

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Obsolete
Core Processor	8051
Core Size	8-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, WDT
Number of I/O	36
Program Memory Size	40KB (40K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/sst89e58rd2a-40-c-nje

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Not Recommended for New Designs

Expanded Data RAM Addressing

The SST89E/V5xRDxA both have the capability of 1K of RAM. See Figure 7.

The device has four sections of internal data memory:

- 1. The lower 128 Bytes of RAM (00H to 7FH) are directly and indirectly addressable.
- 2. The higher 128 Bytes of RAM (80H to FFH) are indirectly addressable.
- 3. The special function registers (80H to FFH) are directly addressable only.
- 4. The expanded RAM of 768 Bytes (00H to 2FFH) is indirectly addressable by the move external instruction (MOVX) and clearing the EXTRAM bit. (See "Auxiliary Register (AUXR)" in Section , "Special Function Registers")

Since the upper 128 bytes occupy the same addresses as the SFRs, the RAM must be accessed indirectly. The RAM and SFRs space are physically separate even though they have the same addresses.

When instructions access addresses in the upper 128 bytes (above 7FH), the MCU determines whether to access the SFRs or RAM by the type of instruction given. If it is indirect, then RAM is accessed. If it is direct, then an SFR is accessed. See the examples below.

Indirect Access:

MOV@R0, #data; R0 contains 90H

Register R0 points to 90H which is located in the upper address range. Data in "#data" is written to RAM location 90H rather than port 1.

Direct Access:

MOV90H, #data; write data to P1

Data in "#data" is written to port 1. Instructions that write directly to the address write to the SFRs.

To access the expanded RAM, the EXTRAM bit must be cleared and MOVX instructions must be used. The extra 768 bytes of memory is physically located on the chip and logically occupies the first 768 bytes of external memory (addresses 000H to 2FFH).

When EXTRAM = 0, the expanded RAM is indirectly addressed using the MOVX instruction in combination with any of the registers R0, R1 of the selected bank or DPTR. Accessing the expanded RAM does not affect ports P0, P3.6 (WR#), P3.7 (RD#), or P2. With EXTRAM = 0, the expanded RAM can be accessed as in the following example.

Expanded RAM Access (Indirect Addressing only):

MOVX@DPTR, A; DPTR contains 0A0H

DPTR points to 0A0H and data in "A" is written to address 0A0H of the expanded RAM rather than external memory. Access to external memory higher than 2FFH using the MOVX instruction will access external memory (0300H to FFFFH) and will perform in the same way as the standard 8051, with P0 and P2 as data/address bus, and P3.6 and P3.7 as write and read timing signals.

When EXTRAM = 1, MOVX @Ri and MOVX @DPTR will be similar to the standard 8051. Using MOVX @Ri provides an 8-bit address with multiplexed data on Port 0. Other output port pins can be used to output higher order address bits. This provides external paging capabilities. Using MOVX

Not Recommended for New Designs

@DPTR generates a 16-bit address. This allows external addressing up the 64K. Port 2 provides the high-order eight address bits (DPH), and Port 0 multiplexes the low order eight address bits (DPL) with data. Both MOVX @Ri and MOVX @DPTR generates the necessary read and write signals (P3.6 - WR# and P3.7 - RD#) for external memory use. Table 4 shows external data memory RD#, WR# operation with EXTRAM bit.

The stack pointer (SP) can be located anywhere within the 256 bytes of internal RAM (lower 128 bytes and upper 128 bytes). The stack pointer may not be located in any part of the expanded RAM.

