E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	72MHz
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART, USB
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (256K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	32K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 1x12b, 3x16b; D/A 3x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f373vct6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 Embedded Flash memory

All STM32F373xx devices feature up to 256 Kbytes of embedded Flash memory available for storing programs and data. The Flash memory access time is adjusted to the CPU clock frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states above).

3.4 Cyclic redundancy check (CRC) calculation unit

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code using a configurable generator polynomial value and size.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at linktime and stored at a given memory location.

3.5 Embedded SRAM

All STM32F373xx devices feature up to 32 Kbytes of embedded SRAM with hardware parity check. The memory can be accessed in read/write at CPU clock speed with 0 wait states.

3.6 Boot modes

At startup, Boot0 pin and Boot1 option bit are used to select one of three boot options:

- Boot from user Flash
- Boot from system memory
- Boot from embedded SRAM

The boot loader is located in system memory. It is used to reprogram the Flash memory by using USART1 (PA9/PA10), USART2 (PD5/PD6) or USB (PA11/PA12) through DFU (device firmware upgrade).

3.12 12-bit analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter is based on a successive approximation register (SAR) architecture. It has up to 16 external channels (AIN15:0) and 3 internal channels (temperature sensor, voltage reference, V_{BAT} voltage measurement) performing conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

The events generated by the timers (TIMx) can be internally connected to the ADC start and injection trigger, respectively, to allow the application to synchronize A/D conversion and timers.

3.12.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode. See *Table 65: Temperature sensor calibration values on page 105*.

3.12.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and Comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

3.12.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

• Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision.

The RTC clock sources can be:

- A 32.768 kHz external crystal
- A resonator or oscillator
- The internal low-power RC oscillator (typical frequency of 40 kHz)
- The high-speed external clock divided by 32

3.19 Inter-integrated circuit interface (I²C)

Two I²C bus interfaces can operate in multimaster and slave modes. They can support standard (up to 100 kHz), fast (up to 400 kHz) and fast mode + (up to 1 MHz) modes with 20 mA output drive. They support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (2 addresses, 1 with configurable mask). They also include programmable analog and digital noise filters.

-	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I ² C peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements. Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled

Table 6. Comparison of I²C analog and digital filters

In addition, they provide hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeout verifications and ALERT protocol management. They also have a clock domain independent from the CPU clock, allowing the application to wake up the MCU from Stop mode on address match.

The I²C interfaces can be served by the DMA controller

Refer to Table 7 for the differences between I2C1 and I2C2.

Table 7.	STM32F373xx	I ² C im	plementation
----------	-------------	---------------------	--------------

l ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus with 20mA output drive I/Os (up to 1 Mbit/s)	Х	Х
Independent clock	Х	Х

