquisition groups, with up to 4 I/Os in each group.

Group	Capacitive sensing signal name	Pin name	e Group		Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0			TSC_G5_IO1	PB3
1	TSC_G1_IO2	PA1		5	TSC_G5_IO2	PB4
	TSC_G1_IO3	PA2		5	TSC_G5_IO3	PB6
	TSC_G1_IO4	PA3			TSC_G5_IO4	PB7
	TSC_G2_IO1	PA4 ⁽¹⁾			TSC_G6_IO1	PB14
2	TSC_G2_IO2	PA5 ⁽¹⁾		6	TSC_G6_IO2	PB15
	TSC_G2_IO3	PA6 ⁽¹⁾		0	TSC_G6_IO3	PD8
	TSC_G2_IO4	PA7			TSC_G6_IO4	PD9

Table 3. Capacitive sensing GPIOs available on STM32F373xx devices

3.21 Serial peripheral interface (SPI)/Inter-integrated sound interfaces (I²S)

Three SPIs are able to communicate at up to 18 Mbits/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes.

The SPIs can be served by the DMA controller.

Three standard I²S interfaces (multiplexed with SPI1, SPI2 and SPI3) are available, that can be operated in master or slave mode. These interfaces can be configured to operate with 16/32 bit resolution, as input or output channels. Audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I²S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2S interfaces can operate in half-duplex mode only.

Refer to *Table 9* for the features between SPI1, SPI2 and SPI3.

SPI features ⁽¹⁾	SPI1	SPI2	SPI3
Hardware CRC calculation	Х	Х	Х
Rx/Tx FIFO	Х	Х	Х
NSS pulse mode	Х	Х	Х
I2S mode	Х	Х	Х
TI mode	Х	Х	Х
I2S full-duplex mode	-	-	-

Table 9. STM32F373xx SPI/I2S i	implementation
--------------------------------	----------------

1. X = supported.

3.22 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.23 Controller area network (CAN)

The CAN is compliant with specifications 2.0A and B (active) with a bit rate up to 1 Mbit/s. It can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. It has three transmit mailboxes, two receive FIFOs with 3 stages and 14 scalable filter banks.

DocID022691 Rev 7

Table 11. STM32F373xx pin definitions (continued) Pin numbers Pin functions									,				
Pi	n nun	nber	S					Pin func	Pin functions				
LQFP100	UFBGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions				
38	M7	-	-	PE7	I/O	тс	(3) (2)	-	SDADC1_AIN3P, SDADC1_AIN4M, SDADC2_AIN5P, SDADC2_AIN6M				
39	L7	29	21	PE8	I/O	тс	(3)	-	SDADC1_AIN8P, SDADC2_AIN8P				
40	M8	30	22	PE9	I/O	тс	(3)	-	SDADC1_AIN7P, SDADC1_AIN8M, SDADC2_AIN7P, SDADC2_AIN8M				
41	L8	-	-	PE10	I/O	тс	(3) (2)	-	SDADC1_AIN2P				
42	M9	-	-	PE11	I/O	тс	(3) (2)	-	SDADC1_AIN1P, SDADC1_AIN2M, SDADC2_AIN4P				
43	L9	-	-	PE12	I/O	тс	(3) (2)	-	SDADC1_AIN0P, SDADC2_AIN3P, SDADC2_AIN4M				
44	M10	-	-	PE13	I/O	тс	(3) (2)	-	SDADC1_AIN0M , SDADC2_AIN2P				
45	M11	-	-	PE14	I/O	тс	(3) (2)	-	SDADC2_AIN1P, SDADC2_AIN2M				
46	M12	-	-	PE15	I/O	тс	(3) (2)	USART3_RX	SDADC2_AIN0P				
47	L10	-	-	PB10	I/O	тс	(3) (2)	SPI2_SCK/I2S2_CK, USART3_TX, CEC, TSC_SYNC, TIM2_CH3	SDADC2_AIN0M				
48	L11	-	-	VREFSD-	S	-	(2)	External reference voltage for S (negative input), negative SDA single ende	DC analog input in SDADC				
49	F12	-	-	VSSSD	S	-	(2)	SDADC1, SDADC2,	SDADC3 ground				
-	-	31	23	VSSSD/ VREFSD-	S	-	-	SDADC1, SDADC2, SDADC3 voltage for SDADC1, SDADC2 negative SDADC analog input ir	, SDADC3 (negative input),				
50	G12	-	-	VDDSD12	S	-	(2)	SDADC1 and SDAD	C2 power supply				
-	-	32	24	VDDSD	S	-	-	SDADC1, SDADC2, SE	DADC3 power supply				

