

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	36
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89e54rd2a-40-c-tqje

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Not Recommended for New Designs

Product Description

The SST89E54RD2A/RDA and SST89E58RD2A/RDA are members of the FlashFlex family of 8-bit microcontroller products designed and manufactured with SST patented and proprietary SuperFlash CMOS semiconductor process technology. The split-gate cell design and thick-oxide tunneling injector offer significant cost and reliability benefits for SST customers. The devices use the 8051 instruction set and are pin-for-pin compatible with standard 8051 microcontroller devices.

The devices come with 24/40 KByte of on-chip flash EEPROM program memory which is partitioned into 2 independent program memory blocks. The primary Block 0 occupies 16/32 KByte of internal program memory space and the secondary Block 1 occupies 8 KByte of internal program memory space.

The 8-KByte secondary block can be mapped to the lowest location of the 16/32 KByte address space; it can also be hidden from the program counter and used as an independent EEPROM-like data memory.

In addition to the 24/40 KByte of EEPROM program memory on-chip and 1024 x8 bits of on-chip RAM, the devices can address up to 64 KByte of external program memory and up to 64 KByte of external RAM.

The flash memory blocks can be programmed via a standard 87C5x OTP EPROM programmer fitted with a special adapter and the firmware for SST devices. During power-on reset, the devices can be configured as either a slave to an external host for source code storage or a master to an external host for an in-application programming (IAP) operation. The devices are designed to be programmed in-system and in-application on the printed circuit board for maximum flexibility. The devices are pre-programmed with an example of the bootstrap loader in the memory, demonstrating the initial user program code loading or subsequent user code updating via the IAP operation. The sample bootstrap loader is available for the user's reference and convenience only; SST does not guarantee its functionality or usefulness. Chip-Erase or Block-Erase operations will erase the pre-programmed sample code.

Not Recommended for New Designs

Pin Descriptions

Symbol	Type ¹	Name and Functions
P0[7:0]	I/O	Port 0: Port 0 is an 8-bit open drain bi-directional I/O port. As an output port each pin can sink several LS TTL inputs. Port 0 pins float that have '1's written to them, and in this state can be used as high-impedance inputs. In this application, it uses strong internal pull-ups when transitioning to V_{OH} . Port 0 also receives the code bytes during the external host mode programming, and outputs the code bytes during the external host mode verification. External pull-ups are required during program verification.
P1[7:0]	I/O with internal pull-ups	Port 1: Port 1 is an 8-bit bi-directional I/O port with internal pull-ups. The Port 1 output buffers can drive LS TTL inputs. Port 1 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 1 pins that are externally pulled low will source current because of the internal pull-ups. P1[5, 6, 7] have high current drive of 16 mA. Port 1 also receives the low-order address bytes during the external host mode programming and verification.
P1[0]	I/O	T2: External count input to Timer/Counter 2 or Clock-out from Timer/Counter 2
P1[1]	I	T2EX: Timer/Counter 2 capture/reload trigger and direction control
P1[2]	I	ECI: PCA Timer/Counter External Input: This signal is the external clock input for the PCA timer/counter.
P1[3]	I/O	CEX0: Compare/Capture Module External I/O Each compare/capture module connects to a Port 1 pin for external I/O. When not used by the PCA, this pin can handle standard I/O.
P1[4]	I/O	SS#: Master Input or Slave Output for SPI. OR CEX1: Compare/Capture Module External I/O
P1[5]	I/O	MOSI: Master Output line, Slave Input line for SPI OR CEX2: Compare/Capture Module External I/O
P1[6]	I/O	MISO: Master Input line, Slave Output line for SPI OR CEX3: Compare/Capture Module External I/O
P1[7]	I/O	SCK: Master clock output, slave clock input line for SPI OR CEX4: Compare/Capture Module External I/O
P2[7:0]	I/O with internal pull-up	Port 2: Port 2 is an 8-bit bi-directional I/O port with internal pull-ups. Port 2 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 2 pins that are externally pulled low will source current because of the internal pull-ups. Port 2 sends the high-order address byte during fetches from external Program memory and during accesses to external Data Memory that use 16-bit address (MOVX@DPTR). In this application, it uses strong internal pull-ups when transitioning to V _{OH} . Port 2 also receives some control signals and high-order address bits during the external host mode programming and verification.

