

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	36
Program Memory Size	40KB (40K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89e58rd2-40-c-nje

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Not Recommended for New Designs

Product Description

The SST89E54RD2A/RDA and SST89E58RD2A/RDA are members of the FlashFlex family of 8-bit microcontroller products designed and manufactured with SST patented and proprietary SuperFlash CMOS semiconductor process technology. The split-gate cell design and thick-oxide tunneling injector offer significant cost and reliability benefits for SST customers. The devices use the 8051 instruction set and are pin-for-pin compatible with standard 8051 microcontroller devices.

The devices come with 24/40 KByte of on-chip flash EEPROM program memory which is partitioned into 2 independent program memory blocks. The primary Block 0 occupies 16/32 KByte of internal program memory space and the secondary Block 1 occupies 8 KByte of internal program memory space.

The 8-KByte secondary block can be mapped to the lowest location of the 16/32 KByte address space; it can also be hidden from the program counter and used as an independent EEPROM-like data memory.

In addition to the 24/40 KByte of EEPROM program memory on-chip and 1024 x8 bits of on-chip RAM, the devices can address up to 64 KByte of external program memory and up to 64 KByte of external RAM.

The flash memory blocks can be programmed via a standard 87C5x OTP EPROM programmer fitted with a special adapter and the firmware for SST devices. During power-on reset, the devices can be configured as either a slave to an external host for source code storage or a master to an external host for an in-application programming (IAP) operation. The devices are designed to be programmed in-system and in-application on the printed circuit board for maximum flexibility. The devices are pre-programmed with an example of the bootstrap loader in the memory, demonstrating the initial user program code loading or subsequent user code updating via the IAP operation. The sample bootstrap loader is available for the user's reference and convenience only; SST does not guarantee its functionality or usefulness. Chip-Erase or Block-Erase operations will erase the pre-programmed sample code.

Not Recommended for New Designs

Figure 4: Pin Assignments for 44-lead PLCC

Not Recommended for New Designs

Memory Organization

The device has separate address spaces for program and data memory.

Program Flash Memory

There are two internal flash memory blocks in the device. The primary flash memory block (Block 0) has 16/32 KByte. The secondary flash memory block (Block 1) has 8 KByte. Since the total program address space is limited to 64 KByte, the SFCF[1:0] bit are used to control program bank selection. Please refer to Figures 5 and 6 for the program memory configuration. Program bank selection is described in the next section.

The 16K/32K x8 primary SuperFlash block is organized as 128/256 sectors, each sector consists of 128 Bytes.

The 8K x8 secondary SuperFlash block is organized as 64 sectors, each sector consists also of 128 Bytes.

For both blocks, the 7 least significant program address bits select the byte within the sector. The remainder of the program address bits select the sector within the block.

Not Recommended for New Designs

Program Memory Block Switching

The program memory block switching feature of the device allows either Block 1 or the lowest 8 KByte of Block 0 to be used for the lowest 8 KByte of the program address space. SFCF[1:0] controls program memory block switching.

SFCF[1:0]	Program Memory Block Switching
10, 11	Block 1 is not visible to the PC; Block 1 is reachable only via in-application programming from E000H - FFFFH.
01	Both Block 0 and Block 1 are visible to the PC. Block 0 is occupied from 0000H - 7FFFH. Block 1 is occupied from E000H - FFFFH.
00	Block 1 is overlaid onto the low 8K of the program address space; occupying address locations 0000H - 1FFFH. When the PC falls within 0000H - 1FFFH, the instruction will be fetched from Block 1 instead of Block 0. Outside of 0000H - 1FFFH, Block 0 is used. Locations 0000H - 1FFFH of Block 0 are reachable through in-application programming.

Table 2:	SFCF	Values	for Program	Memory	y Block S	witching
----------	------	--------	-------------	--------	-----------	----------

T0-0.0 25114

Not Recommended for New Designs

Interrupt Enable (IE)									
Location	7	6	5	4	3	2	1	0	Reset Value
A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0] оон
Symbol	Fu	Function							
EA	Gi 0 1	Global Interrupt Enable. 0 = Disable 1 = Enable							
EC	P	CA Interru	ot Enable.						
ET2	Ti	mer 2 Inte	rrupt Enat	ole.					
ES	Se	erial Interro	upt Enable).					
ET1	Ti	Timer 1 Interrupt Enable.							
EX1	Ex	External 1 Interrupt Enable.							
ET0	Ti	Timer 0 Interrupt Enable.							
EX0	Ex	kternal 0 Ir	nterrupt Er	nable.					