	MOVX @DPTR, A or	MOVX @Ri, A or MOVX A, @Ri	
AUXR	ADDR < 0300H	ADDR >= 0300H	ADDR = Any
EXTRAM = 0	RD# / WR# not asserted	RD# / WR# asserted	RD# / WR# not asserted ¹
EXTRAM = 1	RD# / WR# asserted	RD# / WR# asserted	RD# / WR# asserted

Table 4: External Data Memory RD#, WR# with EXTRAM bit

1. Access limited to ERAM address within 0 to 0FFH; cannot access 100H to 02FFH.

T0-0.0 25114

Not Recommended for New Designs

Cumh		Direct Addres	Bit	Address	, Symb	ol, or	Alterna	tive Po	ort Functio	n	Reset
Symb ol	Description	Addres S	MSB							LSB	Value
ACC ¹	Accumulator	E0H				ACC	C[7:0]				00H
B ¹	B Register	F0H				B[7:0]				00H
PSW ¹	Program Status Word	D0H	CY	AC	F0	RS1	RS0	OV	F1	Р	00H
SP	Stack Pointer	81H				SP	[7:0]				07H
DPL	Data Pointer Low	82H				DPI	_[7:0]				00H
DPH	Data Pointer High	83H				DPH	H[7:0]				00H
IE ¹	Interrupt Enable	A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
IEA ¹	Interrupt Enable A	E8H	-	-	-	-	EBO	-	-	-	xxxx0xxxb
IP ¹	Interrupt Priority Reg	B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000b
IPH	Interrupt Priority Reg High	B7H	-	PPCH	PT2H	PSH	PT1H	PX1H	PT0H	PX0H	x0000000b
IP1 ¹	Interrupt Priority Reg A	F8H	-	-	-	-	PBO	PX3	PX2	-	xxxx0xxxb
IP1H	Interrupt Priority Reg A High	F7H	-	-	-	-	PBOH	PX3H	PX3	-	xxxx0xxxb
PCON	Power Control	87H	SMOD 1	SMOD 0	BOF	PO F	GF1	GF0	PD	IDL	00010000b
AUXR	Auxiliary Reg	8EH	-	-	-	-	-	-	EXTRAM	AO	xxxxxx00b
AUXR1	Auxiliary Reg 1	A2H	-	-	-	-	GF2	0	-	DPS	xxxx00x0b
XICON ²	External Interrupt Control	AEH	х	EX3	IE3	IT3	0	EX2	IE2	IT2	00H

Table 6: CPU related SFRs

1. Bit Addressable SFRs

2. X = Don't care

Not Recommended for New Designs

		Direct	E	Bit Addr	ess, Sy	/mbc	ol, or Alte	rnative Port Fu	unctio	n	Reset
Symbol	Description	Address	MSB							LSB	Value
SFCF	SuperFlash Configuration	B1H	-	IAPEN	-	-	-	-	SWR	BSEL	x0xxxx00b
SFCM	SuperFlash Command	B2H	FIE				FCM	[6:0]			00H
SFAL	SuperFlash Address Low	B3H	Super	Flash Lo	ow Orde	er By	te Addres	s Register - A ₇	to A ₀ (SFAL)	00H
SFAH	SuperFlash Address High	B4H	Su	perFlash	n High (Ordei	Byte Add (SFAH)	lress Register -	A ₁₅ to	A ₈	00H
SFDT	SuperFlash Data	B5H		SuperFlash Data Register						00H	
SFST	SuperFlash Status	B6H	SB1_i	SB2_i	SB3_i	-	EDC_i	FLASH_BUSY	-	-	000x00xxb

Table 7: Flash Memory Programming SFRs

T0-0.0 25114

Table 8: Watchdog Timer SFRs

		Direct	В	Bit Address, Symbol, or Alternative Port Function							
Symbol	Description	Address	MSB							LSB	Value
WDTC ¹	Watchdog Timer Control	C0H	-	-	-	WDOUT	WDRE	WDTS	WDT	SWDT	xxx00x00b
WDTD	Watchdog Timer Data/Reload	85H			۷	Vatchdog T	imer Data	a/Reload			00H