				Table 11	. STN	//32F3	373>	x pin definitions (continued	1)
Pi	n nun	nber	s					Pin func	tions
LQFP100	UFBGA100	LQFP64	LQFP48	Pin name (function after reset)	Pin type	I/O structure	Notes	Alternate function	Additional functions
8	D1	3	3	PC14 - OSC32_IN ⁽¹⁾	I/O	тс	-	-	OSC32_IN
9	E1	4	4	PC15 - OSC32_OUT ⁽¹⁾	I/O	тс	-	-	OSC32_OUT
10	F2	-	-	PF9	I/O	FT	(2)	TIM14_CH1	-
11	G2	-	-	PF10	I/O	FT	(2)	-	-
12	F1	5	5	PF0 - OSC_IN	I/O	FTf	-	I2C2_SDA	OSC_IN
13	G1	6	6	PF1 - OSC_OUT	I/O	FTf	-	I2C2_SCL	OSC_OUT
14	H2	7	7	NRST	I/O	RST	-	Device reset input / internal	reset output (active low)
15	H1	8	-	PC0	I/O	ТТа	(2)	TIM5_CH1_ETR	ADC_IN10
16	J2	9	-	PC1	I/O	TTa	(2)	TIM5_CH2	ADCIN11
17	J3	10	-	PC2	I/O	ТТа	(2)	SPI2_MISO/I2S2_MCK, TIM5_CH3	ADC_IN12
18	K2	11	-	PC3	I/O	TTa	(2)	SPI2_MOSI/I2S2_SD, TIM5_CH4	ADC_IN13
19	J1	-	-	PF2	I/O	FT	(2)	I2C2_SMBA	-
20	K1	12	8	VSSA/VREF-	S	-	-	Analog g	round
-	-	-	9	VDDA/VREF+	S	-	(2)	Analog power supply / Referen	
21	M1	13	-	VDDA	S	-	(2)	Analog pow	er supply
22	L1	17	-	VREF+	S	-	(2)	Reference voltage for	ADC, COMP, DAC
23	L2	14	10	PA0	I/O	ТТа	-	USART2_CTS, TIM2_CH1_ETR, TIM5_CH1_ETR, TIM19_CH1, TSC_G1_IO1, COMP1_OUT	RTC_ TAMPER2, WKUP1, ADC_IN0, COMP1_INM
24	M2	15	11	PA1	I/O	TTa	-	SPI3_SCK/I2S3_CK, USART2_RTS, TIM2_CH2, TIM15_CH1N, TIM5_CH2, TIM19_CH2, TSC_G1_IO2, RTC_REFIN	ADC_IN1, COMP1_INP

Table 11. STM32F373xx pin definitions (continued)

41/137

5

					Та	able 12. Alte	rnate functio	ons for port PA	4					
Pin Name	AF0	AF1	AF2	AF3	AF4	AF5	AF6	AF7	AF8	AF9	AF10	AF11	AF14	AF15
PA0	-	TIM2_ CH1_ ETR	TIM5_ CH1_ ETR	TSC_ G1_IO1	-	-	-	USART2_CTS	COMP1 _OUT	-	-	TIM19 _CH1	-	EVENT OUT
PA1	RTC_ REFIN	TIM2_ CH2	TIM5_ CH2	TSC_ G1_IO2	-	-	SPI3_SCK/ I2S3_CK	USART2_RTS	-	TIM15_ CH1N	-	TIM19 _CH2	-	EVENT OUT
PA2	-	TIM2_ CH3	TIM5_ CH3	TSC_ G1_IO3	-	-	SPI3_MISO/ I2S3_MCK	USART2_TX	COMP2 _OUT	TIM15_ CH1	-	TIM19 _CH3	-	EVENT OUT
PA3	-	TIM2_ CH4	TIM5_ CH4	TSC_ G1_IO4	-	-	SPI3_MOSI /I2S3_SD	USART2_RX	-	TIM15_ CH2	-	TIM19 _CH4	-	EVENT OUT
PA4	-	-	TIM3_ CH2	TSC_ G2_IO1	-	SPI1_NSS/ I2S1_WS	SPI3_NSS/ I2S3_WS	USART2_CK	-	-	TIM12 _CH1	-	-	EVENT OUT
PA5	-	TIM2_ CH1_ ETR	-	TSC_ G2_IO2	-	SPI1_SCK/ I2S1_CK	-	CEC	-	TIM14_ CH1	TIM12 _CH2	-	-	EVENT OUT
PA6	-	TIM16_ CH1	TIM3_ CH1	TSC_ G2_IO3	-	SPI1_MISO /I2S1_MCK	-	-	COMP1 _OUT	TIM13_ CH1	-	-	-	EVENT OUT
PA7	-	TIM17_ CH1	TIM3_ CH2	TSC_ G2_IO4	-	SPI1_MOSI /I2S1_SD	-	-	COMP2 _OUT	TIM14_ CH1	-	-	-	EVENT OUT
PA8	мсо	-	TIM5_ CH1_ ETR	-	I2C2_ SMBA	SPI2_SCK/ I2S2_CK	-	USART1_CK	-	-	TIM4_ ETR	-	-	EVENT OUT
PA9	-	-	TIM13 _CH1	TSC_ G4_IO1	I2C2_ SCL	SPI2_MISO /I2S2_MCK	-	USART1_TX	-	TIM15_ BKIN	TIM2_ CH3	-	-	EVENT OUT
PA10	-	TIM17_ BKIN	-	TSC_ G4_IO2	I2C2_ SDA	SPI2_MOSI /I2S2_SD	-	USART1_RX	-	TIM14_ CH1	TIM2_ CH4	-	-	EVENT OUT
PA11	-	-	TIM5_ CH2	-	-	SPI2_NSS/ I2S2_WS	SPI1_NSS/ I2S1_WS	USART1_CTS	COMP1 _OUT	CAN_ RX	TIM4_ CH1	-	-	EVENT OUT
PA12	-	TIM16_ CH1	TIM5_ CH3	-	-	-	SPI1_SCK/ I2S1_CK	USART1_RTS	COMP2 _OUT	CAN_TX	TIM4_ CH2	-	-	EVENT OUT