Table 11. STM32F373xx pin definitions (continued)

Table 11. STM32F373xx	pin definitions	(continued)
-----------------------	-----------------	-------------

Pi	in nun	nber	S					Pin functions			
LQFP100	UFBGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions		
67	D11	41	29	PA8	I/O	FT	-	SPI2_SCK/I2S2_CK, I2C2_SMBA, USART1_CK, TIM4_ETR, TIM5_CH1_ETR, MCO	-		
68	D10	42	30	PA9	I/O	FTf	-	SPI2_MISO/I2S2_MCK, I2C2_SCL, USART1_TX, TIM2_CH3, TIM15_BKIN, TIM13_CH1, TSC_G4_IO1	-		
69	C12	43	31	PA10	I/O	FTf	-	SPI2_MOSI/I2S2_SD, I2C2_SDA, USART1_RX, TIM2_CH4, TIM17_BKIN, TIM14_CH1, TSC_G4_IO2	-		
70	B12	44	32	PA11	I/O	FT	-	SPI2_NSS/I2S2_WS, SPI1_NSS/I2S1_WS, USART1_CTS, CAN_RX, TIM4_CH1, USB_DM, TIM5_CH2, COMP1_OUT	-		
71	A12	45	33	PA12	I/O	FT	-	SPI1_SCK/I2S1_CK, USART1_RTS, CAN_TX, USB_DP, TIM16_CH1, TIM4_CH2, TIM5_CH3, COMP2_OUT	-		
72	A11	46	34	PA13	I/O	FT	-	SPI1_MISO/I2S1_MCK, USART3_CTS, IR_OUT, TIM16_CH1N, TIM4_CH3, TIM5_CH4, TSC_G4_IO3, SWDIO-JTMS	-		
73	C11	47	35	PF6	I/O	FTf	-	SPI1_MOSI/I2S1_SD, USART3_RTS, TIM4_CH4, I2C2_SCL	-		
74	F11	-	-	VSS_3	S	-	(2)	Grou	nd		
75	G11	-	-	VDD_3	S	-	(2)	Digital powe	er supply		
-	-	48	36	PF7	I/O	FTf	-	I2C2_SDA, USART2_CK	-		
76	A10	49	37	PA14	I/O	FTf	-	I2C1_SDA, TIM12_CH1, TSC_G4_IO4, SWCLK-JTCK	-		

42/137

DocID022691 Rev 7

571

	Table 12. Alternate functions for port PA (continued)													
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF14	AF15
PA13	SWDIO -JTMS	TIM16_ CH1N	TIM5_ CH4	TSC_ G4_IO3	-	IR-OUT	SPI1_MISO /I2S1_MCK	USART3_CTS	-	-	TIM4_ CH3	-	-	EVENT OUT
PA14	SWCLK -JTCK	-	-	TSC_ G4_IO4	I2C1_ SDA	-	-	-	-	-	TIM12 _CH1	-	-	EVENT OUT
PA15	JTDI	TIM2_ CH1_ETR	-	TSC_ SYNC	I2C1_ SCL	SPI1_NSS/ I2S1_WS	SPI3_NSS/ I2S3_WS	-	-	-	TIM12 _CH2	-	-	EVENT OUT

Bus	Boundary address	Size	Peripheral
	0x4800 1400 - 0x4800 17FF	1KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1KB	GPIOE
AHB2	0x4800 0C00 - 0x4800 0FFF	1KB	GPIOD
ANDZ	0x4800 0800 - 0x4800 0BFF	1KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1KB	GPIOA
-	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	FLASH memory interface
ANDI	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0800- 0x4002 0FFF	2 KB	Reserved
	0x4002 0400 - 0x4002 07FF	1 KB	DMA2
	0x4002 0000 - 0x4002 03FF	1 KB	DMA1
-	0x4001 6C00 - 0x4001 FFFF	37 KB	Reserved

	Table 18. STM32F373xx	peripheral register	er boundary addresses ⁽¹⁾
--	-----------------------	---------------------	--------------------------------------

6.3.4 Embedded reference voltage

The parameters given in *Table 27* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at temperature of 30 °C V _{DDA} = 3.3 V	0x1FFF F7BA - 0x1FFF F7BB

Table 26. Embedded internal reference voltage calibration values

	_					
Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.20	1.23	1.25	V
T _{S_vrefint} (1)	ADC sampling time when reading the internal reference voltage	-	17.10	-	-	μs
V _{REFINT_s} ⁽²⁾	Internal reference voltage spread over the temperature range	V _{DD} = 3 V ±10 mV	-	-	10	mV
$T_{\text{Coeff}}^{(2)}$	Temperature coefficient	-	-	-	100	ppm/°C
t _{START} ⁽²⁾	Startup time	-	-	-	10	μs