1. Bit Addressable SFRs

T0-0.0 25114

Not Recommended for New Designs

		Direct	В	it Addre	ss, Sym	bol, or A	Alternat	tive Po	rt Funct	ion	RESET
Symbol	Description	Address	MSB							LSB	Value
CH CL	PCA Timer/Counter	F9H E9H				CH[7 CL[7	-				00H 00H
CCON ¹	PCA Timer/Counter Control Register	D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	00x00000b
CMOD	PCA Timer/Counter Mode Register	D9H	CIDL	WDTE	-	-	-	CPS1	CPS0	ECF	00xxx000b
CCAP0H	PCA Module 0	FAH		CCAP0H[7:0]							00H
CCAPOL	Compare/Capture Registers	EAH		CCAP0L[7:0]							00H
CCAP1H	PCA Module 1	FBH		CCAP1H[7:0]							00H
CCAP1L	Compare/Capture Registers	EBH		CCAP1L[7:0]							
CCAP2H	PCA Module 2	FCH		CCAP2H[7:0]							
CCAP2L	Compare/Capture Registers	ECH				CCAP2	2L[7:0]				00H
ССАРЗН	PCA Module 3	FDH				CCAP3	H[7:0]				00H
CCAP3L	Compare/Capture Registers	EDH				CCAP3	BL[7:0]				00H
CCAP4H	PCA Module 4	FEH				CCAP4	H[7:0]				00H
CCAP4L	Compare/Capture Registers	EEH				CCAP4	IL[7:0]	_			00H
CCAPM0	PCA	DAH	-	ECOM0	CAPP0	CAPN0	MAT0	TOG0	PWM0	ECCF0	x0000000b
CCAPM1	Compare/Capture	DBH	-	ECOM1	CAPP1	CAPN1	MAT1	TOG1	PWM1	ECCF1	x000000b
CCAPM2	Module Mode Registers	DCH	- ECOM2 CAPP2 CAPN2 MAT2 TOG2 PWM2 ECCF2							x000000b	
CCAPM3	1 109101010	DDH	-	ECOM3	CAPP3	CAPN3	MAT3	TOG3	PWM3	ECCF3	x0000000b
CCAPM4		DEH	-	ECOM4	CAPP4	CAPN4	MAT4	TOG4	PWM4	ECCF4	x000000b

Table 11:PCA SFRs

1. Bit Addressable SFRs

T0-0.0 25114

Not Recommended for New Designs

Interrupt Enable (IE)									
Location	7	6	5	4	3	2	1	0	Reset Value
A8H	EA	EC	ET2	ES	ET1	EX1	ET0	EX0	00H
Symbol	F	unction							
EA	0	lobal Inter = Disable = Enable	rupt Enabl	е.					
EC	Р	CA Interru	pt Enable.						
ET2	T	mer 2 Inte	rrupt Enab	ole.					
ES	S	erial Interr	upt Enable).					
ET1	T	mer 1 Inte	rrupt Enab	ole.					
EX1	E	xternal 1 Ir	nterrupt Er	nable.					
ET0	T	mer 0 Inte	rrupt Enab	ole.					
EX0	E	xternal 0 Ir	nterrupt Er	nable.					

Interrupt Enable A (IEA)

Location	7	6	5	4	3	2	1	0	Reset Value
E8H	-	-	-	-	EBO	-	-	-	xxxx0xxxb

Symbol	Function
EBO	Brown-out Interrupt Enable. 1 = Enable the interrupt
	0 = Disable the interrupt

Interrupt Priority (IP)

Location	7	6	5	4	3	2	1	0	Reset Value
B8H	-	PPC	PT2	PS	PT1	PX1	PT0	PX0	x0000000b

Symbol	Function
PPC	PCA interrupt priority bit
PT2	Timer 2 interrupt priority bit
PS	Serial Port interrupt priority bit
PT1	Timer 1 interrupt priority bit
PX1	External interrupt 1 priority bit
PT0	Timer 0 interrupt priority bit
PX0	External interrupt 0 priority bit

