

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	32
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	· .
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIL
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89e54rda-40-c-pie

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Not Recommended for New Designs

Symbol	Type ¹	Name and Functions
P3[7:0]	I/O with internal pull-up	Port 3: Port 3 is an 8-bit bidirectional I/O port with internal pull-ups. The Port 3 output buffers can drive LS TTL inputs. Port 3 pins are pulled high by the internal pull-ups when "1"s are written to them and can be used as inputs in this state. As inputs, Port 3 pins that are externally pulled low will source current because of the internal pull-ups. Port 3 also receives some control signals and high-order address bits during the external host mode programming and verification.
P3[0]	I	RXD: Universal Asynchronous Receiver/Transmitter (UART) - Receive input
P3[1]	0	TXD: UART - Transmit output
P3[2]	I	INT0#: External Interrupt 0 Input
P3[3]	I	INT1#: External Interrupt 1 Input
P3[4]	I	T0: External count input to Timer/Counter 0
P3[5]	I	T1: External count input to Timer/Counter 1
P3[6]	0	WR#: External Data Memory Write strobe
P3[7]	0	RD#: External Data Memory Read strobe
PSEN#	I/O	Program Store Enable: PSEN# is the Read strobe to External Program Store. When the device is executing from Internal Program Memory, PSEN# is inactive (V_{OH}). When the device is executing code from External Program Memory, PSEN# is activated twice each machine cycle, except when access to External Data Memory while one PSEN# activation is skipped in each machine cycle. A forced high-to-low input transition on the PSEN# pin while the RST input is continually held high for more than 20 machine cycles will cause the device to enter External Host mode for programming.
RST	I	Reset: While the oscillator is running, a high logic state on this pin for two machine cycles will reset the device. After a reset, if the PSEN# pin is driven by a high-to-low input transition while the RST input pin is held high, the device will enter the External Host mode, otherwise the device will enter the Normal operation mode.
EA#	I	External Access Enable: EA# must be driven to V_{IL} in order to enable the device to fetch code from the External Program Memory. EA# must be driven to V_{IH} for internal program execution. However, Security lock level 4 will disable EA#, and program execution is only possible from internal program memory.
ALE/PROG#	I/O	Address Latch Enable: ALE is the output signal for latching the low byte of the address during an access to external memory. This pin is also the programming pulse input (PROG#) for flash programming. Normally the ALE ² is emitted at a constant rate of 1/6 the crystal frequency ³ and can be used for external timing and clocking. One ALE pulse is skipped during each access to external data memory. However, if AO is set to 1, ALE is disabled.
P4[3:0] ⁴	I/O with internal pull-ups	Port 4: Port 4 is an 4-bit bi-directional I/O port with internal pull-ups. The port 4 output buffers can drive LS TTL inputs. Port 4 pins are pulled high by the inter nal pull-ups when '1's are written to them and can be used as inputs in this state. As inputs, port 4 pins that are externally pulled low will source current because of the internal pull-ups.
P4[0]	I/O	Bit 0 of port 4
P4[1]	I/O	Bit 1 of port 4
P4[2] / INT3#	I/O	Bit 2 of port 4 / INT3# External interrupt 3 input
P4[3] / INT2#	I/O	Bit 3 of port 4 / INT2# External interrupt 2 input

Table 1: Pin Descriptions (Continued) (2 of 3)

Not Recommended for New Designs

Reset Configuration of Program Memory Block Switching

Program memory block switching is initialized after reset according to the state of the Start-up Configuration bit SC0 and/or SC1. The SC0 and SC1 bits are programmed via an external host mode command or an IAP Mode command. See Table 13.

Once out of reset, the SFCF[0] bit can be changed dynamically by the program for desired effects. Changing SFCF[0] will not change the SC0 bit.

Caution must be taken when dynamically changing the SFCF[0] bit. Since this will cause different physical memory to be mapped to the logical program address space. The user must avoid executing block switching instructions within the address range 0000H to 1FFFH.

			State of SFCF[1:0] after:							
SC1 ¹	SC0 ¹	Power-on or External Reset	WDT Reset or Brown-out Reset	Software Reset						
U (1)	U (1)	00 (default)	x0	10						
U (1)	P (0)	01	x1	11						
P (0)	U (1)	10	10	10						
P (0)	P (0)	11	11	11						
	•	•		T0-0.0 251						

Table 3: SFCF Values Under Different Reset Conditions

1. P = Programmed (Bit logic state = 0),

U = Unprogrammed (Bit logic state = 1)

Data RAM Memory

The data RAM has 1024 bytes of internal memory. The RAM can be addressed up to 64KB for external data memory.