Table 27. Embedded internal reference voltage

1. Shortest sampling time can be determined in the application by multiple iterations.

2. Guaranteed by design.

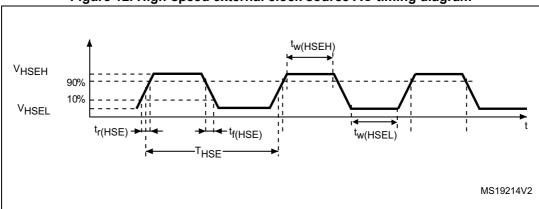


Figure 12. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 13*.

Symbol	Parameter ⁽¹⁾	Conditions	Min	Тур	Max	Unit	
f _{LSE_ext}	User External clock source frequency	-	-	32.768	1000	kHz	
V _{LSEH}	OSC32_IN input pin high level voltage	-	0.7V _{DD}	-	V _{DD}	V	
V _{LSEL}	OSC32_IN input pin low level voltage	-	V _{SS}	-	0.3V _{DD}		
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	-	450	450		ns	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	-	50	115	

Table 39. Low-speed external user clock characteristics

1. Guaranteed by design.

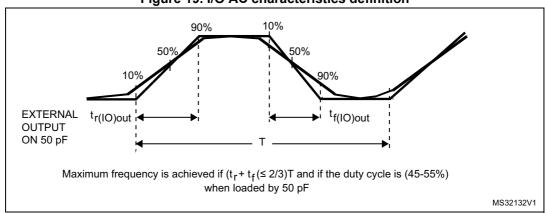
Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 19* and *Table 54*, respectively.

Unless otherwise specified, the parameters given are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C_L = 50 pF, V_{DD} = 2 V to 3.6 V	-	2	MHz
x0	t _{f(IO)out}	Output high to low level fall time	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V	-	125 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	CL = 30 μr, v _{DD} = 2 v to 3.0 v	-	125 ⁽³⁾	115
	f _{max(IO)out}	Maximum frequency ⁽²⁾	C _L = 50 pF, V _{DD} = 2 V to 3.6 V	-	10	MHz
01	t _{f(IO)out}	Output high to low level fall time	C ₁ = 50 pF, V _{DD} = 2 V to 3.6 V	-	25 ⁽³⁾	
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 μr, v _{DD} = 2 v to 5.6 v	-	25 ⁽³⁾	ns
			C _L = 30 pF, V _{DD} = 2.7 V to 3.6 V	-	50	MHz
	f _{max(IO)out}	Maximum frequency ⁽²⁾⁽³⁾	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	30	MHz
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	20	MHz
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	
11	t _{f(IO)out}	Output high to low level fall time	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	1
			C_{L} = 30 pF, V_{DD} = 2.7 V to 3.6 V	-	5 ⁽³⁾	ns
	t _{r(IO)out}	Output low to high level rise time	C _L = 50 pF, V _{DD} = 2.7 V to 3.6 V	-	8 ⁽³⁾	
			C_{L} = 50 pF, V_{DD} = 2 V to 2.7 V	-	12 ⁽³⁾	
	f _{max(IO)out}	Maximum frequency ⁽²⁾		-	2	MHz
FM+ configuration	t _{f(IO)out}	Output high to low level fall time	CL = 50 pF, V _{DD} = 2 V to 3.6 V	-	12	
(4)	t _{r(IO)out}	Output low to high level rise time		-	34	ns
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns

Table 54. I/O AC characteristics⁽¹⁾


1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the RM0313 reference manual for a description of GPIO Port configuration register.

2. The maximum frequency is defined in *Figure 19*.

3. Guaranteed by design.

4. The I/O speed configuration is bypassed in FM+ I/O mode. Refer to the STM32F37xx reference manual RM0313 for a description of FM+ I/O mode configuration

6.3.15 NRST characteristics

NRST pin characteristics

The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, R_{PU} (see *Table 52*).