Interrupt Enable A (IEA)

Location	7	6	5	4	3	2	1	0	Reset Value
E8H	-	-	-	-	EBO	-	-	-	xxxx0xxxb

Symbol	Function
EBO	Brown-out Interrupt Enable. 1 = Enable the interrupt
	0 = Disable the interrupt

Interrupt Priority (IP)

Location	7	6	5	4	3	2	1	0	Reset Value
B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x000000b

Symbol	Function
PPC	PCA interrupt priority bit
PT2	Timer 2 interrupt priority bit
PS	Serial Port interrupt priority bit
PT1	Timer 1 interrupt priority bit
PX1	External interrupt 1 priority bit
PT0	Timer 0 interrupt priority bit
PX0	External interrupt 0 priority bit

Not Recommended for New Designs

Watchdog Timer Data/Re	eload Re	gister (WD	TD)								
Location	7	6	5	4	3	2	1	0	Reset Value		
85H		Watchdog Timer Data/Reload 00H									
Symbol	F	unction									
WDTD	lı s	nitial/Reloa set.	d value in	Watchdog	I Timer. No	ew value v	von't be e	ffective un	til WDT is		
PCA Timer/Counter Con	trol Regi	ster ¹ (CCC	DN)								
Location	7	6	5	4	3	2	1	0	Reset Value		
D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000b		
	1. Bit add	dressable									
Symbol	F	unction									
CF	F S C	PCA Counter Overflow Flag Set by hardware when the counter rolls over. CF flags an interrupt if bit ECF in CMOD is set. CF may be set by either hardware or software, but can only cleared by							ECF in y cleared by		
	S	oftware.									
CR	F	Set by softw PCA counte	er Run cor /are to turi er off.	n the PCA	counter o	n. Must be	e cleared b	by software	e to turn the		
-	N N	Not impleme Iote: User sho	ented, reso ould not write	erved for f	uture use. ved bits. The	e value read	from a reser	ved bit is ind	eterminate.		
CCF4	F	PCA Module /lust be clea	e 4 interru ared by sc	pt flag. Se ftware.	t by hardw	are when	a match c	or capture	occurs.		
CCF3	F	PCA Module /lust be clea	e 3 interru ared by sc	pt flag. Se ftware.	t by hardw	are when	a match c	or capture	occurs.		
CCF2	F	PCA Module /lust be clea	e 2 interru ared by sc	pt flag. Se ftware.	t by hardw	are when	a match c	or capture	occurs.		
CCF1	F	PCA Module /lust be clea	e 1 interru ared by so	pt flag. Se ftware.	t by hardw	are when	a match c	or capture	occurs.		
CCF0	F	PCA Module /lust be clea	e 0 interru ared by sc	pt flag. Se oftware.	t by hardw	are when	a match c	or capture	occurs.		

Not Recommended for New Designs

PCA Compare/Capture Module Mode Register¹ (CCAPMn)