Not Recommended for New Designs

Cumh		Direct Addres	Bit	Address	, Symb	ol, or	Alterna	tive Po	ort Functio	n	Reset		
Symb ol	Description	Addres S	MSB							LSB	Value		
ACC ¹	Accumulator	E0H				ACC	C[7:0]				00H		
B ¹	B Register	F0H	B[7:0]										
PSW ¹	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00H		
SP	Stack Pointer	81H		SP[7:0]									
DPL	Data Pointer Low	82H		DPL[7:0]									
DPH	Data Pointer High	83H		DPH[7:0]									
IE ¹	Interrupt Enable	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H		
IEA ¹	Interrupt Enable A	E8H	-	-	-	-	EBO	-	-	-	xxxx0xxxb		
IP ¹	Interrupt Priority Reg	B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000b		
IPH	Interrupt Priority Reg High	B7H	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000b		
IP1 ¹	Interrupt Priority Reg A	F8H	-	-	-	-	PBO	PX3	PX2	-	xxxx0xxxb		
IP1H	Interrupt Priority Reg A High	F7H	-	-	-	-	PBOH	PX3H	PX3	-	xxxx0xxxb		
PCON	Power Control	87H	SMOD 1	SMOD 0	BOF	PO F	GF1	GF0	PD	IDL	00010000b		
AUXR	Auxiliary Reg	8EH	-	-	-	-	-	-	EXTRAM	AO	xxxxxx00b		
AUXR1	Auxiliary Reg 1	A2H	-	-	-	-	GF2	0	-	DPS	xxxx00x0b		
XICON ²	External Interrupt Control	AEH	х	EX3	IE3	IT3	0	EX2	IE2	IT2	00H		

Table 6: CPU related SFRs

1. Bit Addressable SFRs

2. X = Don't care

Not Recommended for New Designs

		Direct	B	it Addro	ess, Sy	mbol, c	or Alterna	ative P	ort Fun	ction	Reset
Symbol	Description	Address	MSB							LSB	Value
TMOD	Timer/Counter	89H		Tim	er 1			Ti	mer 0		00H
	Mode Control		GATE	C/T#	M1	MO	GATE	C/T#	M1	MO	
TCON ¹	Timer/Counter Control	88H	TF1	TR1	TF0	TR0	IE1	IT1	IE0	IT0	00H
TH0	Timer 0 MSB	8CH				Tł	H0[7:0]				00H
TL0	Timer 0 LSB	8AH		TL0[7:0]							00H
TH1	Timer 1 MSB	8DH		TH1[7:0]							00H
TL1	Timer 1 LSB	8BH		TL1[7:0]							00H
T2CON ¹	Timer / Counter 2 Control	C8H	TF2	EXF2	RCLK	TCLK	EXEN2	TR2	C/T2#	CP/RL2#	00H
T2MOD ²	Timer2 Mode Control	C9H	Х	-	-	-	-	-	T2OE	DCEN	xxxxxx00b
TH2	Timer 2 MSB	CDH				Tł	H2[7:0]				00H
TL2	Timer 2 LSB	ССН				TI	_2[7:0]				00H
RCAP2H	Timer 2 Capture MSB	СВН		RCAP2H[7:0]							00H
RCAP2L	Timer 2 Capture LSB	CAH				RCA	AP2L[7:0]				00H
											T0-0.0 25114

Table 9: Timer/Counters SFRs

1. Bit Addressable SFRs

2. X = Don't care

Table 10: Interface SFRs

		Direct	Bit A	ddress	, Symbo	ol, or A	ternati	ve Port	Functi	on	RESET
Symbol	Description	Address	MSB							LSB	Value
SBUF	Serial Data Buffer	99H		SBUF[7:0]							
SCON ¹	Serial Port Control	98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	00H
SADDR	Slave Address	A9H				SADDR	[7:0]				00H
SADEN	Slave Address Mask	B9H		SADEN[7:0]							
SPCR	SPI Control Register	D5H	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	04H
SPSR	SPI Status Register	AAH	SPIF	WCOL							00H
SPDR	SPI Data Register	86H			-	SPDR[7:0]				00H
P0 ¹	Port 0	80H				P0[7:	0]				FFH
P1 ¹	Port 1	90H	-	-	-	-	-	-	T2EX	T2	FFH
P2 ¹	Port 2	A0H	P2[7:0]							FFH	
P3 ¹	Port 3	B0H	RD#	WR#	T1	Т0	INT1#	INT0#	TXD	RXD	FFH
P4 ²	Port 4	A5H	1	1	1	1	P4.3	P4.2	P4.1	P4.0	FFH