STM32F373xx

6.1.6 Power supply scheme

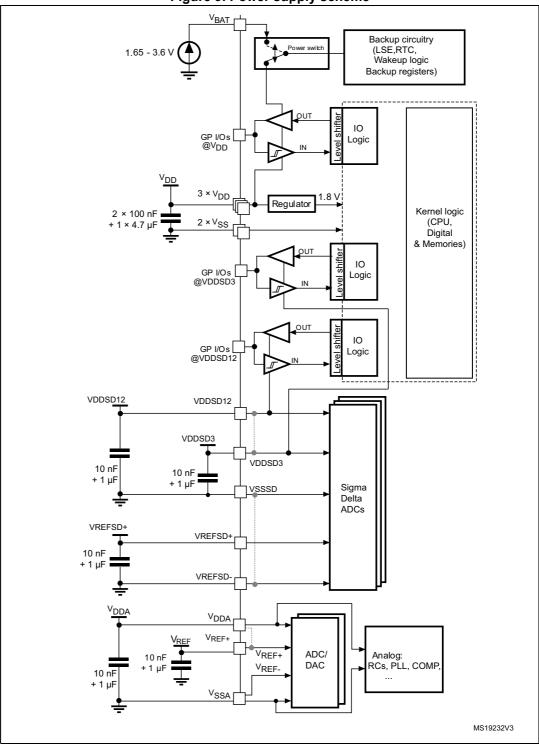


Figure 9. Power supply scheme

1. Dotted lines represent the internal connections on low pin count packages, joining the dedicated supply pins.

The following relationship must be respected between V_{REFSD+} and V_{DDSD12}, V_{DDSD3}: V_{REFSD+} must be lower than V_{DDSD3}.

Depending on the SDADCx operation mode, there can be more constraints between V_{REFSD+} , V_{DDSD12} and V_{DDSD3} which are described in reference manual RM0313.

Symbol	Ratings	Max.	Unit
ΣI _{VDD}	Total current into sum of all VDD_x and VDDSDx power lines (source) ⁽¹⁾	160	
ΣI _{VSS}	Total current out of sum of all VSS_x and VSSSD ground lines $({\rm sink})^{(1)}$	-160	
I _{VDD(PIN)}	Maximum current into each VDD_x or VDDSDx power pin (source) ⁽¹⁾	100	
I _{VSS(PIN)}	Maximum current out of each VSS_x or VSSSD ground pin (sink) ⁽¹⁾	-100	
	Output current sunk by any I/O and control pin	25	
I _{IO(PIN)}	Output current source by any I/O and control pin	-25	mA
N	Total output current sunk by sum of all IOs and control pins ⁽²⁾	80	
$\Sigma I_{IO(PIN)}$	Total output current sourced by sum of all IOs and control pins ⁽²⁾	-80	
	Injected current on FT, FTf and B pins ⁽³⁾	-5/+0	
I _{INJ(PIN)}	Injected current on TC and RST pin ⁽⁴⁾	± 5	
	Injected current on TTa pins ⁽⁵⁾	± 5	
ΣI _{INJ(PIN)}	Total injected current (sum of all I/O and control pins) ⁽⁶⁾	± 25	

