

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	39
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	48-LQFP
Supplier Device Package	48-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051c6t6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of figures

Figure 1.	Block diagram	. 12
Figure 2.	Clock tree	. 16
Figure 3.	LQFP64 package pinout	. 27
Figure 4.	UFBGA64 package pinout	. 28
Figure 5.	LQFP48 package pinout	. 28
Figure 6.	UFQFPN48 package pinout	. 29
Figure 7.	WLCSP36 package pinout	. 29
Figure 8.	LQFP32 package pinout	. 30
Figure 9.	UFQFPN32 package pinout	. 30
Figure 10.	STM32F051x8 memory map	. 39
Figure 11.	Pin loading conditions	42
Figure 12	Pin input voltage	42
Figure 13	Power supply scheme	43
Figure 14	Current consumption measurement scheme	44
Figure 15	High-speed external clock source AC timing diagram	60
Figure 16	Low-speed external clock source AC timing diagram	. 00 60
Figure 17	Typical application with an 8 MHz crystal	. 00
Figure 17.		. 02
Figure 10.	HSL application with a 52.700 KHz crystal	. 03
Figure 19.		. 04
Figure 20.		. 00
Figure 21.	Figure welt to learner (FT and FTE) // input to be a starieties	. 72
Figure 22.		. 72
Figure 23.		. 75
Figure 24.	Recommended NRS I pin protection	. 76
Figure 25.	ADC accuracy characteristics	. 79
Figure 26.	Typical connection diagram using the ADC	. 79
Figure 27.	12-bit buffered / non-buffered DAC	. 81
Figure 28.	Maximum V _{REFINT} scaler startup time from power down	. 83
Figure 29.	SPI timing diagram - slave mode and CPHA = 0	. 87
Figure 30.	SPI timing diagram - slave mode and CPHA = 1	. 87
Figure 31.	SPI timing diagram - master mode	. 88
Figure 32.	I ² S slave timing diagram (Philips protocol)	. 89
Figure 33.	I ² S master timing diagram (Philips protocol)	. 90
Figure 34.	UFBGA64 package outline	. 91
Figure 35.	Recommended footprint for UFBGA64 package	. 92
Figure 36.	UFBGA64 package marking example	. 93
Figure 37.	LQFP64 package outline	. 94
Figure 38.	Recommended footprint for LQFP64 package	. 95
Figure 39.	LQFP64 package marking example	. 96
Figure 40.	LQFP48 package outline	. 97
Figure 41.	Recommended footprint for LQFP48 package	. 98
Figure 42.	LQFP48 package marking example	. 99
Figure 43.	UFQFPN48 package outline	100
Figure 44	Recommended footprint for UFQFPN48 package	101
Figure 45	UFQFPN48 package marking example	102
Figure 46	WI CSP36 package outline	103
Figure 47	Recommended pad footprint for WI CSP36 package	104
Figure 48	WI CSP36 package marking example	105
. iguic 1 0.		100

3 Functional overview

Figure 1 shows the general block diagram of the STM32F051xx devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F051xx devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 16 to 64 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

Functional overview

Figure 2. Clock tree

3.7 General-purpose inputs/outputs (GPIOs)

Each of the GPIO pins can be configured by software as output (push-pull or open-drain), as input (with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature

hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

Group	Capacitive sensing signal name	Pin name	Group	Capacitive sensing signal name	Pin name
	TSC_G1_IO1	PA0		TSC_G4_IO1	PA9
1	TSC_G1_IO2	PA1	1	TSC_G4_IO2	PA10
	TSC_G1_IO3	PA2	4	TSC_G4_IO3	PA11
	TSC_G1_IO4	PA3		TSC_G4_IO4	PA12
	TSC_G2_IO1	PA4		TSC_G5_IO1	PB3
2	TSC_G2_IO2	PA5	5	TSC_G5_IO2	PB4
2	TSC_G2_IO3	PA6	5	TSC_G5_IO3	PB6
	TSC_G2_IO4	PA7		TSC_G5_IO4	PB7
	TSC_G3_IO1	PC5		TSC_G6_IO1	PB11
3	TSC_G3_IO2	PB0	6	TSC_G6_IO2	PB12
5	TSC_G3_IO3	PB1	0	TSC_G6_IO3	PB13
	TSC_G3_IO4	PB2		TSC_G6_IO4	PB14

 Table 5. Capacitive sensing GPIOs available on STM32F051xx devices

Table 6.	Effective number	of capacitive	sensing cl	hannels on S	FM32F051xx
----------	------------------	---------------	------------	--------------	------------

	Number of capacitive sensing channels							
Analog I/O group	STM32F051Rx	K STM32F051Cx STM32F051Tx		STM32F051KxU (UFQFPN32)	STM32F051KxT (LQFP32)			
G1	3	3	3	3	3			
G2	3	3	3	3	3			
G3	3	2	2	2	1			
G4	3	3	3	3	3			
G5	3	3	3	3	3			
G6	3	3	0	0	0			
Number of capacitive sensing channels	18	17	14	14	13			

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s) and, I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter		
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks		
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length 		
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.		

Table 8. C	Comparison	of I ² C analog	and digital filters
		•••••••••••••••••••••••••••••••••••••••	

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to Table 9 for the differences between I2C1 and I2C2.