1. Bit Addressable SFRs

2. P4 is similar to P1 and P3 ports

T0-0.0 25114

Not Recommended for New Designs

SuperFlash Configuration Register (SFCF)

-	-	• •							
Location	7	6	5	4	3	2	1	0	Reset Value
B1H	-	IAPEN	-	-	-	-	SWR	BSEL	x0xxxx00b
Symbol	Fu	unction							
IAPEN	0:	nable IAP IAP comn IAP comn	nands are						
SWR		oftware Re ee Section		re Reset"					
BSEL		rogram me ee Figures	-		•				

SuperFlash Command Register (SFCM)

Location	7	6	5	4	3	2	1	0	Reset Value
B2H	FIE	FCM6	FCM5	FCM4	FCM3	FCM2	FCM1	FCM0] оон
Symbol	Fu	unction							
FIE	0:	ash Interru INT1# is r INT1# is r External I	not reassi re-assigne	gned. d to signa		ation com	pletion.		
FCM[6:0]	00	ash opera)0_0001b()0_1011b{	Chip-Erase	Э					
	00	00_1101bE	Block-Eras	e					
	00	0_1110bE	Prog-SB1	am					
	00)0_0011bF)0_0101bF)0_1001bF	Prog-SB3						
	00 00	00_1001bF 00_1000bE	Prog-SC1 Enable-Clo						
		, ,			•				e. ot regardless of

SuperFlash Address Registers (SFAL)

Location	7	6	5	4	3	2	1	0	Reset Value
B3H		5	SuperFlash	Low Order	Byte Addre	ess Registe	r		00H
Symbol SFAL	M	inction ailbox regi gister).	ster for int	terfacing v	vith flash n	nemory bl	ock. (Low	order add	ress

Not Recommended for New Designs

Location	7	6	5	4	3	2	1	0	Reset Value
85H			Wa	atchdog Tim	er Data/Re	load	•		00H
Symbol	F	unction							
WDTD	lı	nitial/Reloa	d value ir	Watchdog	g Timer. N	ew value v	won't be e	ffective u	ntil WDT is
	S	et.		-	-				
CA Timer/Counter Cont	ol Pogi	stor1 (CCC							
Location	7		5	4	3	2	1	0	Reset Value
D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	1. Bit add			0014	0010	0012	0011		
Currence of	-								
Symbol		unction		-					
CF		CA Count		•					
				n the coun					
		oftware.	et. CF may	/ be set by	eitner naro	aware or s	offware, b	ut can on	ly cleared b
	-		_						
CR		CA Count							
		-		n the PCA	counter o	n. Must be	e cleared t	by softwar	re to turn the
		CA counte							
-		•	-	served for f					
				e '1's to reser					
CCF4				ıpt flag. Se	t by hardw	vare when	a match o	or capture	occurs.
	N	lust be cle	ared by s	oftware.					
CCF3				ıpt flag. Se	t by hardw	vare when	a match o	or capture	occurs.
	Ν	lust be cle	ared by s	oftware.					
CCF2				ıpt flag. Se	t by hardw	are when	a match o	or capture	occurs.
	Ν	/lust be cle	ared by s	oftware.					
CCF1	F	CA Modul	e 1 interru	ıpt flag. Se	t by hardw	are when	a match o	or capture	occurs.
CCF1		PCA Modul /lust be cle			t by hardw	are when	a match o	or capture	occurs.
CCF1 CCF0	Ν	lust be cle	ared by s		-				

(max. rate = $f_{OSC}/4$ in 6 clock mode, $f_{OSC}/8$ in 12 clock mode)