Table 20. Current character	ristics
-----------------------------	---------

 VDDSD12 is the external power supply for the PB2, PB10, and PE7 to PE15 I/O pins (the I/O pin ground is internally connected to V_{SS}). VDDSD3 is the external power supply for PB14 to PB15 and PD8 to PD15 I/O pins (the I/O pin ground is internally connected to V_{SS}). V_{DD} (VDD_x) is the external power supply for all remaining I/O pins (the I/O pin ground is internally connected to V_{SS}).

2. This current consumption must be correctly distributed over all I/Os and control pins. The total output current must not be sunk/sourced between two consecutive power supply pins referring to high pin count LQFP packages.

- 3. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value.
- A positive injection is induced by V_{IN}>V_{DD} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ(PIN)} must never be exceeded. Refer to *Table 19: Voltage characteristics* for the maximum allowed input voltage values.
- A positive injection is induced by V_{IN}>V_{DDA} while a negative injection is induced by V_{IN} < V_{SS}. I_{INJ}(PIN) must never be exceeded. Refer also to *Table 19: Voltage characteristics* for the maximum allowed input voltage values. Negative injection disturbs the analog performance of the device. See note ⁽²⁾ below *Table 62*.
- When several inputs are submitted to a current injection, the maximum ΣI_{INJ(PIN)} is the absolute sum of the positive and negative injected currents (instantaneous values).

Symbol	Ratings	Value	Unit
T _{STG}	Storage temperature range	-65 to +150	°C
TJ	Maximum junction temperature	150	°C

Table 21. Thermal characteristics

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 10: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in input mode with a static value at V_{DD} or V_{SS} (no load)
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency (0 wait state from 0 to 24 MHz, 1 wait state from 24 to 48 MHz and 2 wait states from 48 MHz to 72 MHz)
- Prefetch in ON (reminder: this bit must be set before clock setting and bus prescaling)
- When the peripherals are enabled $f_{APB1} = f_{AHB}/2$, $f_{APB2} = f_{AHB}$
- When f_{HCLK} > 8 MHz PLL is ON and PLL inputs is equal to HSI/2 = 4 MHz (if internal clock is used) or HSE = 8 MHz (if HSE bypass mode is used)

The parameters given in *Table 28* to *Table 34* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

				AI	l periphe	erals ena	abled	All	periphe	rals dis	abled	
Symbol	Parameter	Conditions	f _{HCLK}	Turn	м	ax @ T _A	(2)	Tun	Ma	ax @ T _A	(2)	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
			72 MHz	63.1	70.7	71.5	73.4	29.2	31.1	31.7	34.2	
		HSE	64 MHz	56.3	63.3	64.1	64.9	26.1	27.8	28.4	30.4	
		bypass,	48 MHz	42.5	48.5	48.0	50.1	19.9	22.6	21.9	23.1	
		PLL on	32 MHz	28.8	31.4	32.2	34.3	13.1	16.1	14.9	16.2	
	Supply		24 MHz	21.9	24.4	24.4	25.8	10.1	10.9	11.9	12.4	
	current in	HSE	8 MHz	7.3	8.0	9.3	9.3	3.7	4.1	4.4	5.0	
I _{DD}	Run mode, code	bypass, PLL off	1 MHz	1.1	1.5	1.8	2.3	0.8	1.1	1.4	1.9	mA
	executing from Flash		64 MHz	51.7	57.7	58.0	60.4	25.8	27.6	28.1	30.1	
		HSI clock,	48 MHz	38.6	45.9	43.5	46.9	19.8	21.9	21.7	22.8	
		PLL on	32 MHz	26.4	31.1	29.7	31.9	13.1	15.7	14.8	16.2	
			24 MHz	20.3	22.6	22.6	23.7	6.9	7.5	8.1	8.8	
		HSI clock, PLL off	8 MHz	7.0	7.6	8.8	8.8	3.7	4.1	4.4	5.0	