Location	7	6	5	4	3	2	1	0	Reset Value
DAH	-	ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0	00xxx000b
DBH	-	ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1	00xxx000b
DCH	-	ECOM2	CAPP2	CAPN2	MAT2	TOG2	PWM2	ECCF2	00xxx000b
DDH	-	ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3	00xxx000b
DEH	-	ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4	00xxx000b
	1. Not bit a	addressable							1
Symbol	Fu	unction							
-	No	ot impleme	ented, rese	erved for f	uture use.				
	No	ote: User sho	uld not write	'1's to reser	ved bits. The	e value read	from a reserv	ved bit is inde	eterminate.
ECOMn	Er	nable Com	parator						
	0:	Disables t	he compa	rator func	tion				
0.155	1:	Enables ti	ne compa 	rator funct	lion				
CAPPn	Cá	apture Pos	sitive	lao oontur		[4.0]			
	0. 1·	Enables r	ositive ed	ne captur		[4.0] 4·0]			
CAPNn		antura Nac	nativo	go ouptur		1.0]			
OAINII	0:	Disables i	negative e	dae captu	ire on CE>	([4:0]			
	1:	Enables n	egative e	dge captu	re on CEX	[4:0]			
MATn	M	atch: Set E	ECOM[4:0	and MAT	[4:0] to im	plement t	he softwar	e timer m	ode
	0:	Disables a	software ti	mer mode))				
	1:	A match c	of the PCA	counter v	vith this m	odule's co	mpare/ca	oture regis	ter causes
	the	e CCFn bi	t in CCON	I to be set	, flagging a	an interrup	ot.		
TOGn	To	oggle Disables d		- 1 '					
	0:	Disables 1	oggie tun	ction	with this m	odulo'e co	mparo/ca	oturo rogia	tor causos
	th	e the CEX	n pin to to	aale.			mpare/ca	Jule legis	ter causes
PWMn	Pi	ilse Width	Modulatio	on mode					
	0:	Disables I	PWM mod	le					
	1:	Enables C	CEXn pin t	o be used	l as a puls	e width mo	odulated o	utput	
ECCFn	Er	hable CCF	Interrupt						
	0:	Disables of	compare/c	apture fla	g CCF[4:0] in the CO	CON regis	ter to gene	erate an
	int	terrupt req	uest.		00514.0				
	1:	Enables c	compare/c	apture flag	g CCF[4:0]	j in the CC	ON regist	er to gene	rate an
	ini	lerrupt req	uest.						

Not Recommended for New Designs

SPI Control Register (SPCR)									
Location	7	6	5	4	3	2	1	0	Reset Value
D5H	SPIE	SPE	DORD	MSTR	CPOL	CPHA	SPR1	SPR0	00H
Symbol	Fu	unction							
SPIE	lf	both SPIE	and ES a	re set to o	ne, SPI int	terrupts ar	e enabled		
SPE	SI 0: 1: P ⁻	SPI enable bit. 0: Disables SPI. 1: Enables SPI and connects SS#, MOSI, MISO, and SCK to pins P1.4, P1.5, P1.6, P1 7							
DORD	Da 0: 1:	Data Transmission Order. 0: MSB first in data transmission. 1: LSB first in data transmission.							
MSTR	M 0: 1:	Master/Slave select. 0: Selects Slave mode. 1: Selects Master mode.							
CPOL	CI 0: 1:	Clock Polarity 0: SCK is low when idle (Active High). 1: SCK is high when idle (Active Low).							
СРНА	Cl re 0: 1:	ock Phase lationship Shift trigg Shift trigg	e control bi between r ered on th ered on th	it. The CP naster and e leading e trailing e	HA bit with I slave. Se edge of the edge of the	n the CPO ee Figures e clock. e clock.	L bit contr 21 and 22	ol the cloo 2.	k and data:
SPR1, SP	R0 SI cc be	PI Clock R Infigured a Itween SC	ate Select s master. K and the	bits. Thes SPR1 and oscillator	e two bits SPR0 hat frequency	control th ve no effe , f _{OSC} , is a	e SCK rat ct on the s as follows:	e of the de lave. The	əvice relationship

SPR1	SPR0	SCK = f _{OSC} divided by
0	0	4
0	1	16
1	0	64
1	1	128

SPI Status Register (SPSR)

Location	7	6	5	4	3	2	1	0	Reset Value
AAH	SPIF	WCOL	-	-	-	-	-	-	00xxxxxb
Symbol	Fu	unction							
SPIF	SPI Interrupt Flag. Upon completion of data transfer, this bit is set to 1. If SPIE =1 and ES =1, an interrupt is then generated. This bit is cleared by software.								
WCOL	W Se Tr	rite Collisi et if the SF nis bit is cl	on Flag. I data reg eared by s	ister is wri oftware.	itten to dui	ring data t	ransfer.		