Not Recommended for New Designs

	onogiotoi	(0110)	•)						_				
Location	7	6	5	4	3	2	1	0	Reset Value				
D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00xxx000b				
	1. Not bit a	ddressable)		•	•	•	•	-				
Symbol	Fu	Function											
CIDL	Co	Counter Idle Control:											
		0: Programs the PCA Counter to continue functioning during idle mode1: Programs the PCA Counter to be gated off during idle											
WDTE		•	Timer Enat										
		0: Disables Watchdog Timer function on PCA module 4											
		1: Enables Watchdog Timer function on PCA module 4											
-		•	ented, res										
	Not	e: User sh	ould not write	e '1's to reser	ved bits. The	e value read	from a reserv	ved bit is ind	leterminate.				
CPS1	PC	A Count	Pulse Sel	ect bit 1									
CPS0	PC	A Count	Pulse Sel	ect bit 2									
			Selec	ted									
	CI	PS1 CP	S0 PCA Ir	nput ¹									
		0 0 0 Internal clock, f _{OSC} /6 in 6 clock mode (f _{OSC} /12 in 12 clock mode)											
		0 1 1 Internal clock, f _{OSC} /2 in 6 clock mode (f _{OSC} /4 in 12 clock mode)											
		1 0 2 Timer 0 overflow											
		1 1	3	Exte	rnal clock at	ECI/P1.2 pir	1						

PCA Timer/Counter Mode Register¹ (CMOD)

ECF

1. f_{OSC} = oscillator frequency

PCA Enable Counter Overflow interrupt:

0: Disables the CF bit in CCON

1: Enables CF bit in CCON to generate an interrupt

Not Recommended for New Designs

Location 7 6 5 4 3 2 1 0 Reset Value 86H SPDR[7:0] SPDR[7:0] 00H 0H 0H	
86H SPDR[7:0] 00H	Value
	Н
Power Control Register (PCON)	
Location 7 6 5 4 3 2 1 0 Reset Val	Value
87H SMOD1 SMOD0 BOF POF GF1 GF0 PD IDL 0001000	000b
Symbol Function	
SMOD1 Double Baud rate bit. If SMOD1 = 1, Timer 1 is used to generate the baud rate, and	, and
the serial port is used in modes 1, 2, and 3.	
SMOD0 FE/SM0 Selection bit. 0: SCON[7] = SM0	
1: SCON[7] = FE,	
BOF Brown-out detection status bit, this bit will not be affected by any other reset. BOF	OF
should be cleared by software. Power-on reset will also clear the BOF bit.	
0: No brown-out. 1: Brown-out occurred	
POF Power-on reset status bit, this bit will not be affected by any other reset. POF should be affected by any other reset.	hould
be cleared by software.	louiu
0: No Power-on reset.	
1: Power-on reset occurred	
GF1 General-purpose flag bit.	
GF0 General-purpose flag bit.	
PD Power-down bit, this bit is cleared by hardware after exiting from power-down mod	node.
0: Power-down mode is not activated. 1: Activates Power-down mode.	
IDL Idle mode bit, this bit is cleared by hardware after exiting from idle mode.	
0: Idle mode is not activated.	
1: Activates idle mode.	

Not Recommended for New Designs

Sector-Erase

The Sector-Erase command erases all of the bytes in a sector. The sector size for the flash memory blocks is 128 Bytes. The selection of the sector to be erased is determined by the contents of SFAH and SFAL.

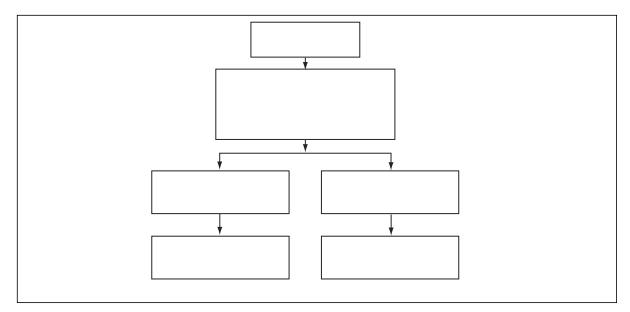


Figure 11:Sector-Erase

Not Recommended for New Designs

Prog-SB3, Prog-SB2, Prog-SB1

Prog-SB3, Prog-SB2, Prog-SB1 commands are used to program the security bits (see Table 24). Completion of any of these commands, the security options will be updated immediately.

Security bits previously in un-programmed state can be programmed by these commands. Prog-SB3, Prog-SB2 and Prog-SB1 commands should only reside in Block 1 or external code memory.