Unless otherwise specified, the parameters given in *Table 55* are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)} ⁽¹⁾	NRST Input low level voltage	-	-	-	0.3V _{DD} + 0.07 ⁽¹⁾	V
V _{IH(NRST)} ⁽¹⁾	NRST Input high level voltage	-	0.445V _{DD} + 0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)} ⁽¹⁾	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	$V_{IN} = V_{SS}$	25	40	55	kΩ
V _{F(NRST)} ⁽¹⁾	NRST Input filtered pulse	-	-	-	100	ns
V _{NF(NRST)} ⁽¹⁾	NRST Input not filtered pulse	-	500	-	-	ns

Table 55. NRST pin characteristics

1. Guaranteed by design.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 58* for SPI or in *Table 59* for I²S are derived from tests performed under ambient temperature, f_{PCLKx} frequency and V_{DD} supply voltage conditions summarized in *Table 22*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Мах	Unit
f _{scк}		Master mode	-	18	
f _{SCK} 1/t _{c(SCK)} ⁽¹⁾	SPI clock frequency	Slave mode	-	18	MHz
t _{r(SCK)} t _{f(SCK)} (1)	SPI clock rise and fall time	Capacitive load: C = 30 pF	-	8	ns
DuCy(SCK) ⁽¹⁾	SPI slave input clock duty cycle	Slave mode	30	70	%
t _{su(NSS)} ⁽¹⁾	NSS setup time	Slave mode	2Tpclk	-	
t _{h(NSS)} ⁽¹⁾	NSS hold time	Slave mode	4Tpclk	-	
t _{w(SCKH)} ⁽¹⁾ t _{w(SCKL)} ⁽¹⁾	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 - 3	Tpclk/2 + 3	
	Data input setup time	Master mode	5.5	-	
t _{su(MI)} (1) t _{su(SI)} (1)	Data input setup time	Slave mode	6.5	-	
t _{h(MI)} ⁽¹⁾	Data input hold time	Master mode	5	-	
t _{h(SI)} ⁽¹⁾		Slave mode	5	-	ns
t _{a(SO)} ⁽¹⁾⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 24 MHz	0	4Tpclk	
t _{dis(SO)} ⁽¹⁾⁽³⁾	Data output disable time	Slave mode	0	24	
t _{v(SO)} ⁽¹⁾	Data output valid time	Slave mode (after enable edge)	-	39	
t _{v(MO)} ⁽¹⁾	Data output valid time	Master mode (after enable edge)	-	3	
t _{h(SO)} ⁽¹⁾	Data output hold time	Slave mode (after enable edge)	15	-	
t _{h(MO)} ⁽¹⁾	Data output hold time	Master mode (after enable edge)	4	-	

Table	58.	SPI	chara	cteristics
-------	-----	-----	-------	------------

1. Guaranteed by characterization results.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.

6.3.20 Temperature sensor characteristics

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at temperature of 30 °C \pm 5 °C, V _{DDA} = 3.3 V	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at temperature of 110 $^{\circ}$ C ± 5 $^{\circ}$ C V _{DDA} = 3.3 V	0x1FFF F7C2 - 0x1FFF F7C3

Table 65. Temperature sensor calibration values

Table 66. TS characteristics

Symbol	Parameter	Min	Тур	Max	Unit
TL	V _{SENSE} linearity with temperature	-	±1	±2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₂₅	Voltage at 25 °C	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	Startup time	4	-	10	μs
T _{S_temp} ⁽²⁾⁽¹⁾	ADC sampling time when reading the temperature	17.1	-	-	μs

1. Guaranteed by design.

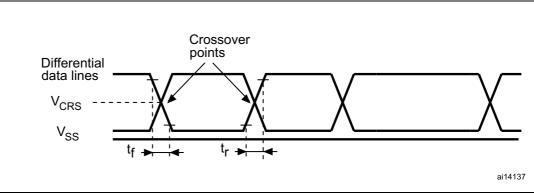
2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.21 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Max	Unit
R	Resistor bridge for V _{BAT}	-	50	-	KΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
T _{S_vbat} ⁽²⁾	ADC sampling time when reading the V _{BAT} 1mV accuracy	5	-	-	μs

Table 67. V_{BAT} monitoring characteristics

1. Guaranteed by design.


2. Shortest sampling time can be determined in the application by multiple iterations.

6.3.22 Timer characteristics

The parameters given in *Table 68* are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Figure 31. USB timings: definition of data signal rise and fall time

	Table 73. USB: Full-s	peed electrical ch	naracteris	tics ⁽¹⁾					
Symbol	Parameter Conditions Min Typ Max Uni								
Driver charac	teristics								
t _r	Rise time ⁽²⁾	C _L = 50 pF	4	-	20	ns			
t _f	Fall time ⁽²⁾	C _L = 50 pF	4	-	20	ns			
t _{rfm}	Rise/ fall time matching	t _r /t _f	90	-	110	%			
V _{CRS}	Output signal crossover voltage	-	1.3	-	2.0	V			
Output driver Impedance ⁽³⁾	Z _{DRV}	driving high and low	28	40	44	Ω			

1. Guaranteed by design.

2. Measured from 10% to 90% of the data signal. For more detailed informations, please refer to USB Specification - Chapter 7 (version 2.0).