Not Recommended for New Designs

Location	7	6	5	4	3	2	1	0	Reset Value
98H	SM0/FE	SM1	SM2	REN	TB8	RB8	TI	RI	d0000000b
Symbol FE	Fu	Function Set SMOD0 = 1 to access FE bit.							
	0: 1: to	0: No framing error 1: Framing Error. Set by receiver when an invalid stop bit is detected. This bit needs to be cleared by software.							
SM0	SI Se	SMOD0 = 0 to access SM0 bit. Serial Port Mode Bit 0							
SM1	Se	erial Port N	/lode Bit 1						
		SM0	SM1	Мос	le Des	scription	Baud Rate	ə ¹	
		0	0	0	Shi	ft Register	f _{OSC} /6 (6 c f _{OSC} /12 (12	lock mode 2 clock mo) or de)
		0	1	1	8-b	it UART	Variable		
		1	0	2	9-b	it UART	f _{OSC} /32 or or f _{OSC} /64 or	f _{OSC} /16 (6 f _{OSC} /32 (12	clock mode) 2 clock mode)
		1	1	3	9-b	it UART	Variable		
SM2	Er RI ar wi 0.	Enables the Automatic Address Recognition feature in Modes 2 or 3. If SM2 = 1 then RI will not be set unless the received 9th data bit (RB8) is 1, indicating an address, and the received byte is a given or broadcast address. In Mode 1, if SM2 = 1 then RI will not be activated unless a valid stop bit was received. In Mode 0, SM2 should be 0.							
REN	Er 0: 1:	Enables serial reception. 0: to disable reception. 1: to enable reception.							
TB8	Tł de	The 9th data bit that will be transmitted in Modes 2 and 3. Set or clear by software as desired.							
RB8	In Modes 2 and 3, the 9th data bit that was received. In Mode 1, if $SM2 = 0$, RB8 is the stop bit that was received. In Mode 0, RB8 is not used.								
ТІ	Transmit interrupt flag. Set by hardware at the end of the 8th bit time in Mode 0, or at the beginning of the stop bit in the other modes, in any serial transmission, Must be cleared by software.								
RI	Receive interrupt flag. Set by hardware at the end of the8th bit time in Mode 0, or halfway through the stop bit time in the other modes, in any serial reception (except see SM2). Must be cleared by software.								

Not Recommended for New Designs

Sector-Erase

The Sector-Erase command erases all of the bytes in a sector. The sector size for the flash memory blocks is 128 Bytes. The selection of the sector to be erased is determined by the contents of SFAH and SFAL.

Figure 11:Sector-Erase

Not Recommended for New Designs

Byte-Program

The Byte-Program command programs data into a single byte. The address is determined by the contents of SFAH and SFAL. The data byte is in SFDT.

Figure 12: Byte-Program

Not Recommended for New Designs

		T2CON	
	Mode	Internal Control ¹	External Control ²
	16-bit Auto-Reload	00H	08H
	16-bit Capture	01H	09H
Used as Timer	Baud rate generator receive and transmit same baud rate	34H	36H
	Receive only	24H	26H
	Transmit only	14H	16H
Llood on Counter	16-bit Auto-Reload	02H	0AH
Useu as Counter	16-bit Capture	03H	0BH

Table 16:Timer/Counter 2

1. Capture/Reload occurs only on timer/counter overflow.

T0-0.0 25114

2. Capture/Reload occurs on timer/counter overflow and a 1 to 0 transition on T2EX (P1.1) pin except when Timer 2 is used in the baud rate generating mode.

Programmable Clock-Out

A 50% duty cycle clock can be programmed to come out on P1.0. This pin, besides being a regular I/O pin, has two alternate functions. It can be programmed:

- 1. to input the external clock for Timer/Counter 2, or
- 2. to output a 50% duty cycle clock ranging from 122 Hz to 8 MHz at a 16 MHz operating frequency (61 Hz to 4 MHz in 12 clock mode).

To configure Timer/Counter 2 as a clock generator, bit

C/#T2 (in T2CON) must be cleared and bit T20E in T2MOD must be set. Bit TR2 (T2CON.2) also must be set to start the timer.

The Clock-Out frequency depends on the oscillator frequency and the reload value of Timer 2 capture registers (RCAP2H, RCAP2L) as shown in this equation:

Oscillator Frequency n x (65536 - RCAP2H, RCAP2L)

n =2 (in 6 clock mode) 4 (in 12 clock mode)

Where (RCAP2H, RCAP2L) = the contents of RCAP2H and RCAP2L taken as a 16-bit unsigned integer.

In the Clock-Out mode, Timer 2 roll-overs will not generate an interrupt. This is similar to when it is used as a baud-rate generator. It is possible to use Timer 2 as a baud-rate generator and a clock generator simultaneously. Note, however, that the baud-rate and the Clock-Out frequency will not be the same.