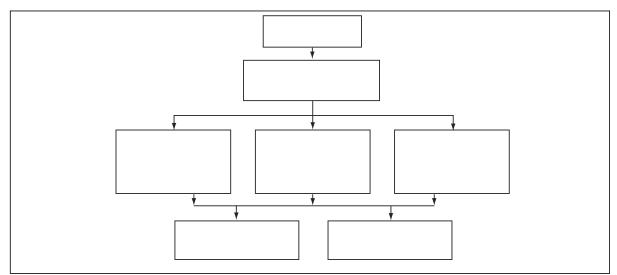


Figure 14: Prog-SB3, Prog-SB2, Prog-SB1

Not Recommended for New Designs

W	Without Interrupt enabled									
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code		
-	0	0	0	0	0	0	0	No Operation		
-	0	1	0	0	0	0	0	16-bit capture on positive-edge trigger at CEX[4:0]		
-	0	0	1	0	0	0	0	16-bit capture on negative-edge trigger at CEX[4:0]		
-	0	1	1	0	0	0	0	16-bit capture on positive/negative-edge trigger at CEX[4:0]		
-	1	0	0	1	0	0	0	Compare: software timer		
-	1	0	0	1	1	0	0	Compare: high-speed output		
-	1	0	0	0	0	1	0	Compare: 8-bit PWM		
-	1	0	0	1	0 or 1 ³	0	0	Compare: PCA WDT (CCAPM4 only) ⁴		
		•	•	•	•			T0-0.0 25114		

Table 21: PCA Module Modes

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

4. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Table 22:PCA Module Modes

W	With Interrupt enabled									
_1	ECOMy ²	CAPPy ²	CAPNy ²	MATy ²	TOGy ²	PWMy ²	ECCFy ²	Module Code		
-	0	1	0	0	0	0	1	16-bit capture on positive-edge trigger at CEX[4:0]		
-	0	0	1	0	0	0	1	16-bit capture on negative-edge trigger at CEX[4:0]		
-	0	1	1	0	0	0	1	16-bit capture on positive/negative-edge trigger at CEX[4:0]		
-	1	0	0	1	0	0	1	Compare: software timer		
-	1	0	0	1	1	0	1	Compare: high-speed output		
-	1	0	0	0	0	1	X ³	Compare: 8-bit PWM		
-	1	0	0	1	0 or 1 ⁴	0	X ⁵	Compare: PCA WDT (CCAPM4 only) ⁶		
	T0-0.0 25114									

1. User should not write '1's to reserved bits. The value read from a reserved bit is indeterminate.

2. y = 0, 1, 2, 3, 4

3. No PCA interrupt is needed to generate the PWM.

4. A 0 disables toggle function. A 1 enables toggle function on CEX[4:0] pin.

5. Enabling an interrupt for the Watchdog Timer would defeat the purpose of the Watchdog Timer.

6. For PCA WDT mode, also set the WDTE bit in the CMOD register to enable the reset output signal.

Not Recommended for New Designs

16-Bit Software Timer Mode

The 16-bit software timer mode is used to trigger interrupt routines, which must occur at periodic intervals. It is setup by setting both the ECOM and MAT bits in the module's CCAPMn register. The PCA timer will be compared to the module's capture registers (CCAPnL and CCAPnH) and when a match occurs, an interrupt will occur, if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

If necessary, a new 16-bit compare value can be loaded into CCAPnH and CCAPnL during the interrupt routine. The user should be aware that the hardware temporarily disables the comparator function while these registers are being updated so that an invalid match will not occur. Thus, it is recommended that the user write to the low byte first (CCAPnL) to disable the comparator, then write to the high byte (CCAPnH) to re-enable it. If any updates to the registers are done, the user may want to hold off any interrupts from occurring by clearing the EA bit. (See Figure 26)

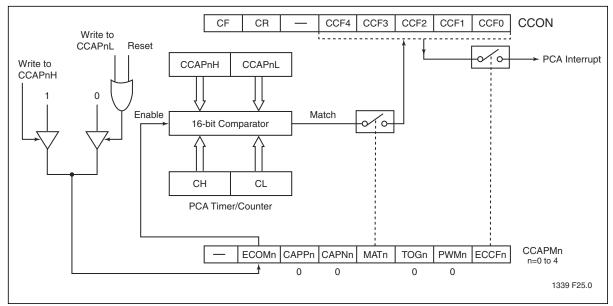


Figure 26: PCA Compare Mode (Software Timer)

Not Recommended for New Designs

Security Lock Status

The three bits that indicate the device security lock status are located in SFST[7:5]. As shown in Figure 30 and Table 24, the three security lock bits control the lock status of the primary and secondary blocks of memory. There are four distinct levels of security lock status. In the first level, none of the security lock bits are programmed and both blocks are unlocked. In the second level, although both blocks are now locked and cannot be programmed, they are available for read operation via Byte-Verify. In the third level, three different options are available: Block 1 hard lock / Block 0 SoftLock, SoftLock on both blocks, and hard lock on both blocks. Locking both blocks is the same as Level 2, Block 1 except read operation isn't available. The fourth level of security is the most secure level. It doesn't allow read/program of internal memory or boot from external memory. For details on how to program the security lock bits refer to the external host mode and in-application programming sections.