Table 1: Pin Descriptions (1 of 3)

Not Recommended for New Designs

Symbol	Type ¹	Name and Functions
P3[7:0]	I/O with internal pull-up	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also receives some control signals and high-order address bits during the external host mode programming and verification.
P3[0]	I	RXD: Universal Asynchronous Receiver/Transmitter (UART) - Receive input
P3[1]	0	TXD: UART - Transmit output
P3[2]	I	INT0#: External Interrupt 0 Input
P3[3]	I	INT1#: External Interrupt 1 Input
P3[4]	I	T0: External count input to Timer/Counter 0
P3[5]	I	T1: External count input to Timer/Counter 1
P3[6]	0	WR#: External Data Memory Write strobe
P3[7]	0	RD#: External Data Memory Read strobe
PSEN#	I/O	Program Store Enable: PSEN# is the Read strobe to External Program Store. When the device is executing from Internal Program Memory, PSEN# is inactive (V_{OH}). When the device is executing code from External Program Memory, PSEN# is activated twice each machine cycle, except when access to External Data Memory while one PSEN# activation is skipped in each machine cycle. A forced high-to-low input transition on the PSEN# pin while the RST input is continually held high for more than 20 machine cycles will cause the device to enter External Host mode for programming.
RST	I	Reset: While the oscillator is running, a high logic state on this pin for two machine cycles will reset the device. After a reset, if the PSEN# pin is driven by a high-to-low input transition while the RST input pin is held high, the device will enter the External Host mode, otherwise the device will enter the Normal operation mode.
EA#	I	External Access Enable: EA# must be driven to V_{IL} in order to enable the device to fetch code from the External Program Memory. EA# must be driven to V_{IH} for internal program execution. However, Security lock level 4 will disable EA#, and program execution is only possible from internal program memory.
ALE/PROG#	I/O	Address Latch Enable: ALE is the output signal for latching the low byte of the address during an access to external memory. This pin is also the programming pulse input (PROG#) for flash programming. Normally the ALE ² is emitted at a constant rate of 1/6 the crystal frequency ³ and can be used for external timing and clocking. One ALE pulse is skipped during each access to external data memory. However, if AO is set to 1, ALE is disabled.
P4[3:0] ⁴	I/O with internal pull-ups	Port 4: Port 4 is an 4-bit bi-directional I/O port with internal pull-ups. The port 4 output buffers can drive LS TTL inputs. Port 4 pins are pulled high by the inter nal pull-ups when '1's are written to them and can be used as inputs in this state. As inputs, port 4 pins that are externally pulled low will source current because of the internal pull-ups.
P4[0]	I/O	Bit 0 of port 4
P4[1]	I/O	Bit 1 of port 4
P4[2] / INT3#	I/O	Bit 2 of port 4 / INT3# External interrupt 3 input
P4[3] / INT2#	I/O	Bit 3 of port 4 / INT2# External interrupt 2 input

Table 1: Pin Descriptions (Continued) (2 of 3)

Not Recommended for New Designs

Symbol	Type ¹	Name and Functions
XTAL1	I	Crystal 1: Input to the inverting oscillator amplifier and input to the internal clock generator circuits.
XTAL2	0	Crystal 2: Output from the inverting oscillator amplifier
V _{DD}	I	Power Supply
V _{SS}	I	Ground
		T0-0.0 25114

Table 1: Pin Descriptions (Continued) (3 of 3)

1. I = Input; O = Output

2.ALE loading issue: When ALE pin experiences higher loading (>30pf) during the reset, the MCU may accidentally enter into modes other than normal working mode. The solution is to add a pull-up resistor of 3-50 K Ω to V_{DD}, e.g. for ALE pin.

3. For 6 clock mode, ALE is emitted at 1/3 of crystal frequency.

4. Port 4 is not present on the PDIP package.

Not Recommended for New Designs

@DPTR generates a 16-bit address. This allows external addressing up the 64K. Port 2 provides the high-order eight address bits (DPH), and Port 0 multiplexes the low order eight address bits (DPL) with data. Both MOVX @Ri and MOVX @DPTR generates the necessary read and write signals (P3.6 - WR# and P3.7 - RD#) for external memory use. Table 4 shows external data memory RD#, WR# operation with EXTRAM bit.

The stack pointer (SP) can be located anywhere within the 256 bytes of internal RAM (lower 128 bytes and upper 128 bytes). The stack pointer may not be located in any part of the expanded RAM.