Table 9. STM32F051xx I ² C in	nplementation
--	---------------

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	-
Independent clock	Х	-

4 Pinouts and pin descriptions

Na	me	Abbreviation	Definition			
Pin name Unless otherwise specified in brackets below the pin name, the pin function during after reset is the same as the actual pin name						
		S	Supply pin			
Pin	type	I	Input-only pin			
		I/O	Input / output pin			
		FT	5 V-tolerant I/O			
I/O structure		FTf 5 V-tolerant I/O, FM+ capable				
		TTa 3.3 V-tolerant I/O directly connected to ADC				
		TC	TC Standard 3.3 V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.				
Pin	Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers			
functions Additional functions directly selected/enabled through peripheral re-			selected/enabled through peripheral registers			

|--|

Table 13. Pin definitions

	Ρ	in nu	umbe	er						Pin functions		
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
1	B2	1	-	-	-	VBAT	S	-	-	Backup power supply		
2	A2	2	A6	-	-	PC13	I/O	TC	(1)(2)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2	
3	A1	3	B6	-	-	PC14-OSC32_IN (PC14)	I/O	тс	(1)(2)	-	OSC32_IN	
4	B1	4	C6	-	-	PC15-OSC32_OUT (PC15)	I/O	тс	(1)(2)	-	OSC32_OUT	
5	C1	5	B5	2	2	PF0-OSC_IN (PF0)	I/O	FT	-	-	OSC_IN	
6	D1	6	C5	3	3	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT	

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

Symbol	Parameter	arameter fueur		sumption in node	Typical con Sleep	Unit		
Symbol	Parameter	HCLK	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Jint	
		48 MHz	23.2	13.3	13.2	3.1		
		36 MHz	17.6	10.3	10.1	2.6		
		32 MHz	15.6	9.3	9.0	2.4		
	Current	24 MHz	12.1	7.4	7.0	2.0		
	consumption	16 MHz	8.4	5.1	5.0	1.6	m۸	
'DD	from V _{DD} supply	from V _{DD}	8 MHz	4.5	3.0	2.8	1.1	ША
		4 MHz	2.8	2.0	2.0	1.1		
		2 MHz	1.9	1.5	1.5	1.0		
		1 MHz	1.5	1.3	1.3	1.0		
		500 kHz	1.2	1.2	1.1	1.0		
		48 MHz		15	51			
		36 MHz		11	13			
		32 MHz		1(01			
	Current	24 MHz		7	9			
1	consumption	16 MHz	57					
IDDA	from V _{DDA}	8 MHz	2.2					
	Suppry	4 MHz		2	.2			
		2 MHz		2	.2			
		1 MHz		2	.2		1	
			500 kHz		2	.2		

Table 29. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 48: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

1. Guaranteed by design, not tested in production.

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 16*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit	
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz	
V_{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V	
V _{LSEL}	OSC32_IN input pin low level voltage	V _{SS}	-	0.3 V _{DDIOx}		
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	nc	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	ns	

Table 34. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Figure 18. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*. The provided curves are characterization results, not tested in production.

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 53. R_{AIN} max for f_{ADC} = 14 MHz (continued)

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	f _{PCLK} = 48 MHz,	±1	±1.5	LSB
EG	Gain error	$T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±0.5	±1.5	
ED	Differential linearity error	$T_A = 25 \text{ °C}$	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error	f _{PCLK} = 48 MHz,	±3.3	±4	
EO	Offset error		±1.9	±2.8	LSB
EG	Gain error	$T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$ VDA = 2.7 V to 3.6 V	±2.8	±3	
ED	Differential linearity error	$T_A = -40$ to 105 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	$T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$ VDA = 2.4 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_{A} = 25 \text{°C}$	±0.7	±1.3	
EL	Integral linearity error	1	±1.2	±1.7	

Table 54. ADC accuracy $^{(1)(2)(3)}$

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.14 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.

4. Data based on characterization results, not tested in production.

Symbol	Parameter	Min	Max	Unit		
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns		

Table 62. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 63* for SPI or in *Table 64* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 20: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Parameter Conditions		Мах	Unit	
f _{SCK}	SDI clock froguency	Master mode	-	18		
1/t _{c(SCK)}	SPI Clock frequency	Slave mode	-	18	IVII IZ	
$t_{r(SCK)} \ t_{f(SCK)}$	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns	
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-		
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-		
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1		
t _{su(MI)}	Data input satur timo	Master mode	4	-		
t _{su(SI)}		Slave mode	5	-		
t _{h(MI)}	Data input hold time	Master mode	4	-		
t _{h(SI)}		Slave mode	5	-	ns	
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk		
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18		
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5		
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6		
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-		
t _{h(MO)}		Master mode (after enable edge)	2	-		
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%	

Table	63.	SPI	characteristics(1))
-------	-----	-----	------------------	----	---

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 52. UFQFPN32 package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table: Pin definitions*.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 54. UFQFPN32 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F051xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 74* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see *Table 20: General operating conditions*.

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Note:

Using the values obtained in *Table* 74 T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W
- $T_{Jmax} = 100 \text{ °C} + (45 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 6.03 \text{ °C} = 106.03 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 55* to select the required temperature range (suffix 6 or 7) according to your ambient temperature or power requirements.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

Table 75. Ordering information scheme								
Example:	STM32	F	051	R	8	Т	6	х
Device family								
STM32 = ARM-based 32-bit microcontroll	er							
Product type								
F = General-purpose								
Sub-family								
051 = STM32F051xx								
Pin count								
K = 32 pins								
T = 36 pins								
C = 48 pins								
R = 64 pins								
User code memory size								
4 = 16 Kbyte								
6 = 32 Kbyte								
8 = 64 Kbyte								
Package								
H = UFBGA								
T = LQFP								
U = UFQFPN								
Y = WLCSP								
Temperature range								
6 = -40 °C to +85 °C								
7 = -40 °C to +105 °C								
Options								
xxx = code ID of programmed parts (inclu	des nackin	n tvne)					

xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing