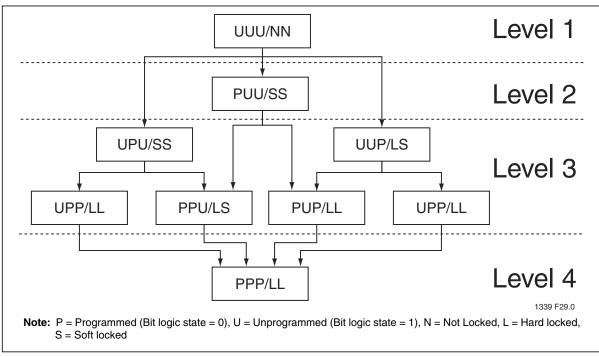


Figure 30: Security Lock Levels

Not Recommended for New Designs

	Security Lock Bits ^{1,2}				Security	Status of:		
Level	SFST[7:5]	SB1	SB2 ¹	SB3 ¹	Block 1	Block 0	Security Type	
1	000	U	U	U	Unlock	Unlock	No Security Features are Enabled.	
2	100	Ρ	U	U	SoftLock	SoftLock	MOVC instructions executed fro external program memory are disabled from fetching code byte from internal memory, EA# is sampled and latched on Reset, and further programming of the flash is disabled.	
3	011 101	U P	P U	P P	Hard Lock	Hard Lock	Level 2 plus Verify disabled, both blocks locked.	
	010	U	Р	U	SoftLock	SoftLock	Level 2 plus Verify disabled. Code in Block 1 may program Block 0 and vice versa.	
	110 001	P U	P U	U P	Hard Lock	SoftLock	Level 2 plus Verify disabled. Code in Block 1 may program Block 0.	
4	111	Р	Р	Р	Hard Lock	Hard Lock	Same as Level 3 hard lock/hard lock, but MCU will start code exe- cution from the internal memory regardless of EA#.	

Table 24: Security Lock Options

P = Programmed (Bit logic state = 0), U = Unprogrammed (Bit logic state = 1).
 SFST[7:5] = Security Lock Status Bits (SB1_i, SB2_i, SB3_i)

T0-0.0 25114

Read Operation Under Lock Condition

The status of security bits SB1, SB2, and SB3 can be read when the read command is disabled by security lock. There are three ways to read the status.

- 1. External host mode: Read-back = 00H (locked)
- 2. IAP command: Read-back = previous SFDT data
- 3. MOVC: Read-back = FFH (blank)

Not Recommended for New Designs

Table 35:DC Electrical Characteristics for SST89E5xRD2A/RDA $T_A = -40^{\circ}$ C to $+85^{\circ}$ C; $V_{DD} = 4.5-5.5$ V; $V_{SS} = 0$ V

