

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Supplier Device Package	48-LQFP (7x7)
Package / Case	48-LQFP
Mounting Type	Surface Mount
Operating Temperature	-40°C ~ 105°C (TA)
Oscillator Type	Internal
Data Converters	A/D 13x12b; D/A 1x12b
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
RAM Size	8K x 8
EEPROM Size	-
Program Memory Type	FLASH
Program Memory Size	64KB (64K x 8)
Number of I/O	39
Peripherals	DMA, I ² S, POR, PWM, WDT
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Speed	48MHz
Core Size	32-Bit Single-Core
Core Processor	ARM® Cortex®-M0
Product Status	Active

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	duction	
2	Desci	ription .	
3	Funct	tional ov	verview
	3.1	ARM [®] -0	Cortex [®] -M0 core
	3.2	Memori	es 13
	3.3	Boot mo	odes
	3.4	Cyclic re	edundancy check calculation unit (CRC)
	3.5	Power r	nanagement
		3.5.1	Power supply schemes
		3.5.2	Power supply supervisors
		3.5.3	Voltage regulator
		3.5.4	Low-power modes
	3.6	Clocks a	and startup
	3.7	General	I-purpose inputs/outputs (GPIOs) 16
	3.8	Direct m	nemory access controller (DMA) 17
	3.9	Interrup	ts and events
		3.9.1	Nested vectored interrupt controller (NVIC)
		3.9.2	Extended interrupt/event controller (EXTI)
	3.10	Analog-	to-digital converter (ADC) 17
		3.10.1	Temperature sensor
		3.10.2	Internal voltage reference (V _{REFINT})
		3.10.3	V _{BAT} battery voltage monitoring
	3.11	Digital-t	o-analog converter (DAC) 19
	3.12	Compar	rators (COMP) 19
	3.13	Touch s	ensing controller (TSC) 19
	3.14	Timers a	and watchdogs
		3.14.1	Advanced-control timer (TIM1)
		3.14.2	General-purpose timers (TIM2, 3, 14, 15, 16, 17)
		3.14.3	Basic timer TIM6
		3.14.4	Independent watchdog (IWDG) 22
		3.14.5	System window watchdog (WWDG)23

DocID022265 Rev 7

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F051xx microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

Perip	oheral		/I32F05		STM32F051T8	-	//32F05			132F05	1Rx		
Flash mem	ory (Kbyte)	16	32	64	64	16	32	64	16	32	64		
SRAM	(Kbyte)		8										
	Advanced control				1	(16-bit)							
Timers	General purpose		5 (16-bit) 1 (32-bit)										
	Basic		1 (16-bit)										
	SPI [l ² S] ⁽¹⁾		1 [1] ⁽²⁾		1 [1] ⁽²⁾	1 [1	I] ⁽²⁾	2 [1]		2 [1]			
Comm.	l ² C		1 ⁽³⁾		1 ⁽³⁾	1((3)	2	1(3)	2		
interfaces	1 ⁽⁴⁾	:	2	2	1 ⁽⁴⁾	:	2	1 ⁽⁴⁾	2	2			
	CEC		1										
	t ADC f channels)	1 1 (10 ext. + 3 int.) (16 ext. + 3 int.)							int.)				
	t DAC f channels)	1 (1)											
Analog co	omparator	2											
GP	llOs		on LQF I UFQF	'	29	29		39		55			
Capacitive ser	nsing channels	13 (on LQFP32) 14 (on UFQFPN32)			14	17			18				
Max. CPU	frequency				4	8 MHz							
Operatin	Operating voltage				2.0	to 3.6 \	V						
Operating t	Operating temperature		Ambient operating temperature: -40°C to 85°C / -40°C to 105°C Junction temperature: -40°C to 105°C / -40°C to 125°C										
Pack	ages		_QFP32 =QFPN		WLCSP36		LQFP48 FQFPN		LQFP64 UFBGA64				

Table 2. STM32F051xx family device features and peripheral count

1. The SPI1 interface can be used either in SPI mode or in I^2S audio mode.

2. SPI2 is not present.

3. I2C2 is not present.

4. USART2 is not present.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature

DocID022265 Rev 7

3.14 Timers and watchdogs

The STM32F051xx devices include up to six general-purpose timers, one basic timer and an advanced control timer.

Table 7 compares the features of the different timers.