	MOVX @DPTR, A or	MOVX @Ri, A or MOVX A, @Ri	
AUXR	ADDR < 0300H	ADDR >= 0300H	ADDR = Any
EXTRAM = 0	RD# / WR# not asserted	RD# / WR# asserted	RD# / WR# not asserted ¹
EXTRAM = 1	RD# / WR# asserted	RD# / WR# asserted	RD# / WR# asserted

Table 4: External Data Memory RD#, WR# with EXTRAM bit

1. Access limited to ERAM address within 0 to 0FFH; cannot access 100H to 02FFH.

Not Recommended for New Designs

Dual Data Pointers

The device has two 16-bit data pointers. The DPTR Select (DPS) bit in AUXR1 determines which of the two data pointers is accessed. When DPS=0, DPTR0 is selected; when DPS=1, DPTR1 is selected. Quickly switching between the two data pointers can be accomplished by a single INC instruction on AUXR1. (See Figure 8)

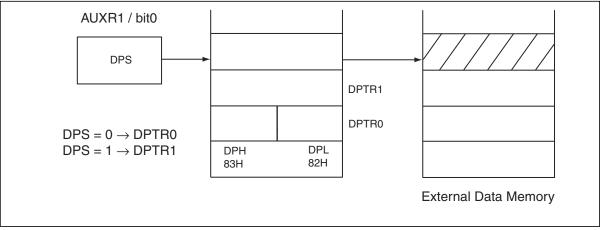


Figure 8: Dual Data Pointer Organization

Special Function Registers

Most of the unique features of the FlashFlex microcontroller family are controlled by bits in special function registers (SFRs) located in the SFR memory map shown in Table 5. Individual descriptions of each SFR are provided and reset values indicated in Tables 6 to 10.

				8 BY	TES			
F8H	IP1 ¹	СН	CCAP0H	CCAP1H	CCAP2H	ССАРЗН	CCAP4H	
F0H	B ¹							IP1H
E8H	IEA ¹	CL	CCAP0L	CCAP1L	CCAP2L	CCAP3L	CCAP4L	
E0H	ACC ¹							
D8H	CCON ¹	CMOD	CCAPM0	CCAPM1	CCAPM2	CCAPM3	CCAPM4	
D0H	PSW ¹					SPCR		
C8H	T2CON ¹	T2MOD	RCAP2L	RCAP2H	TL2	TH2		
C0H	WDTC ¹							
B8H	IP ¹	SADEN						
B0H	P3 ¹	SFCF	SFCM	SFAL	SFAH	SFDT	SFST	IPH
A8H	IE ¹	SADDR	SPSR				XICON	
A0H	P2 ¹		AUXR1			P4		
98H	SCON ¹	SBUF						
90H	P1 ¹							
88H	TCON ¹	TMOD	TL0	TL1	TH0	TH1	AUXR	
80H	P0 ¹	SP	DPL	DPH		WDTD	SPDR	PCON

 Table 5:
 FlashFlex SFR Memory Map

1. Bit addressable SFRs

Not Recommended for New Designs

		Direct	E	Bit Addr	ess, Sy	/mbc	ol, or Alte	rnative Port Fu	unctio	n	Reset			
Symbol	Description	Address	MSB	MSB LSB										
SFCF	SuperFlash Configuration	B1H	-	IAPEN	-	-	-	-	SWR	BSEL	x0xxxx00b			
SFCM	SuperFlash Command	B2H	FIE	FIE FCM[6:0]										
SFAL	SuperFlash Address Low	B3H	Super	SuperFlash Low Order Byte Address Register - A_7 to A_0 (SFAL)										
SFAH	SuperFlash Address High	B4H	Su	SuperFlash High Order Byte Address Register - A ₁₅ to A ₈ (SFAH)										
SFDT	SuperFlash Data	B5H		SuperFlash Data Register							00H			
SFST	SuperFlash Status	B6H	SB1_i	SB2_i	SB3_i	-	EDC_i	FLASH_BUSY	-	-	000x00xxb			

Table 7: Flash Memory Programming SFRs

T0-0.0 25114

Table 8: Watchdog Timer SFRs

		Direct	В	Bit Address, Symbol, or Alternative Port Function								
Symbol	Description	Address	MSB							LSB	Value	
WDTC ¹	Watchdog Timer Control	C0H	-	-	-	WDOUT	WDRE	WDTS	WDT	SWDT	xxx00x00b	
WDTD	Watchdog Timer Data/Reload	85H		Watchdog Timer Data/Reload								