Not Recommended for New Designs

Location	7	6	5	4	3	2	1	0	Reset Value
85H			Wa	atchdog Tim	er Data/Re	load	•		00H
Symbol	F	unction							
WDTD	lı	nitial/Reloa	d value ir	Watchdog	g Timer. N	ew value v	won't be e	ffective u	ntil WDT is
	S	et.		-	-				
CA Timer/Counter Cont	ol Pogi	stor1 (CCC							
Location	7		5	4	3	2	1	0	Reset Value
D8H	CF	CR	-	CCF4	CCF3	CCF2	CCF1	CCF0	
	1. Bit add			0014	0010	0012	0011		
Currence of	-								
Symbol		unction		-					
CF		CA Count		•					
				n the coun					
		oftware.	et. CF may	/ be set by	eitner naro	aware or s	offware, b	ut can on	ly cleared b
	-		_						
CR		CA Count							
		-		n the PCA	counter o	n. Must be	e cleared t	by softwar	re to turn the
		CA counte							
-		•	-	served for f					
				e '1's to reser					
CCF4				ıpt flag. Se	t by hardw	are when	a match o	or capture	occurs.
	N	lust be cle	ared by s	oftware.					
CCF3				ıpt flag. Se	t by hardw	vare when	a match o	or capture	occurs.
	Ν	lust be cle	ared by s	oftware.					
CCF2				ıpt flag. Se	t by hardw	are when	a match o	or capture	occurs.
	Ν	/lust be cle	ared by s	oftware.					
CCF1	F	CA Modul	e 1 interru	ıpt flag. Se	t by hardw	are when	a match o	or capture	occurs.
CCF1		PCA Modul /lust be cle			t by hardw	are when	a match o	or capture	occurs.
CCF1 CCF0	Ν	lust be cle	ared by s		-				

Not Recommended for New Designs

Sector-Erase

The Sector-Erase command erases all of the bytes in a sector. The sector size for the flash memory blocks is 128 Bytes. The selection of the sector to be erased is determined by the contents of SFAH and SFAL.

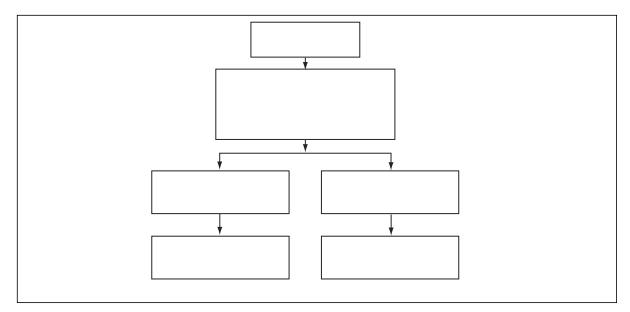


Figure 11:Sector-Erase

Not Recommended for New Designs

Automatic Address Recognition

Automatic Address Recognition helps to reduce the MCU time and power required to talk to multiple serial devices. Each device is hooked together sharing the same serial link with its own address. In this configuration, a device is only interrupted when it receives its own address, thus eliminating the software overhead to compare addresses.

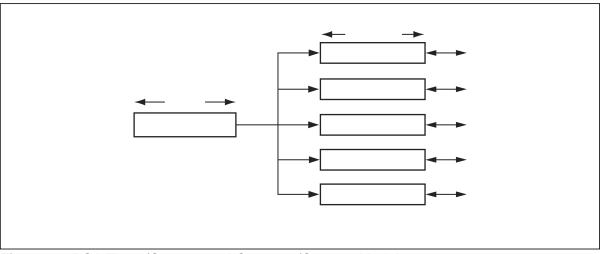
This same feature helps to save power because it can be used in conjunction with idle mode to reduce the system's overall power consumption. Since there may be multiple slaves hooked up serial to one master, only one slave would have to be interrupted from idle mode to respond to the master's transmission. Automatic Address Recognition (AAR) allows the other slaves to remain in idle mode while only one is interrupted. By limiting the number of interruptions, the total current draw on the system is reduced.

There are two ways to communicate with slaves: a group of them at once, or all of them at once. To communicate with a group of slaves, the master sends out an address called the given address. To communicate with all the slaves, the master sends out an address called the "broadcast" address.

AAR can be configured as mode 2 or 3 (9-bit modes) and setting the SM2 bit in SCON. Each slave has its own SM2 bit set waiting for an address byte (9th bit = 1). The Receive Interrupt (RI) flag will only be set when the received byte matches either the given address or the broadcast address. Next, the slave then clears its SM2 bit to enable reception of the data bytes (9th bit = 0) from the master. When the 9th bit = 1, the master is sending an address. When the 9th bit = 0, the master is sending actual data.