					•		
Timer type	Timer	Counter resolution	Counter type	Prescaler factor	DMA request generation	Capture/compare channels	Complementary outputs
Advanced control	TIM1	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	3
	TIM2	32-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
	TIM3	16-bit	Up, down, up/down	integer from 1 to 65536	Yes	4	-
General purpose	TIM14	16-bit	Up	integer from 1 to 65536	No	1	-
	TIM15	16-bit	Up	integer from 1 to 65536	Yes	2	1
	TIM16 TIM17	16-bit	Up	integer from 1 to 65536	Yes	1	1
Basic	TIM6	16-bit	Up	integer from 1 to 65536	Yes	-	-

 Table 7. Timer feature comparison

3.14.1 Advanced-control timer (TIM1)

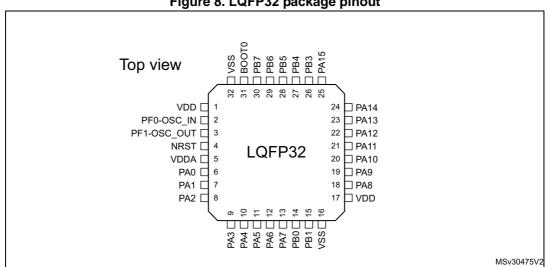
The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.



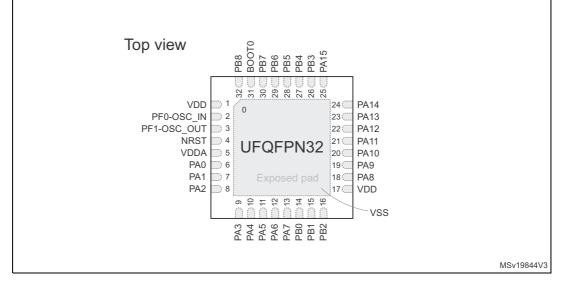


Figure 8. LQFP32 package pinout

	Ρ	in nu	umbe	er						Pin fur	nctions
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
58	D3	42	C4	29	29	PB6	I/O	FTf	-	I2C1_SCL, USART1_TX, TIM16_CH1N, TSC_G5_IO3	-
59	C3	43	A4	30	30	PB7	I/O	FTf	-	I2C1_SDA, USART1_RX, TIM17_CH1N, TSC_G5_IO4	-
60	B4	44	B4	31	31	BOOT0	Ι	В	-	Boot memo	ry selection
61	B3	45	-	-	32	PB8	I/O	FTf	(4)(5)	I2C1_SCL, CEC, TIM16_CH1, TSC_SYNC	-
62	A3	46	-	-	-	PB9	I/O	FTf	(5)	I2C1_SDA, IR_OUT, TIM17_CH1, EVENTOUT	-
63	D5	47	D6	32	0	VSS	S	-	-	Gro	und
64	E5	48	A5	1	1	VDD	S	-	-	Digital pov	ver supply

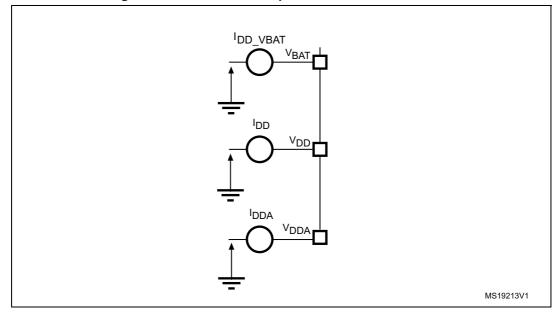
Table 13. Pin definitions (continued)

 PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited:
 The speed should not exceed 2 MHz with a maximum load of 30 pF.

The speed should not exceed 2 MHZ with a maximum load of 30 pF.
 These GPIOs must not be used as current sources (e.g. to drive an LED).

After the first RTC domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content
of the RTC registers which are not reset by the main reset. For details on how to manage these GPIOs, refer to the RTC
domain and RTC register descriptions in the reference manual.

3. Distinct VSSA pin is only available on packages with 48 and more pins. For all other packages, the pin number corresponds to the VSS pin to which VSSA pad of the silicon die is connected.


4. On the LQFP32 package, PB2 and PB8 must be set to defined levels by software, as their corresponding pads on the silicon die are left unconnected. Apply the same recommendations as for unconnected pins.

5. On the WLCSP36 package, PB8, PB9, PB10, PB11, PB12, PB13, PB14 and PB15 must be set to defined levels by software, as their corresponding pads on the silicon die are left unconnected. Apply the same recommendations as for unconnected pins.

6. After reset, these pins are configured as SWDIO and SWCLK alternate functions, and the internal pull-up on the SWDIO pin and the internal pull-down on the SWCLK pin are activated.

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.3 Operating conditions

6.3.1 General operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
f _{HCLK}	Internal AHB clock frequency	-	0	48	MHz
f _{PCLK}	Internal APB clock frequency	-	0	48	INILITZ
V _{DD}	Standard operating voltage	-	2.0	3.6	V
M	Analog operating voltage (ADC and DAC not used)	Must have a potential equal	V_{DD}	3.6	V
V _{DDA}	Analog operating voltage (ADC and DAC used)	to or higher than V _{DD}	2.4	3.6	V
V _{BAT}	Backup operating voltage	-	1.65	3.6	V
		TC and RST I/O	-0.3	V _{DDIOx} +0.3	
		TTa I/O	-0.3	V _{DDA} +0.3 ⁽¹⁾	
V _{IN}	I/O input voltage	FT and FTf I/O	-0.3	5.5 ⁽¹⁾	V
		BOOT0	0	5.5	
		LQFP64	-	444	
		LQFP48	-	364	
	Power dissipation at $T_A = 85 \degree C$	LQFP32	-	357	
P_{D}	for suffix 6 or T_{Δ} = 105 °C for	UFQFPN32	-	526	mW
	suffix $7^{(2)}$	UFQFPN48	-	625	
		UFBGA64	-	308	
		WLCSP36	-	333	
	Ambient temperature for the	Maximum power dissipation	-40	85	°C
TA	suffix 6 version	Low power dissipation ⁽³⁾	-40	105	U
IA	Ambient temperature for the	Maximum power dissipation	-40	105	°C
	suffix 7 version	Low power dissipation ⁽³⁾	-40	125	C
TJ	lunction tomperature range	Suffix 6 version	-40	105	°C
IJ	Junction temperature range	Suffix 7 version	-40	125	U

Table 20. General operating conditions

1. For operation with a voltage higher than V_{DDIOx} + 0.3 V, the internal pull-up resistor must be disabled.

2. If T_A is lower, higher P_D values are allowed as long as T_J does not exceed T_{Jmax} . See Section 7.8: Thermal characteristics.

3. In low power dissipation state, T_A can be extended to this range as long as T_J does not exceed T_{Jmax} (see Section 7.8: *Thermal characteristics*).

6.3.2 Operating conditions at power-up / power-down

The parameters given in *Table 21* are derived from tests performed under the ambient temperature condition summarized in *Table 20*.

DocID022265 Rev 7

	e 23. Programmable voltage de			3 (0011	macaj	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 6	Rising edge	2.66	2.78	2.9	V
V _{PVD6}		Falling edge	2.56	2.68	2.8	V
V	PVD threshold 7	Rising edge	2.76	2.88	3	V
V _{PVD7}		Falling edge	2.66	2.78	2.9	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
I _{DD(PVD)}	PVD current consumption	-	-	0.15	0.26 ⁽¹⁾	μA

 Table 23. Programmable voltage detector characteristics (continued)

1. Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 24* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

				-		
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V
t _{start}	ADC_IN17 buffer startup time	-	-	-	10 ⁽¹⁾	μs
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	4 ⁽¹⁾	-	-	μs
ΔV _{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽¹⁾	mV
T _{Coeff}	Temperature coefficient	-	- 100 ⁽¹⁾	-	100 ⁽¹⁾	ppm/°C