Table 28. Typical and maximum current consumption from V_{DD} supply at V_{DD} = 3.6 V⁽¹⁾

					Тур(@V _{DD} (V _{DD} =V	(_{ADD}			Max ⁽¹⁾)	
Symbol	Parameter		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	Т _А = 25 °С	Т _А = 85 °С	T _A = 105 °C	Unit
	Supply		Regulator in run mode, all oscillators OFF	1.99	2.07	2.19	2.33	2.46	2.64	10.8	11.8	12.4	
I _{DDA}	current in Stop mode	DDSD12	Regulator in low-power mode, all oscillators OFF	1.99	2.07	2.18	2.32	2.47	2.63	10.6	11.5	12.5	
	Supply current in	and V	LSI ON and IWDG ON	2.44	2.53	2.7	2.89	3.09	3.33	-	-	-	μA
	Standby mode	V _{DDA}	LSI OFF and IWDG OFF	1.87	1.94	2.06	2.19	2.35	2.51	4.1	4.5	4.8	
IDDAmon	Supply current for V_{DDA} and V_{DDSD12} monitoring		-	0.95	1.02	1.12	1.2	1.27	1.4	-	-	-	

Table 31. Typical and maximum V _{DDA} consumption in Stop and Standby modes
--

1. Data based on characterization results and tested in production.

2. To obtain data with monitoring OFF is necessary to substract the IDDAmon current.

-	Table 32. Typical and maximum current consumption from V _{BAT} supply."												
Symbol				Тур @ V _{ВАТ}						Max ⁽²⁾			
	Parameter	Conditions	= 1.65 V	= 1.8 V	= 2.0 V	= 2.4 V	= 2.7 V	= 3.3 V	= 3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit
I _{DD_} VBAT	Backup domain supply current	LSE & RTC ON; "Xtal mode" lower driving capability; LSEDRV[1:0] = '00'	0.50	0.52	0.55	0.63	0.70	0.87	0.95	1.1	1.6	2.2	μA
		LSE & RTC ON; "Xtal mode" higher driving capability; LSEDRV[1:0] = '11'	0.85	0.90	0.93	1.02	1.10	1.27	1.38	1.6	2.4	3.0	

Table 32. Typical and maximum current consumption from V_{BAT} supply⁽¹⁾

1. Crystal used: Abracon ABS07-120-32.768kHz-T with 6 pF of CL for typical values.

2. Guaranteed by characterization results.

All timings are derived from tests performed under ambient temperature and V_{DD} supply voltage conditions summarized in *Table 22*.

Symbol	Parameter	Conditions	Typ @V _{DD} = V _{DDA}					Мах	Unit
	Farameter	Conditions	= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	-	Unit
^t wustop	Wakeup from Stop	Regulator in run mode	4.1	3.9	3.8	3.7	3.6	4.5	
	mode	Regulator in low power mode	7.9	6.7	6.1	5.7	5.4	8.6	μs
t _{WUSTANDB} Y	Wakeup from Standby mode	LSI and IWDG off	62.6	53.7	49.2	45.7	42.7	100	
t _{WUSLEEP}	Wakeup from Sleep mode	After WFE instruction	6						CPU clock cycles

Table 37. L	Low-power mode wakeup timings
-------------	-------------------------------

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 12*.

Symbol	Parameter ⁽¹⁾	Conditions	Min	Тур	Мах	Unit			
f _{HSE_ext}	User external clock source	CSS is on or PLL is used	1	8	32	MHz			
	frequency	CSS is off, PLL not used	0						
V _{HSEH}	OSC_IN input pin high level voltage	-	$0.7 V_{DD}$	-	V _{DD}	v			
V _{HSEL}	OSC_IN input pin low level voltage	-	V_{SS}	-	0.3 V _{DD}	v			
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	-	15	-	-	ns			
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	_	20	115			

Table 38	. High-speed	external	user clock	characteristics
----------	--------------	----------	------------	-----------------

1. Guaranteed by design.

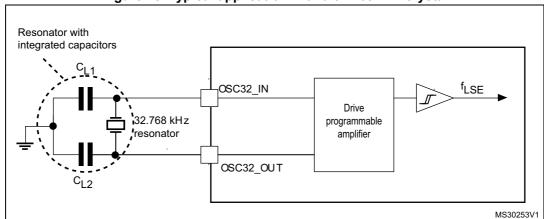


Figure 15. Typical application with a 32.768 kHz crystal

Note:

An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 42* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 22*.