If mode 1 is used, the stop bit takes the place of the 9th bit. Bit RI is set only when the received command frame address matches the device's address and is terminated by a valid stop bit. Note that mode 0 cannot be used. Setting SM2 bit in the SCON register in mode 0 will have no effect.

Each slave's individual address is specified by SFR SADDR. SFR SADEN is a mask byte that defines "don't care" bits to form the given address when combined with SADDR. See the example below:


Slave 1 SADDR = 1111 0001

•••••		
SADEN	=	1111 1010
GIVEN	=	1111 0X0X

Slave 2

SADDR	=	1111 0011
SADEN	=	1111 1001
GIVEN	=	1111 0XX1

Not Recommended for New Designs

Figure 24: PCA Timer/Counter and Compare/Capture Modules

The table below summarizes various clock inputs at two common frequencies.

	Clock Increments			
PCA Timer/Counter Mode	12 MHz	16 MHz		
Mode 0: f _{OSC} /12	1 µsec	0.75 µsec		
Mode 1:	330 nsec	250 nsec		
Mode 2: Timer 0 Overflows ¹				
Timer 0 programmed in:				
8-bit mode	256 µsec	192 µsec		
16-bit mode	65 msec	49 µsec		
8-bit auto-reload	1 to 255 µsec	0.75 to 191 µsec		
Mode 3: External Input MAX	0.66 µsec	0.50 µsec		
		T0-0.0 251		

1. In Mode 2, the overflow interrupt for Timer 0 does not need to be enabled.

The four possible CMOD timer modes with and without the overflow interrupt enabled are shown below. This list assumes that PCA will be left running during idle mode.

Table 19:CMOD Values

	CMOD Value			
PCA Count Pulse Selected	Without Interrupt Enabled	With Interrupt Enabled		
Internal clock, f _{OSC} /12	00H	01H		
Internal clock, f _{OSC} /4	02H	03H		
Timer 0 overflow	04H	05H		
External clock at P1.2	06H	07H		

T0-0.0 25114

Not Recommended for New Designs

16-Bit Software Timer Mode

The 16-bit software timer mode is used to trigger interrupt routines, which must occur at periodic intervals. It is setup by setting both the ECOM and MAT bits in the module's CCAPMn register. The PCA timer will be compared to the module's capture registers (CCAPnL and CCAPnH) and when a match occurs, an interrupt will occur, if the CCFn (CCON SFR) and the ECCFn (CCAPMn SFR) bits for the module are both set.

If necessary, a new 16-bit compare value can be loaded into CCAPnH and CCAPnL during the interrupt routine. The user should be aware that the hardware temporarily disables the comparator function while these registers are being updated so that an invalid match will not occur. Thus, it is recommended that the user write to the low byte first (CCAPnL) to disable the comparator, then write to the high byte (CCAPnH) to re-enable it. If any updates to the registers are done, the user may want to hold off any interrupts from occurring by clearing the EA bit. (See Figure 26)

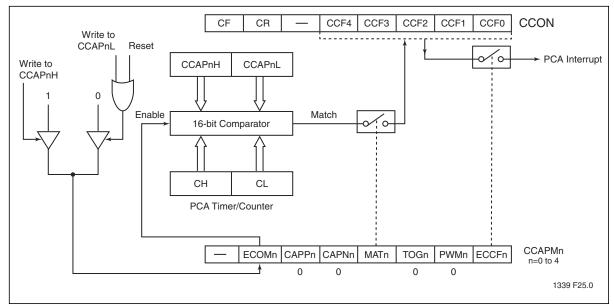


Figure 26: PCA Compare Mode (Software Timer)

Not Recommended for New Designs

Software Reset

The software reset is executed by changing SFCF[1] (SWR) from "0" to "1". A software reset will reset the program counter to address 0000H. All SFR registers will be set to their reset values, except SFCF[1] (SWR), WDTC[2] (WDTS), and RAM data will not be altered.