1. Bit Addressable SFRs

Not Recommended for New Designs

SPI Control Register (SP	CR)								_
Location	7	6	5	4	3	2	1	0	Reset Value
D5H	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	00H
Symbol	Fu	inction							
SPIE	lf	both SPIE	and ES a	re set to o	ne, SPI in	terrupts ai	re enablec	ł.	
SPE	0: 1:	PI enable I Disables Enables S I.7.	SPI.	onnects SS	S#, MOSI,	MISO, an	d SCK to _I	pins P1.4,	P1.5, P1.6,
DORD	0:	MSB first	nission Or in data tra n data trai	insmissior					
MSTR	0:		e select. lave mode laster moc						
CPOL	0:		ty w when id gh when id	•	• •				
CPHA	re 0:	lationship Shift trigg	e control b between r ered on th ered on th	naster and e leading	d slave. Se edge of th	ee Figures e clock.			ck and data
SPR1, SP	cc	nfigured a	ate Select is master. K and the	SPR1 and	I SPR0 ha	ve no effe	ct on the s	lave. The	evice relationship

SPR1	SPR0	SCK = f _{OSC} divided by
0	0	4
0	1	16
1	0	64
1	1	128

SPI Status Register (SPSR)

Location	7	6	5	4	3	2	1	0	Reset Value				
AAH	SPIF	WCOL	-	-	-	-	-	-	00xxxxxxb				
Symbol	Function												
SPIF	Up If S	SPI Interrupt Flag. Upon completion of data transfer, this bit is set to 1. If SPIE =1 and ES =1, an interrupt is then generated. This bit is cleared by software.											
WCOL	Se	rite Collisi et if the SF his bit is clo	l data reg		itten to dui	ring data t	ransfer.						

Not Recommended for New Designs

Location 7 6 5 4 3 2 1 0 Reset Value 86H SPDR[7:0] SPDR[7:0] 00H 0H 0H													
86H SPDR[7:0] 00H	Value												
	Н												
Power Control Register (PCON)													
Location 7 6 5 4 3 2 1 0 Reset Val	Value												
87H SMOD1 SMOD0 BOF POF GF1 GF0 PD IDL 0001000	000b												
Symbol Function													
SMOD1 Double Baud rate bit. If SMOD1 = 1, Timer 1 is used to generate the baud rate, and	, and												
the serial port is used in modes 1, 2, and 3.													
SMOD0 FE/SM0 Selection bit. 0: SCON[7] = SM0													
1: SCON[7] = FE,													
BOF Brown-out detection status bit, this bit will not be affected by any other reset. BOF	OF												
should be cleared by software. Power-on reset will also clear the BOF bit.													
0: No brown-out. 1: Brown-out occurred													
POF Power-on reset status bit, this bit will not be affected by any other reset. POF should be affected by any other reset.	hould												
be cleared by software.	louiu												
0: No Power-on reset.													
1: Power-on reset occurred													
GF1 General-purpose flag bit.													
GF0 General-purpose flag bit.													
PD Power-down bit, this bit is cleared by hardware after exiting from power-down mod	node.												
0: Power-down mode is not activated. 1: Activates Power-down mode.													
IDL Idle mode bit, this bit is cleared by hardware after exiting from idle mode.													
0: Idle mode is not activated.													
1: Activates idle mode.													

Not Recommended for New Designs

		T2CON	
	Mode	Internal Control ¹	External Control ²
	16-bit Auto-Reload	00H	08H
	16-bit Capture	01H	09H
Used as Timer	Baud rate generator receive and transmit same baud rate	34H	36H
	Receive only	24H	26H
	Transmit only	14H	16H
	16-bit Auto-Reload	02H	0AH
Used as Counter	16-bit Capture	03H	0BH

Table 16:Timer/Counter 2

1. Capture/Reload occurs only on timer/counter overflow.

T0-0.0 25114

2. Capture/Reload occurs on timer/counter overflow and a 1 to 0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generating mode.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- 2. to output a 50% duty cycle clock ranging from 122 Hz to 8 MHz at a 16 MHz operating frequency (61 Hz to 4 MHz in 12 clock mode).

To configure Timer/Counter 2 as a clock generator, bit

C/#T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

Oscillator Frequency n x (65536 - RCAP2H, RCAP2L)

n =2 (in 6 clock mode) 4 (in 12 clock mode)

Where (RCAP2H, RCAP2L) = the contents of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode, Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will not be the same.

Not Recommended for New Designs

Watchdog Timer

The device offers a programmable Watchdog Timer (WDT) for fail safe protection against software deadlock and automatic recovery.