The provided curves are characterization results, not tested in production.

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit				
f _{HSI}	Frequency	-	-	8	-	MHz				
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%				
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%				
	Accuracy of the HSI oscillator (factory calibrated)	T _A =40 to 105 °C	-3.8 ⁽³⁾	-	4.6 ⁽³⁾	%				
		T _A = −10 to 85 °C	-2.9 ⁽³⁾	-	2.9 ⁽³⁾	%				
ACC _{HSI}		T _A = 0 to 70 °C	-2.3 ⁽³⁾	-	-2.2 ⁽³⁾	%				
		T _A = 25 °C	-1	-	1	%				
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽³⁾	-	2 ⁽³⁾	μs				
I _{DD(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽³⁾	μA				

Table 42. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} =3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design.

3. Guaranteed by characterization results.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- FTB: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 47*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}	Voltage limits to be applied on any I/O pin to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-2	3B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP100, T _A = +25 °C, f _{HCLK} = 72 MHz conforms to IEC 61000-4-4	4A

Table	47.	EMS	charac	teristics
IUNIO			onarao	

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (control registers...)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter Conditions		Monitored frequency band	Max vs. [f _{HSE} /f _{HCLK}] 8/72 MHz	Unit
	Peak level	level V_{DD} - 3.3 V, T _A - 25 °C, LQFP100 package compliant with IEC 61967-2	0.1 to 30 MHz	9	
6			30 to 130 MHz	26	dBµV
S _{EMI}			130 MHz to 1 GHz	30	
			SAE EMI Level	4	-

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

······································								
Symbol	Ratings	Conditions	Class	Maximum value ⁽¹⁾	Unit			
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	T_A = +25 °C, conforming to JESD22- A114	2	2000				
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	T _A = +25 °C, conforming to ANSI/ESD STM5.3.1, LQFP100, LQFP64, LQFP48 and UFBGA100 packages	II	500	V			

Table 49. ESD absolute maximum ratings

1. Guaranteed by characterization results.

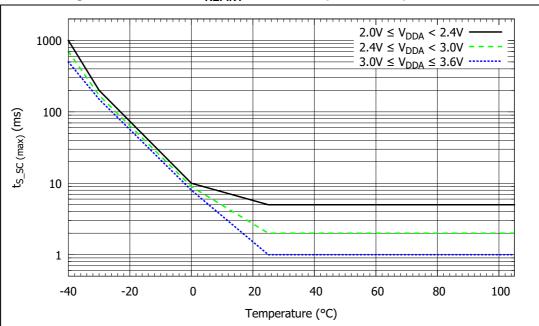
Symbol	Description	Func suscer	Unit	
Symbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0 pin	-0	NA	
	Injected current on PC0 pin	-0	+5	
	Injected current on TC type I/O pins on VDDSD12 power domain: PB2, PE7, PE8, PE9, PE10, PE11, PE12, PE13, PE14, PE15, PB10 with induced leakage current on other pins from this group less than -50 µA	-5	+5	
I _{INJ}	Injected current on TC type I/O pins on VDDSD3 power domain: PB14, PB15, PD8, PD9, PD10, PD12, PD13, PD14, PD15 with induced leakage current on other pins from this group less than -50 µA	-5	+5	mA
	Injected current on TTa type pins: PA4, PA5, PA6 with induced leakage current on adjacent pins less than -10 μA	-5	+5	
	Injected current on any other FT and FTf pins	-5	NA	
	Injected current on any other pins	-5	+5	

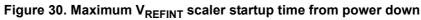
Table 51.	. I/O current	injection	susceptibility
-----------	---------------	-----------	----------------

Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents.