Brown-out Detection Reset

The device includes a brown-out detection circuit to protect the system from severed supplied voltage V_{DD} fluctuations. SST89E5xRD2A/RDA internal brown-out detection threshold is 3.85V. For brown-out voltage parameters, please refer to Tables 35 and 36.

When V_{DD} drops below this voltage threshold, the brown-out detector triggers the circuit to generate a brown-out interrupt but the CPU still runs until the supplied voltage returns to the brown-out detection voltage V_{BOD} . The default operation for a brown-out detection is to cause a processor reset.

 V_{DD} must stay below V_{BOD} at least four oscillator clock periods before the brown-out detection circuit will respond.

Brown-out interrupt can be enabled by setting the EBO bit in IEA register (address E8H, bit 3). If EBO bit is set and a brown-out condition occurs, a brown-out interrupt will be generated to execute the program at location 004BH. It is required that the EBO bit be cleared by software after the brown-out interrupt is serviced. Clearing EBO bit when the brown-out condition is active will properly reset the device. If brown-out interrupt is not enabled, a brown-out condition will reset the program to resume execution at location 0000H.

Not Recommended for New Designs

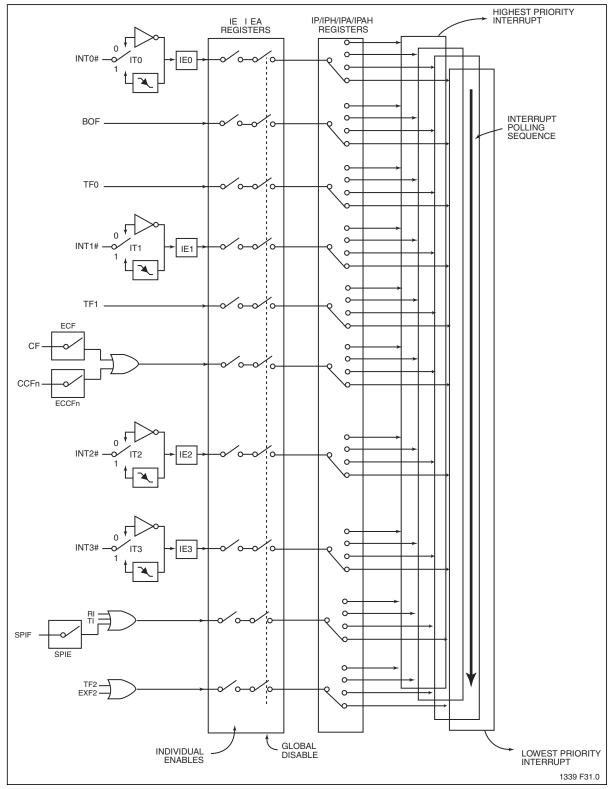


Figure 32: Interrupt Structure

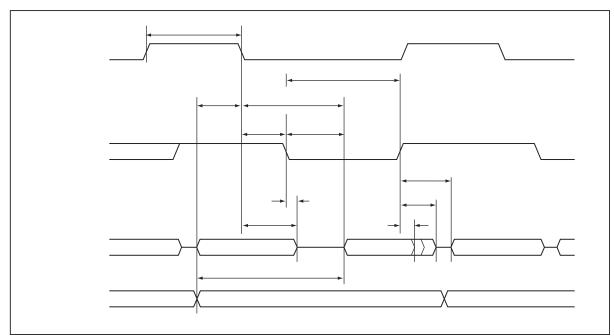

Not Recommended for New Designs

Table 35:DC Electrical Characteristics for SST89E5xRD2A/RDA $T_A = -40^{\circ}$ C to $+85^{\circ}$ C; $V_{DD} = 4.5-5.5$ V; $V_{SS} = 0$ V