3. No external termination series resistors are required on USB_DP (D+) and USB_DM (D-), the matching impedance is already included in the embedded driver.

6.3.24 CAN (controller area network) interface

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (CAN_TX and CAN_RX).

6.3.25 SDADC characteristics

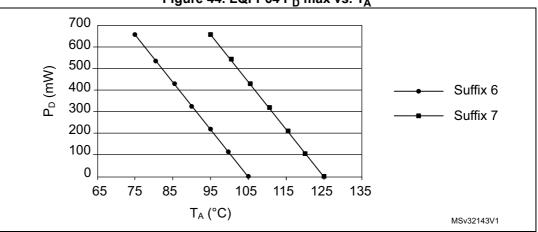
Symbol	Parameter	Conditions	Min	Тур	Max	Unit	Note
Vanon	Power	Slow mode (f_{ADC} = 1.5 MHz)	2.2	-	V_{DDA}	v	-
V _{DDSDx}	supply	Normal mode ($f_{ADC} = 6 \text{ MHz}$)	2.4	-	V _{DDA}	v	-
	SDADC	Slow mode (f _{ADC} = 1.5 MHz)	0.5	1.5	1.65		-
f _{ADC}	clock frequency	Normal mode (f _{ADC} = 6 MHz)	0.5	6	6.3	MHz	-
V _{REFSD+}	Positive ref. voltage	-	1.1	-	V _{DDSDx}	V	-

Table 74. SDADC characteristics ⁽¹⁾

Cumhal		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	8.800	9.000	9.200	0.3465	0.3543	0.3622	
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
D3	-	5.500	-	-	0.2165	-	
E	8.800	9.000	9.200	0.3465	0.3543	0.3622	
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835	
E3	-	5.500	-	-	0.2165	-	
е	-	0.500	-	-	0.0197	-	
L	0.450	0.600	0.750	0.0177	0.0236	0.0295	
L1	-	1.000	-	-	0.0394	-	
k	0°	3.5°	7°	0°	3.5°	7°	
ссс	-	-	0.080	-	-	0.0031	

Table 80. LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package
mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.



Using the values obtained in *Table 81* T_{Jmax} is calculated as follows:

- For LQFP100, 46°C/W
- T_{Jmax} = 115 °C + (46°C/W × 98.8 mW) = 115 °C + 4.54 °C = 119.5 °C

This is within the range of the suffix 7 version parts (–40 < T_J < 125 °C).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Part numbering*).

Date	Revision	Changes
18-Mar-2014	5	Renamed part number STM32F37x to STM32F373xx Added note1 in <i>Table 28: Typical and maximum current</i> <i>consumption from VDD supply at VDD</i> = $3.6 V$ Updated <i>Chapter 3.14: Digital-to-analog converter (DAC)</i> Updated, added note 2 and 3 in <i>Table 57: I2C analog filter</i> <i>characteristics</i> Renamed t _{SP} symbol with t _{AF.} Added note for EG Symbol in <i>Table 74: SDADC</i> <i>characteristics</i> Added all packages top view
21-Jul-2015	6	Updated Section 7 Updated Section 3.13 Updated Section 3.7.1, Section 3.7.4 Updated Table 11: STM32F373xx pin definitions, Table 19: Voltage characteristics, Table 49: ESD absolute maximum ratings, Table 74: SDADC characteristics, Table 76: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data, and Table 78: LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data Updated Figure 2: STM32F373xx LQFP48 pinout, Figure 9: Power supply scheme, Figure 32: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline, Figure 34: UFBGA100 marking example (package top view), Figure 36: LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint, Figure 37: LQFP100 marking example (package top view), Figure 38: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline, Figure 39: LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package recommended footprint, Figure 40: LQFP64 marking example (package top view), Figure 42: LQFP48 - 48-pin, 7 x 7 mm low-profile quad flat package recommended footprint, Figure 33: LQFP48 marking example (package top view). Added Table 32: Typical and maximum current consumption from VBAT supply, Table 49: ESD absolute maximum ratings, Table 64: Comparator characteristics, Table 77: UFBGA100 recommended PCB design rules (0.5 mm pitch BGA). Added Figure 11: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00'), Figure 30: Maximum VREFINT scaler startup time from power down, Figure 33: UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint.

Table 83. Document revision history (continued)