6.3.18 DAC electrical specifications

Symbol	Parameter		Conditions	Min	Тур	Мах	Unit
V _{DDA}	Analog supply voltage		-	2.4	-	3.6	V
V _{REF+}	Reference supply voltage	V _{REF+} must	t always be below V _{DDA}	2.4	-	3.6	V
V _{SSA}	Ground		-	0	-	0	V
- (1)		DAC	Connected to V _{SSA}	5	-	-	
R _{LOAD} ⁽¹⁾	Resistive load	output buffer ON	Connected to V _{DDA}	25	-	-	kΩ
$R_0^{(1)}$	Output Impedance	DAC output	t buffer OFF	-	-	15	kΩ
C _{LOAD} ⁽¹⁾	Capacitive load		apacitive load at DAC_OUT he buffer is ON).	-	-	50	pF
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	of the DAC. It correspor	nds to 12-bit input code	0.2	-	-	V
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON		(0xF1C) at V_{REF+} = 3.6 V) and (0xEAB) at V_{REF+} =	-	-	V _{DDA} – 0.2	V
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF		maximum output excursion	-	0.5	-	mV
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	of the DAC		-	-	V _{REF+} – 1LSB	V
I _{DDVREF+} ⁽³⁾	DAC DC current consumption in quiescent mode (Standby mode)	V _{REF+} = 3.6	d, worst code (0xF1C) at 5 V in terms of DC n on the inputs	-	-	220	μA
	DAC DC current	With no loa the inputs	d, middle code (0x800) on	-	-	380	μA
I _{DDA} ⁽³⁾	consumption in quiescent mode ⁽²⁾	V _{REF+} = 3.6	d, worst code (0xF1C) at S V in terms of DC n on the inputs	-	-	480	μA
DNL ⁽³⁾	Differential non linearity Difference between two	Given for th configuration	ne DAC in 10-bit on	-	-	± 0.5	LSB
	consecutive code-1LSB)	Given for th configuration	ie DAC in 12-bit on	-	-	± 2	LSB
	Integral non linearity (difference between	Given for th configuration	ne DAC in 10-bit on	-	-	± 1	LSB
INL ⁽³⁾	measured value at Code i and the value at Code i on a line drawn between Code 0 and last Code 1023)	Given for th configuratic	ne DAC in 12-bit on	-	-	± 4	LSB


Table 63. DAC characteristics



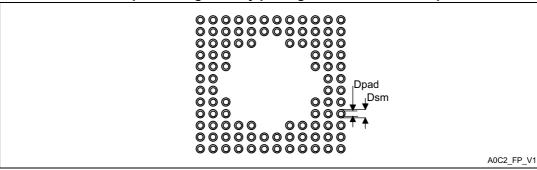
Symbol	Parameter	Conditio	ons	Min	Тур	Max ⁽¹⁾	Unit
		No hysteresis (COMPxHYST[1:0]=00)	-	-	0	-	
			High speed mode	3		13	
		Low hysteresis (COMPxHYST[1:0]=01)	All other power modes	5	8	10	
V _{hys}	Comparator hysteresis	Madium hystoresia	High speed mode	7		26	mV
		Medium hysteresis (COMPxHYST[1:0]=10)	All other power modes	9	15	19	
			High speed mode	18		49	
		High hysteresis (COMPxHYST[1:0]=11)	All other power modes	19	31	40	