To protect the system against software deadlock, the user software must refresh the WDT within a user-defined time period. If the software fails to do this periodical refresh, an internal hardware reset will be initiated if enabled (WDRE= 1). The software can be designed such that the WDT times out if the program does not work properly.

The WDT in the device uses the system clock (XTAL1) as its time base. So strictly speaking, it is a watchdog counter rather than a watchdog timer. The WDT register will increment every 344,064 crystal clocks. The upper 8-bits of the time base register (WDTD) are used as the reload register of the WDT.

The WDTS flag bit is set by WDT overflow and is not changed by WDT reset. User software can clear WDTS by writing "1" to it.

Figure 23 provides a block diagram of the WDT. Two SFRs (WDTC and WDTD) control watchdog timer operation. During idle mode, WDT operation is temporarily suspended, and resumes upon an interrupt exit from idle.

The time-out period of the WDT is calculated as follows:

Period = (255 - WDTD) * 344064 * 1/f_{CLK (XTAL1)}

where WDTD is the value loaded into the WDTD register and f_{OSC} is the oscillator frequency.

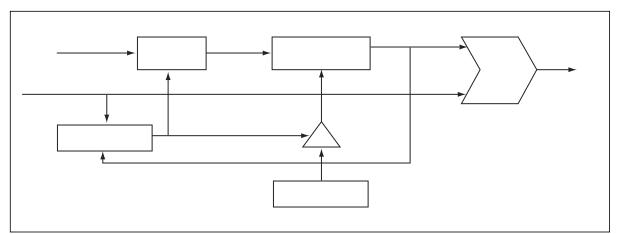


Figure 23: Block Diagram of Programmable Watchdog Timer

Not Recommended for New Designs

16-Bit Software Timer Mode

The 16-bit software timer mode is used to trigger interrupt routines, which must occur at periodic intervals. It is setup by setting both the ECOM and MAT bits in the module's CCAPMn register. The PCA timer will be compared to the module's capture registers (CCAPnL and CCAPnH) and when a match occurs, an interrupt will occur, if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

If necessary, a new 16-bit compare value can be loaded into CCAPnH and CCAPnL during the interrupt routine. The user should be aware that the hardware temporarily disables the comparator function while these registers are being updated so that an invalid match will not occur. Thus, it is recommended that the user write to the low byte first (CCAPnL) to disable the comparator, then write to the high byte (CCAPnH) to re-enable it. If any updates to the registers are done, the user may want to hold off any interrupts from occurring by clearing the EA bit. (See Figure 26)

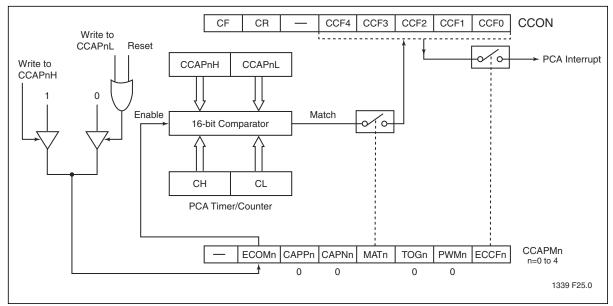


Figure 26: PCA Compare Mode (Software Timer)

Not Recommended for New Designs

	Security Lock Bits ^{1,2}			Security Status of:			
Level	SFST[7:5]	SB1	SB2 ¹	SB3 ¹	Block 1	Block 0	Security Type
1	000	U	U	U	Unlock	Unlock	No Security Features are Enabled.
2	100	Ρ	U	U	SoftLock	SoftLock	MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA# is sampled and latched on Reset, and further programming of the flash is disabled.
3	011 101	U P	P U	P P	Hard Lock	Hard Lock	Level 2 plus Verify disabled, both blocks locked.
	010	U	Р	U	SoftLock	SoftLock	Level 2 plus Verify disabled. Code in Block 1 may program Block 0 and vice versa.
	110 001	P U	P U	U P	Hard Lock	SoftLock	Level 2 plus Verify disabled. Code in Block 1 may program Block 0.
4	111	Р	Р	Р	Hard Lock	Hard Lock	Same as Level 3 hard lock/hard lock, but MCU will start code exe- cution from the internal memory regardless of EA#.

Table 24: Security Lock Options

P = Programmed (Bit logic state = 0), U = Unprogrammed (Bit logic state = 1).
 SFST[7:5] = Security Lock Status Bits (SB1_i, SB2_i, SB3_i)

T0-0.0 25114

Read Operation Under Lock Condition

The status of security bits SB1, SB2, and SB3 can be read when the read command is disabled by security lock. There are three ways to read the status.