Not Recommended for New Designs

Figure 18: UART Timings in Mode 1

Figure 19:UART Timings in Modes 2 and 3

Not Recommended for New Designs

Using the Given Address to Select Slaves

Any bits masked off by a 0 from SADEN become a "don't care" bit for the given address. Any bit masked off by a 1, becomes ANDED with SADDR. The "don't cares" provide flexibility in the userdefined addresses to address more slaves when using the given address.

Shown in the example above, Slave 1 has been given an address of 1111 0001 (SADDR). The SADEN byte has been used to mask off bits to a given address to allow more combinations of selecting Slave 1 and Slave 2. In this case for the given addresses, the last bit (LSB) of Slave 1 is a "don't care" and the last bit of Slave 2 is a 1. To communicate with Slave 1 and Slave 2, the master would need to send an address with the last bit equal to 1 (e.g. 1111 0001) since Slave 1's last bit is a don't care and Slave 2's last bit has to be a 1. To communicate with Slave 1 alone, the master would send an address with the last bit equal to 0 (e.g. 1111 0000), since Slave 2's last bit is a 1. See the table below for other possible combinations.

Select Slave 1 Only				
Slave 1	Given Address	Possible Addresses		
	1111 0X0X	1111 0000		
		1111 0100		

Select Slave 2 Only				
Slave 2	Given Address	Possible Addresses		
	1111 0XX1	1111 0111		
		1111 0011		

Select Slaves 1 and 2			
Slaves 1 and 2 Possible Addresses			
	1111 0001		
	1111 0101		

If the user added a third slave such as the example below:

Slave 3 SADDR = 1111 1001 SADEN = 1111 0101 GIVEN = 1111 X0X1

The user could use the possible addresses above to select slave 3 only. Another combination could be to select slave 2 and 3 only as shown below.

Select Slaves 2 and 3 Only					
Slaves 2 and 3 Possible Addresses					
	1111 0011				

More than one slave may have the same SADDR address as well, and a given address could be used to modify the address so that it is unique.

Not Recommended for New Designs

This routine should not be part of an interrupt service routine. If the program counter goes astray and gets stuck in an infinite loop, interrupts will still be serviced and the watchdog will keep getting reset. Thus, the purpose of the watchdog would be defeated. Instead, call this subroutine from the main program of the PCA timer.

Figure 29: PCA Watchdog Timer (Module 4 only)

Not Recommended for New Designs

Power-Saving Modes

The device provides two power saving modes of operation for applications where power consumption is critical. The two modes are idle and power-down, see Table 27.

Idle Mode

Idle mode is entered setting the IDL bit in the PCON register. In idle mode, the program counter (PC) is stopped. The system clock continues to run and all interrupts and peripherals remain active. The on-chip RAM and the special function registers hold their data during this mode.

The device exits idle mode through either a system interrupt or a hardware reset. Exiting idle mode via system interrupt, the start of the interrupt clears the IDL bit and exits idle mode. After exit the Interrupt Service Routine, the interrupted program resumes execution beginning at the instruction immediately following the instruction which invoked the idle mode. A hardware reset starts the device similar to a power-on reset.

Power-down Mode

The power-down mode is entered by setting the PD bit in the PCON register. In the power-down mode, the clock is stopped and external interrupts are active for level sensitive interrupts only. SRAM contents are retained during power-down, the minimum V_{DD} level is 2.0V.

The device exits power-down mode through either an enabled external level sensitive interrupt or a hardware reset. The start of the interrupt clears the PD bit and exits power-down. Holding the external interrupt pin low restarts the oscillator, the signal must hold low at least 1024 clock cycles before bringing back high to complete the exit. Upon interrupt signal being restored to logic V_{IH} , the first instruction of the interrupt service routine will execute. A hardware reset starts the device similar to power-on reset.

To exit properly out of power-down, the reset or external interrupt should not be executed before the V_{DD} line is restored to its normal operating voltage. Be sure to hold V_{DD} voltage long enough at its normal operating level for the oscillator to restart and stabilize (normally less than 10 ms).

Not Recommended for New Designs

System Clock and Clock Options

Clock Input Options and Recommended Capacitor Values for Oscillator

Shown in Figure 33 are the input and output of an internal inverting amplifier (XTAL1, XTAL2), which can be configured for use as an on-chip oscillator.

When driving the device from an external clock source, XTAL2 should be left disconnected and XTAL1 should be driven.