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{IL}	Input Low Voltage	4.5 < V _{DD} < 5.5	-0.5	0.2V _{DD} - 0.1	V
V _{IH}	Input High Voltage	4.5 < V _{DD} < 5.5	0.2V _{DD} + 0.9	V _{DD} + 0.5	V
V _{IH1}	Input High Voltage (XTAL1, RST)	4.5 < V _{DD} < 5.5	0.7V _{DD}	V _{DD} + 0.5	V
V _{OL}	Output Low Voltage (Ports 1.5, 1.6, 1.7)	$V_{DD} = 4.5V$			
		I _{OL} = 16mA		1.0	V
V _{OL}	Output Low Voltage (Ports 1, 2, 3) ¹	$V_{DD} = 4.5V$			
		$I_{OL} = 100 \mu A^2$		0.3	V
		$I_{OL} = 1.6 \text{mA}^2$		0.45	V
		$I_{OL} = 3.5 \text{mA}^2$		1.0	V
V _{OL1}	Output Low Voltage (Port 0, ALE, PSEN#) ^{1,3}	$V_{DD} = 4.5V$			
		$I_{OL} = 200 \mu A^2$		0.3	V
		$I_{OL} = 3.2 m A^2$		0.45	V
V _{OH}	Output High Voltage (Ports 1, 2, 3, ALE, PSEN#) ⁴	$V_{DD} = 4.5V$			
		I _{OH} = -10μA	V _{DD} - 0.3		V
		I _{OH} = -30μA	V _{DD} - 0.7		V
		I _{OH} = -60μA	V _{DD} - 1.5		V
V _{OH1}	Output High Voltage (Port 0 in External Bus	$V_{DD} = 4.5V$			
	Mode) ⁴	I _{OH} = -200μA	V _{DD} - 0.3		V
		I _{OH} = -3.2mA	V _{DD} - 0.7		V
V _{BOD}	Brown-out Detection Voltage		3.85	4.15	V
IIL	Logical 0 Input Current (Ports 1, 2, 3)	$V_{IN} = 0.4V$		-75	μA
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3) ⁵	$V_{IN} = 2V$		-650	μA
ILI	Input Leakage Current (Port 0)	0.45 < V _{IN} < V _{DD} - 0.3		±10	μA
R _{RST}	RST Pull-down Resistor		40	225	KΩ
C _{IO}	Pin Capacitance ⁶	@ 1 MHz, 25°C		15	pF
I _{DD}	Power Supply Current				
	IAP Mode				
	@ 40 MHz			88	mA
	Active Mode				
	@ 40 MHz			50	mA
	Idle Mode				
	@ 40 MHz			42	mA
	Power-down Mode	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		80	μA
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		90	μA

T0-0.2 25114

Not Recommended for New Designs

Table 36:AC Electrical Characteristics (Continued) (2 of 2) $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 4.5 \cdot 5.5V @40MHz$, $V_{SS} = 0V$

		Oscillator					
			(x1 Mode) (x2 Mode)	Var	1		
Symbol	Parameter	Min	Max	Min	Max	Units	
T _{LLWL}	ALE Low to RD# or WR# Low	60	90	3T _{CLCL} - 25 (3V) 3T _{CLCL} - 15 (5V)	3T _{CLCL} + 25 (3V) 3T _{CLCL} + 15 (5V)	ns	
T _{AVWL}	Address to RD# or WR# Low			4T _{CLCL} - 75 (3V)		ns	
		70		4T _{CLCL} - 30 (5V)		ns	
T _{WHQX}	Data Hold After WR#			T _{CLCL} - 27 (3V)		ns	
		5		T _{CLCL} - 20 (5V)		ns	
T _{QVWH}	Data Valid to WR# High			7T _{CLCL} - 70 (3V)		ns	
		125		7T _{CLCL} - 50 (5V)		ns	
T _{QVWX}	Data Valid to WR# High to Low Transition	5		T _{CLCL} - 20		ns	
T _{RLAZ}	RD# Low to Address Float		0		0	ns	
T _{WHLH}	RD# to WR# High to ALE High			T _{CLCL} - 25 (3V)	T _{CLCL} + 25 (3V)	ns	
		10	40	T _{CLCL} - 15 (5V)	T _{CLCL} + 15 (5V)	ns	

T0-0.0 25114

Explanation of Symbols

Each timing symbol has 5 characters. The first character is always a 'T' (stands for time). The other characters, depending on their positions, stand for the name of a signal or the logical status of that signal. The following is a list of all the characters and what they stand for.

- A: Address
- C: Clock
- D: Input data
- H: Logic level HIGH
- I: Instruction (program memory contents)
- L: Logic level LOW or ALE
- P: PSEN#

For example:

T_{AVLL} = Time from Address Valid to ALE Low

T_{LLPL} = Time from ALE Low to PSEN# Low

- Q: Output data
- R: RD# signal
- T: Time
- V: Valid
- W: WR# signal
- X: No longer a valid logic level
- Z: High Impedance (Float)

Not Recommended for New Designs

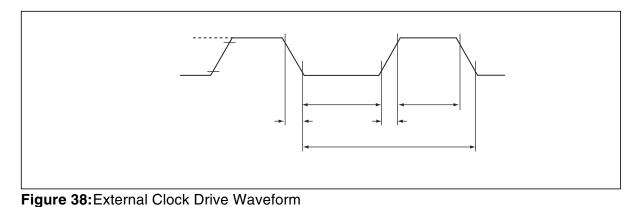
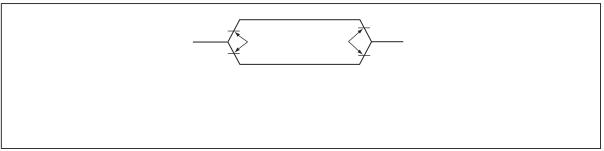
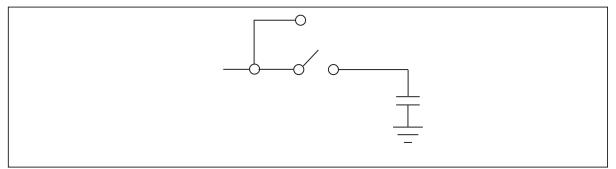