- 1. External host mode: Read-back = 00H (locked)
- 2. IAP command: Read-back = previous SFDT data
- 3. MOVC: Read-back = FFH (blank)

Not Recommended for New Designs

Software Reset

The software reset is executed by changing SFCF[1] (SWR) from "0" to "1". A software reset will reset the program counter to address 0000H. All SFR registers will be set to their reset values, except SFCF[1] (SWR), WDTC[2] (WDTS), and RAM data will not be altered.

Brown-out Detection Reset

The device includes a brown-out detection circuit to protect the system from severed supplied voltage V_{DD} fluctuations. SST89E5xRD2A/RDA internal brown-out detection threshold is 3.85V. For brown-out voltage parameters, please refer to Tables 35 and 36.

When V_{DD} drops below this voltage threshold, the brown-out detector triggers the circuit to generate a brown-out interrupt but the CPU still runs until the supplied voltage returns to the brown-out detection voltage V_{BOD} . The default operation for a brown-out detection is to cause a processor reset.

 V_{DD} must stay below V_{BOD} at least four oscillator clock periods before the brown-out detection circuit will respond.

Brown-out interrupt can be enabled by setting the EBO bit in IEA register (address E8H, bit 3). If EBO bit is set and a brown-out condition occurs, a brown-out interrupt will be generated to execute the program at location 004BH. It is required that the EBO bit be cleared by software after the brown-out interrupt is serviced. Clearing EBO bit when the brown-out condition is active will properly reset the device. If brown-out interrupt is not enabled, a brown-out condition will reset the program to resume execution at location 0000H.

Not Recommended for New Designs

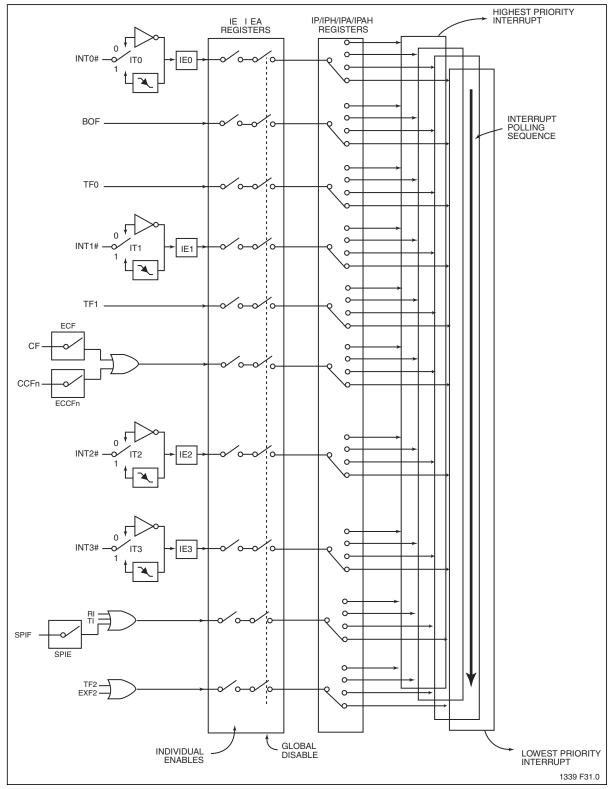


Figure 32: Interrupt Structure

Not Recommended for New Designs

Power-Saving Modes

The device provides two power saving modes of operation for applications where power consumption is critical. The two modes are idle and power-down, see Table 27.

Idle Mode

Idle mode is entered setting the IDL bit in the PCON register. In idle mode, the program counter (PC) is stopped. The system clock continues to run and all interrupts and peripherals remain active. The on-chip RAM and the special function registers hold their data during this mode.

The device exits idle mode through either a system interrupt or a hardware reset. Exiting idle mode via system interrupt, the start of the interrupt clears the IDL bit and exits idle mode. After exit the Interrupt Service Routine, the interrupted program resumes execution beginning at the instruction immediately following the instruction which invoked the idle mode. A hardware reset starts the device similar to a power-on reset.

Power-down Mode

The power-down mode is entered by setting the PD bit in the PCON register. In the power-down mode, the clock is stopped and external interrupts are active for level sensitive interrupts only. SRAM contents are retained during power-down, the minimum V_{DD} level is 2.0V.