1. Guaranteed by design.

2. For more details and conditions see Figure 30: Maximum VREFINT scaler startup time from power down

Symbol	Parameter			Con	ditions		Min	Тур	Max	Unit	Note
				f _{ADC} = 1.5 MHz		$V_{\text{REFSD}^+} = 3.3^{(3)}$	84	85	-		
		e	gain = 1	f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	86	88	-		
		Differential mode	0,	6 MHz		V _{REFSD+} = 3.3	88	92	-		
		ifferent		f _{ADC} =		V_{REFSD^+} = 1.2 ⁽⁴⁾	76	78	-		
		Δ	gain = 8	f _{ADC} = 6 MHz		V _{REFSD+} = 3.3	82	86	-		
SNR ⁽⁵⁾	Signal to noise ratio		0,	f _{ADC} = 1.5 MHz	V _{DDSDx} = 3.3	V_{REFSD^+} = 3.3 ⁽³⁾	76	80	-	dB	-
				f _{ADC} = 1.5 MHz		V _{REFSD+} = 3.3	80	84	-		
		mode	gain = 1	f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	77	81	-		
		Single ended mode	ĵ	6 MHz		V _{REFSD+} = 3.3	85	90	-		
		Single	1 = 8	f _{ADC} =		V _{REFSD+} = 1.2 ⁽⁴⁾	66	71	-		
			gain =	6 MHz		V _{REFSD+} = 3.3	74	78	-		

Table 74. SDADC characteristics (continued)⁽¹⁾



Querra la cal		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
D	6.950	7.000	7.050	0.2736	0.2756	0.2776
D1	5.450	5.500	5.550	0.2146	0.2165	0.2185
E	6.950	7.000	7.050	0.2736	0.2756	0.2776
E1	5.450	5.500	5.550	0.2146	0.2165	0.2185
е	-	0.500	-	-	0.0197	-
F	0.700	0.750	0.800	0.0276	0.0295	0.0315
ddd	-	-	0.100	-	-	0.0039
eee	-	-	0.150	-	-	0.0059
fff	-	-	0.050	-	-	0.0020

Table 76. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid arraypackage mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 33. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint

Table 77. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA)

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm

Date	Revision	Changes
Date 21-Dec-2012		Updated Table 2: Device overview, capacitive sensing channels peripheral added. Updated Table 3: Capacitive sensing GPIOs available on STM32F373xx devices Updated Section 3.19: Inter-integrated circuit interface (I2C) Updated the function names in Table 11: STM32F373 pin definitions Updated Table 20: Current characteristics Updated Table 30: Typical and maximum VDD consumption in Stop and Standby modes Updated Table 32: Typical and maximum current consumption from VBAT supply Added Figure 11: Typical VBAT current consumption (LSE and RTC ON/LSEDRV[1:0]='00') Updated Table 33: Typical current consumption in Run mode, code with data processing running from Flash and Table 34: Typical current consumption in Sleep mode, code running from Flash or RAM Added Table 36: Peripheral current consumption, Figure 16: HSI oscillator accuracy characterization results Updated Table 37: Low-power mode wakeup timings Updated Table 51: I/O current injection susceptibility Updated Table 52: I/O static characteristics Updated Table 52: I/O static characteristics Updated Table 53: Output voltage characteristics Updated Table 55: NRST pin characteristics Updated Table 55: NAC port and Figure 20: Five volt tolerant (FT and FTf) I/O input character
		profile quad flat package outline, Figure 35: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline and

Table 83. Document revision history (continued)

Date	Revision	Changes
08-Jun-2016	7	 Updated: Table 3: Capacitive sensing GPIOs available on STM32F373xx devices Table 19: Voltage characteristics Table 27: Embedded internal reference voltage Table 27: Embedded internal reference voltage Table 41: LSE oscillator characteristics (fLSE = 32.768 kHz) Table 49: ESD absolute maximum ratings Table 60: ADC characteristics Table 63: DAC characteristics Table 65: Temperature sensor calibration values Table 74: SDADC characteristics Table 81: Package thermal characteristics Figure 17: TC and TTa I/O input characteristics - CMOS port Figure 18: Five volt tolerant (FT and FTf) I/O input characteristics - CMOS port Figure 18: TC and TTa I/O input characteristics - TTL port Figure 20: Five volt tolerant (FT and FTf) I/O input characteristics - TTL port

Table 83. Document revision history (continued)