Figure 37: External Data Memory Write Cycle


			Oscillator					
		40MHz		Vari	1			
Symbol	Parameter	Min	Max	Min	Max	Units		
1/T _{CLCL}	Oscillator Frequency			0	40	MHz		
T _{CLCL}		25				ns		
T _{CHCX}	High Time	8.75		0.35T _{CLCL}	0.65T _{CLCL}	ns		
T _{CLCX}	Low Time	8.75		0.35T _{CLCL}	0.65T _{CLCL}	ns		
T _{CLCH}	Rise Time		10			ns		
T _{CHCL}	Fall Time		10			ns		
	·	·				T0-0.0 25114		

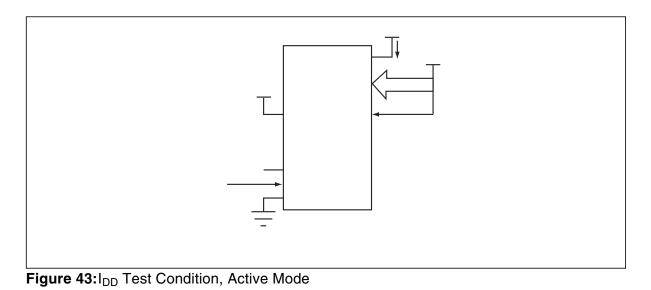

Not Recommended for New Designs

Figure 41: Float Waveform

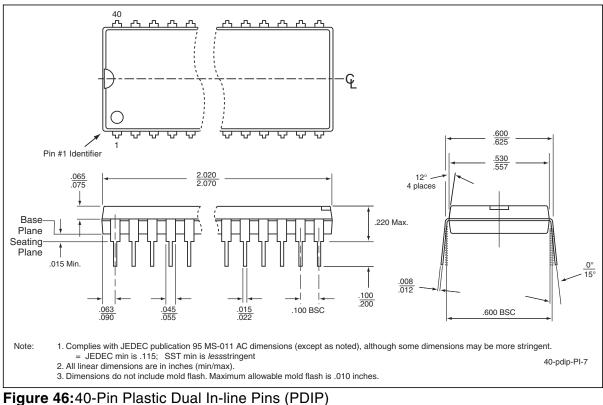


Figure 42: A Test Load Example

Not Recommended for New Designs

Packaging Diagrams

SST Package Code: PI

Not Recommended for New Designs

Revision	Description						
00	 Initial Releas 	e	Dec 2006				
01	 Changed Fla 	shFlex51 to FlashFlex globally	Jan 2007				
02	 Removed all ally 	3V parts (89V58RD2A/RDA and 89V54RD2A/RDA) glob-	Feb 2008				
	Removed WQFN/ QIF package information globally						
	 Remove all I- 	-grade part information globally					
A	 Applied new 	document format	Dec 2011				
	Released document under letter revision system						
	 Updated Spectrum 	ec number from S71339 to DS25114					

ISBN:978-1-61341-895-6

© 2011 Silicon Storage Technology, Inc-a Microchip Technology Company. All rights reserved.

SST, Silicon Storage Technology, the SST logo, SuperFlash, MTP, and FlashFlex are registered trademarks of Silicon Storage Technology, Inc. MPF, SQI, Serial Quad I/O, and Z-Scale are trademarks of Silicon Storage Technology, Inc. All other trademarks and registered trademarks mentioned herein are the property of their respective owners.

Specifications are subject to change without notice. Refer to www.microchip.com for the most recent documentation. For the most current package drawings, please see the Packaging Specification located at http://www.microchip.com/packaging.

Memory sizes denote raw storage capacity; actual usable capacity may be less.

SST makes no warranty for the use of its products other than those expressly contained in the Standard Terms and Conditions of Sale.

For sales office locations and information, please see www.microchip.com.

Silicon Storage Technology, Inc. A Microchip Technology Company www.microchip.com