The device exits power-down mode through either an enabled external level sensitive interrupt or a hardware reset. The start of the interrupt clears the PD bit and exits power-down. Holding the external interrupt pin low restarts the oscillator, the signal must hold low at least 1024 clock cycles before bringing back high to complete the exit. Upon interrupt signal being restored to logic V_{IH} , the first instruction of the interrupt service routine will execute. A hardware reset starts the device similar to power-on reset.

To exit properly out of power-down, the reset or external interrupt should not be executed before the V_{DD} line is restored to its normal operating voltage. Be sure to hold V_{DD} voltage long enough at its normal operating level for the oscillator to restart and stabilize (normally less than 10 ms).

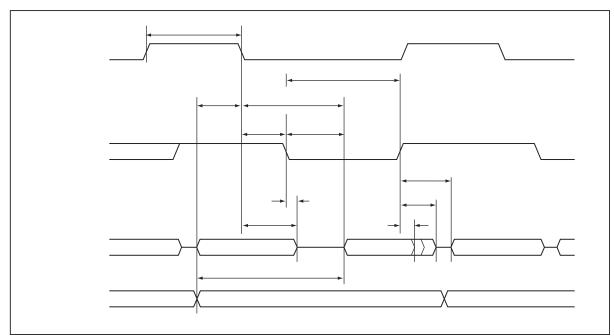
Not Recommended for New Designs

Mode	Initiated by	State of MCU	Exited by
Idle Mode	Software (Set IDL bit in PCON) MOV PCON, #01H;	CLK is running. Interrupts, serial port and tim- ers/counters are active. Pro- gram Counter is stopped. ALE and PSEN# signals at a HIGH level during Idle. All registers remain unchanged.	Enabled interrupt or hardware reset. Start of interrupt clears IDL bit and exits idle mode, after the ISR RETI instruc- tion, program resumes execution begin- ning at the instruction following the one that invoked idle mode. A user could consider placing two or three NOP instructions after the instruction that invokes idle mode to eliminate any problems. A hardware reset restarts the device similar to a power-on reset.
Power-down Mode	Software (Set PD bit in PCON) MOV PCON, #02H;	CLK is stopped. On-chip SRAM and SFR data is main- tained. ALE and PSEN# sig- nals at a LOW level during power -down. External Inter- rupts are only active for level sensitive interrupts, if enabled.	Enabled external level sensitive inter- rupt or hardware reset. Start of interrupt clears PD bit and exits power-down mode, after the ISR RETI instruction program resumes execution beginning at the instruction following the one that invoked power-down mode. A user could consider placing two or three NOP instructions after the instruction that invokes power-down mode to elimi- nate any problems. A hardware reset restarts the device similar to a power- on reset.

Table 27: Power Saving Modes

Not Recommended for New Designs

AC Electrical Characteristics


AC Characteristics:

(Over Operating Conditions: Load Capacitance for Port 0, ALE#, and PSEN# = 100pF; Load Capacitance for All Other Outputs = 80pF)

Table 36:AC Electrical Characteristics (1 of 2) $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 4.5-5.5V@40MHz$, $V_{SS} = 0V$