At start-up, the external oscillator may encounter a higher capacitive load at XTAL1 due to interaction between the amplifier and its feedback capacitance. However, the capacitance will not exceed 15 pF once the external signal meets the V_{IL} and V_{IH} specifications.

Crystal manufacturer, supply voltage, and other factors may cause circuit performance to differ from one application to another. C1 and C2 should be adjusted appropriately for each design. Table 28, shows the typical values for C1 and C2 vs. crystal type for various frequencies

Table 28: Recommended Values for C1 and C2 by Crystal Type

Crystal	C1 = C2		
Quartz	20-30pF		
Ceramic	40-50pF		

T0-0.0 25114

More specific information about on-chip oscillator design can be found in the *FlashFlex Oscillator Circuit Design Considerations* application note.

Not Recommended for New Designs

AC Electrical Characteristics

AC Characteristics:

(Over Operating Conditions: Load Capacitance for Port 0, ALE#, and PSEN# = 100pF; Load Capacitance for All Other Outputs = 80pF)

Table 36:AC Electrical Characteristics (1 of 2) $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $V_{DD} = 4.5-5.5V@40MHz$, $V_{SS} = 0V$

		Oscillator				
		40 MHz (x1 Mode) 20 MHz (x2 Mode) Variable		iable		
Symbol	Parameter	Min	Max	Min	Max	Units
1/T _{CLCL}	x1 Mode Oscillator Frequency	0	40	0	40	MHz
1/2T _{CLCL}	x2 Mode Oscillator Frequency	0	20	0	20	MHz
T _{LHLL}	ALE Pulse Width	35		2T _{CLCL} - 15		ns
T _{AVLL}	Address Valid to ALE Low			T _{CLCL} - 25 (3V)		ns
		10		T _{CLCL} - 15 (5V)		ns
T _{LLAX}	Address Hold After ALE Low			T _{CLCL} - 25 (3V)		ns
		10		T _{CLCL} - 15 (5V)		ns
T _{LLIV}	ALE Low to Valid Instr In				4T _{CLCL} - 65 (3V)	ns
			55		4T _{CLCL} - 45 (5V)	ns
T _{LLPL}	ALE Low to PSEN# Low			T _{CLCL} - 25 (3V)		ns
		10		T _{CLCL} - 15 (5V)		ns
T _{PLPH}	PSEN# Pulse Width	60		3T _{CLCL} - 25 (3V) 3T _{CLCL} - 15 (5V)		ns
T _{PLIV}	PSEN# Low to Valid Instr In				3T _{CLCL} - 55 (3V)	ns
			25		3T _{CLCL} - 50 (5V)	ns
T _{PXIX}	Input Instr Hold After PSEN#			0		ns
T _{PXIZ}	Input Instr Float After PSEN#				T _{CLCL} - 5 (3V)	ns
			10		T _{CLCL} - 15 (5V)	ns
T _{PXAV}	PSEN# to Address valid	17		T _{CLCL} - 8		ns
T _{AVIV}	Address to Valid Instr In				5T _{CLCL} - 80 (3V)	ns
			65		5T _{CLCL} - 60 (5V)	ns
T _{PLAZ}	PSEN# Low to Address Float		10		10	ns
T _{RLRH}	RD# Pulse Width	120		6T _{CLCL} - 40 (3V) 6T _{CLCL} - 30 (5V)		ns
T _{WLWH}	Write Pulse Width (WE#)	120		6T _{CLCL} - 40 (3V) 6T _{CLCL} - 30 (5V)		ns
T _{RLDV}	RD# Low to Valid Data In				5T _{CLCL} - 90 (3V)	ns
			75		5T _{CLCL} - 50 (5V)	ns
T _{RHDX}	Data Hold After RD#	0		0		ns
T _{RHDZ}	Data Float After RD#				2T _{CLCL} - 25 (3V)	ns
			38		2T _{CLCL} - 12 (5V)	ns
T _{LLDV}	ALE Low to Valid Data In				8T _{CLCL} - 90 (3V)	ns
			150		8T _{CLCL} - 50 (5V)	ns
T _{AVDV}	Address to Valid Data In				9T _{CLCL} - 90 (3V)	ns
			150		9T _{CLCL} - 75 (5V)	ns

Not Recommended for New Designs

Figure 41: Float Waveform

Figure 42: A Test Load Example

Not Recommended for New Designs

Packaging Diagrams

SST Package Code: PI