Symbol	Parameter	Test Conditions	Min	Max	Units
V _{IL}	Input Low Voltage	4.5 < V _{DD} < 5.5	-0.5	0.2V _{DD} - 0.1	V
VIH	Input High Voltage	4.5 < V _{DD} < 5.5	0.2V _{DD} + 0.9	V _{DD} + 0.5	V
V _{IH1}	Input High Voltage (XTAL1, RST)	4.5 < V _{DD} < 5.5	0.7V _{DD}	V _{DD} + 0.5	V
V _{OL} Output Low Voltage (Ports 1.5, 1.6, 1.7)	$V_{DD} = 4.5V$				
		I _{OL} = 16mA		1.0	V
V _{OL} Output Low Voltage (Ports 1, 2, 3) ¹	$V_{DD} = 4.5V$				
	$I_{OL} = 100 \mu A^2$		0.3	V	
		$I_{OL} = 1.6 \text{mA}^2$		0.45	V
		$I_{OL} = 3.5 \text{mA}^2$		1.0	V
V _{OL1} Output Low Voltage (Port 0, ALE, PSEN#) ^{1,3}	$V_{DD} = 4.5V$				
		$I_{OL} = 200 \mu A^2$		0.3	V
		$I_{OL} = 3.2 m A^2$		0.45	V
V _{OH} Output High Voltage (Ports 1, 2, 3, ALE, PSEN#) ⁴	$V_{DD} = 4.5V$				
		I _{OH} = -10μA	V _{DD} - 0.3		V
		I _{OH} = -30μA	V _{DD} - 0.7		V
		I _{OH} = -60μA	V _{DD} - 1.5		V
V _{OH1}	Output High Voltage (Port 0 in External Bus	$V_{DD} = 4.5V$			
	Mode) ⁴	I _{OH} = -200μA	V _{DD} - 0.3		V
		I _{OH} = -3.2mA	V _{DD} - 0.7		V
V _{BOD}	Brown-out Detection Voltage		3.85	4.15	V
IIL	Logical 0 Input Current (Ports 1, 2, 3)	$V_{IN} = 0.4V$		-75	μA
I _{TL}	Logical 1-to-0 Transition Current (Ports 1, 2, 3) ⁵	$V_{IN} = 2V$		-650	μA
ILI	Input Leakage Current (Port 0)	0.45 < V _{IN} < V _{DD} - 0.3		±10	μA
R _{RST}	RST Pull-down Resistor		40	225	KΩ
C _{IO}	Pin Capacitance ⁶	@ 1 MHz, 25°C		15	pF
I _{DD}	Power Supply Current				
	IAP Mode				
	@ 40 MHz			88	mA
	Active Mode				
	@ 40 MHz			50	mA
	Idle Mode				
	@ 40 MHz			42	mA
	Power-down Mode	$T_A = 0^{\circ}C \text{ to } +70^{\circ}C$		80	μA
		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		90	μA

T0-0.2 25114

Not Recommended for New Designs

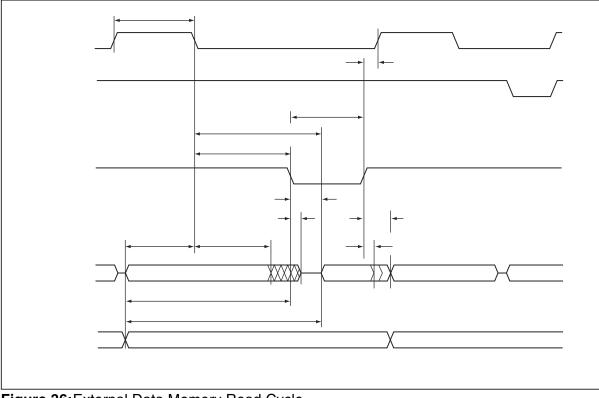
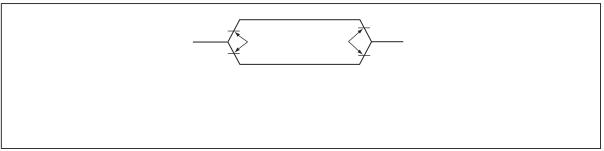
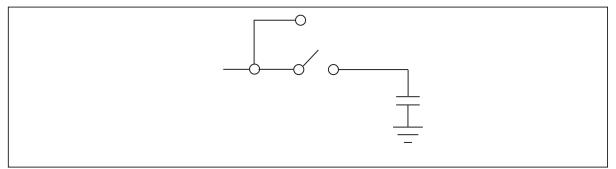