		Oscillator				
	Parameter		(x1 Mode) (x2 Mode)	Variable		1
Symbol		Min	Max	Min	Max	Units
1/T _{CLCL}	x1 Mode Oscillator Frequency	0	40	0	40	MHz
1/2T _{CLCL}	x2 Mode Oscillator Frequency	0	20	0	20	MHz
T _{LHLL}	ALE Pulse Width	35		2T _{CLCL} - 15		ns
T _{AVLL}	Address Valid to ALE Low			T _{CLCL} - 25 (3V)		ns
		10		T _{CLCL} - 15 (5V)		ns
T _{LLAX}	Address Hold After ALE Low			T _{CLCL} - 25 (3V)		ns
		10		T _{CLCL} - 15 (5V)		ns
T _{LLIV}	ALE Low to Valid Instr In				4T _{CLCL} - 65 (3V)	ns
			55		4T _{CLCL} - 45 (5V)	ns
T _{LLPL}	ALE Low to PSEN# Low			T _{CLCL} - 25 (3V)		ns
		10		T _{CLCL} - 15 (5V)		ns
T _{PLPH}	PSEN# Pulse Width	60		3T _{CLCL} - 25 (3V) 3T _{CLCL} - 15 (5V)		ns
T _{PLIV}	PSEN# Low to Valid Instr In				3T _{CLCL} - 55 (3V)	ns
			25		3T _{CLCL} - 50 (5V)	ns
T _{PXIX}	Input Instr Hold After PSEN#			0		ns
T _{PXIZ}	Input Instr Float After PSEN#				T _{CLCL} - 5 (3V)	ns
			10		T _{CLCL} - 15 (5V)	ns
T _{PXAV}	PSEN# to Address valid	17		T _{CLCL} - 8		ns
T _{AVIV}	Address to Valid Instr In				5T _{CLCL} - 80 (3V)	ns
			65		5T _{CLCL} - 60 (5V)	ns
T _{PLAZ}	PSEN# Low to Address Float		10		10	ns
T _{RLRH}	RD# Pulse Width	120		6T _{CLCL} - 40 (3V) 6T _{CLCL} - 30 (5V)		ns
T _{WLWH}	Write Pulse Width (WE#)	120		6T _{CLCL} - 40 (3V) 6T _{CLCL} - 30 (5V)		ns
T _{RLDV}	RD# Low to Valid Data In				5T _{CLCL} - 90 (3V)	ns
			75		5T _{CLCL} - 50 (5V)	ns
T _{RHDX}	Data Hold After RD#	0		0		ns
T _{RHDZ}	Data Float After RD#				2T _{CLCL} - 25 (3V)	ns
			38		2T _{CLCL} - 12 (5V)	ns
T _{LLDV}	ALE Low to Valid Data In				8T _{CLCL} - 90 (3V)	ns
			150		8T _{CLCL} - 50 (5V)	ns
T _{AVDV}	Address to Valid Data In				9T _{CLCL} - 90 (3V)	ns
			150		9T _{CLCL} - 75 (5V)	ns

Not Recommended for New Designs

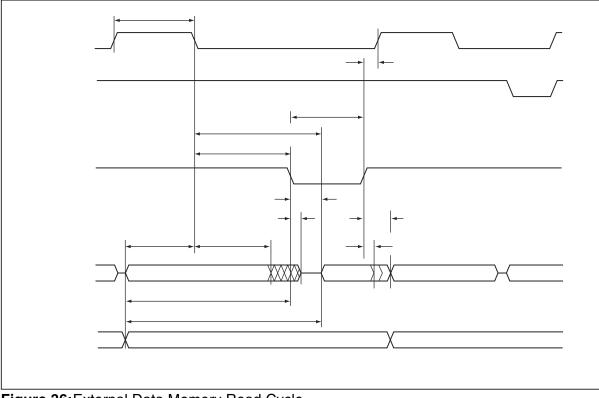


Figure 36: External Data Memory Read Cycle

Not Recommended for New Designs

			Oscillator			
		40	ИНz	Variable		1
Symbol	Parameter	Min	Max	Min	Мах	Units
T _{XLXL}	Serial Port Clock Cycle Time	0.3		12T _{CLCL}		μs
T _{QVXH}	Output Data Setup to Clock Rising Edge	117		10T _{CLCL} - 133		ns
T _{XHQX}	Output Data Hold After Clock Rising Edge			2T _{CLCL} - 117		ns
		0		2T _{CLCL} - 50		ns
T _{XHDX}	Input Data Hold After Clock Rising Edge	0		0		ns
T _{XHDV}	Clock Rising Edge to Input Data Valid		117		10T _{CLCL} - 133	ns
	•	•			Т(0.0.025114

Table 37: Serial Port Timing

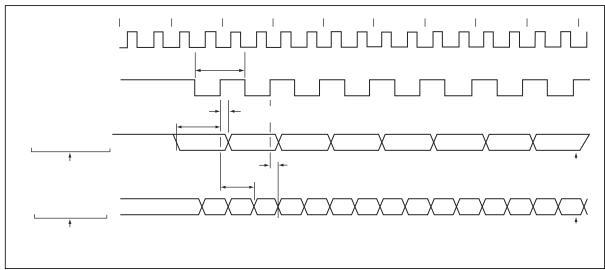


Figure 39: Shift Register Mode Timing Waveforms

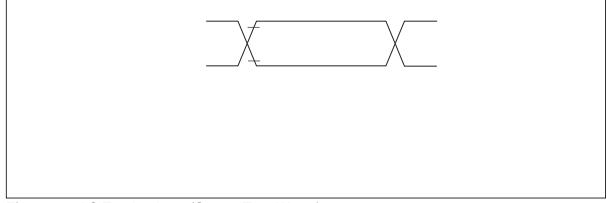


Figure 40:AC Testing Input/Output Test Waveform