Figure 36: External Data Memory Read Cycle

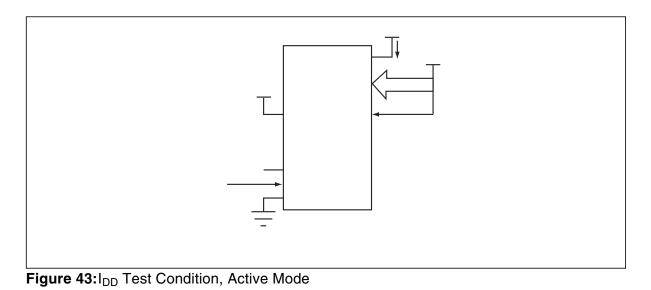

Not Recommended for New Designs

Figure 41: Float Waveform

Figure 42: A Test Load Example

Not Recommended for New Designs

Valid Combinations

Valid combinations for SST89E54RD2A

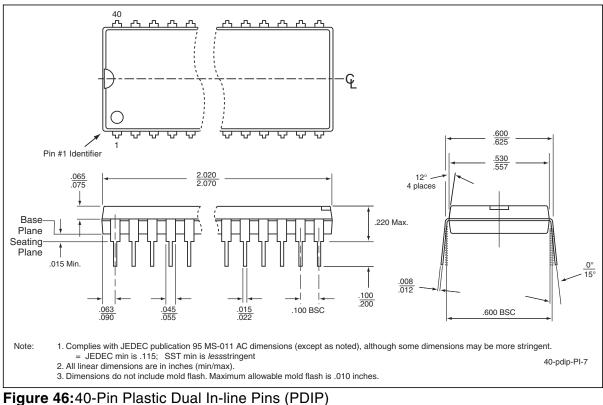
SST89E54RD2A-40-C-NJE SST89E54RD2A-40-C-TQJE

Valid combinations for SST89E58RD2A

SST89E58RD2A-40-C-NJE SST89E58RD2A-40-C-TQJE

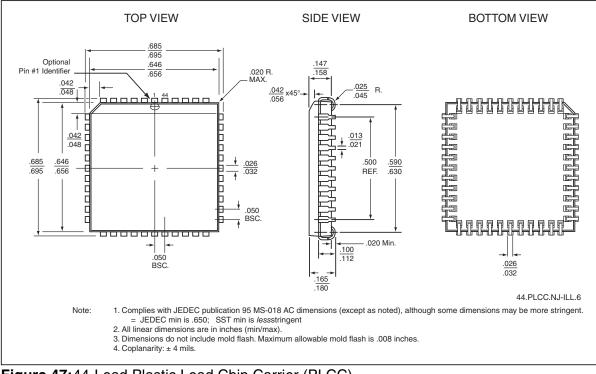
Valid combinations for SST89E54RDA

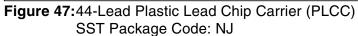
SST89E54RDA-40-C-PIE

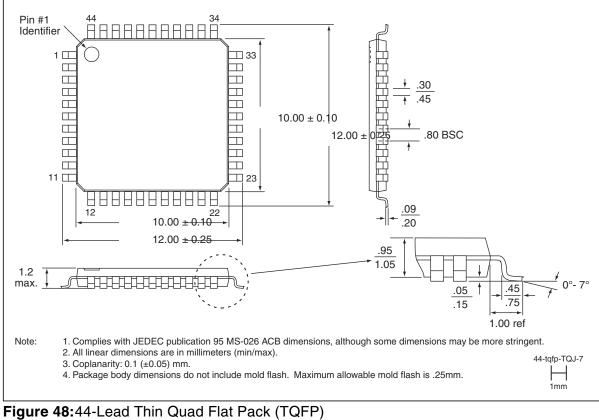

Valid combinations for SST89E58RDA

SST89E58RDA-40-C-PIE

Note:Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.


Not Recommended for New Designs


Packaging Diagrams


SST Package Code: PI

Not Recommended for New Designs

Not Recommended for New Designs

SST Package Code: TQJ