Table 24. Embedded internal reference voltage

1. Guaranteed by design, not tested in production.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

				AI	periph	erals en	abled	All	periphe	erals dis	abled	
Symbol	Parameter	Conditions	f _{HCLK}	Tun	Μ	lax @ T,	A ⁽¹⁾	Tun	N	lax @ T,	A ⁽¹⁾	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	14.0	15.3 ⁽²⁾	15.3	16.0 ⁽²⁾	2.8	3.0 ⁽²⁾	3.0	3.2 ⁽²⁾	
		bypass,	32 MHz	9.5	10.2	10.2	10.7	2.0	2.1	2.1	2.3	
		PLL on	24 MHz	7.3	7.8	7.8	8.3	1.5	1.7	1.7	1.9	
	Supply	HSE	8 MHz	2.6	2.9	2.9	3.0	0.6	0.8	0.8	0.8	
I _{DD}	current in Sleep	bypass, PLL off	1 MHz	0.4	0.6	0.6	0.6	0.2	0.4	0.4	0.4	mA
	mode		48 MHz	14.0	15.3	15.3	16.0	3.8	4.0	4.1	4.2	
		HSI clock, PLL on	32 MHz	9.5	10.2	10.2	10.7	2.6	2.7	2.8	2.8	
			24 MHz	7.3	7.8	7.8	8.3	2.0	2.1	2.1	2.1	
		HSI clock, PLL off	8 MHz	2.6	2.9	2.9	3.0	0.6	0.8	0.8	0.8	

Table 25. Typical and maximum current consumption from V_{DD} at 3.6 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

					V _{DDA}	= 2.4 V			V _{DDA}	= 3.6 V	,	
Symbol	Parameter	Conditions (1)	f _{HCLK}	Turn	М	ax @ T _A	(2)	Turn	М	ax @ T _A	(2)	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	150	170 ⁽³⁾	178	182 ⁽³⁾	164	183 ⁽³⁾	195	198 ⁽³⁾	
	Ourselu	bypass,	32 MHz	104	121	126	128	113	129	135	138	
	Supply current in	PLL on	24 MHz	82	96	100	103	88	102	106	108	
	Run or Sleep	HSE	8 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	
I _{DDA}	mode, code	bypass, PLL off	1 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	μA
	executing		48 MHz	220	240	248	252	244	263	275	278	
	from Flash memory or	HSI clock, PLL on	32 MHz	174	191	196	198	193	209	215	218	
	RAM		24 MHz	152	167	173	174	168	183	190	192	
		HSI clock, PLL off	8 MHz	72	79	82	83	83.5	91	94	95	

Table 26. Typical and maximum current consumption from the $\rm V_{DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent of clock frequencies.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 31*. The MCU is placed under the following conditions:

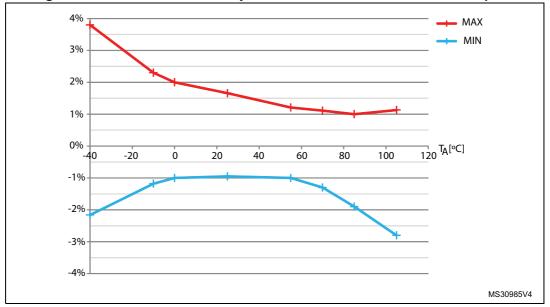
- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 17: Voltage characteristics*

	Peripheral	Typical consumption at 25 °C	Unit
	BusMatrix ⁽¹⁾	5	
	DMA1	7	
	SRAM	1	
	Flash memory interface	14	
	CRC	2	
АНВ	GPIOA	9	
АПЬ	GPIOB	12	µA/MHz
	GPIOC	2	
	GPIOD	1	
	GPIOF	1	
	TSC	6	
	All AHB peripherals	55	

Table 31. Peripheral current consumption

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
f _{HSI}	Frequency	-	-	8	-	MHz
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾	
		T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	
100	Accuracy of the HSI	T _A = 0 to 85°C	-1.9 ⁽³⁾	-	2 ⁽³⁾	%
ACC _{HSI}	oscillator	$T_A = 0$ to 70°C	-1.3 ⁽³⁾	-	2 ⁽³⁾	70
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	2 ⁽³⁾	
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1	
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA


Table 37. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit			
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to JESD22-A114	All	2	2000	V			
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \degree C$, conforming to ANSI/ESD STM5.3.1	All	C3	250	V			

 Table 45. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 46. Electrical sensitivities

Symbol	Parameter	Conditions	Class	
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A	

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 47.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 50*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Мах	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
x0	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25	20	
	t _{r(IO)out}	Output rise time		-	25	ns	
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	- 50		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30	MHz	
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	20		
		C _L = 30 pF, V _{DDIOx} ≥ 2		-	5		
11	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	= 50 pF, V _{DDIOx} ≥ 2.7 V -			
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12	n 0	
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	ns	
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12	-	
(4)	t _{r(IO)out}	Output rise time		-	34	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 50	. I/O	AC	characteristics ⁽¹⁾⁽²⁾
----------	-------	----	-----------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 23*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

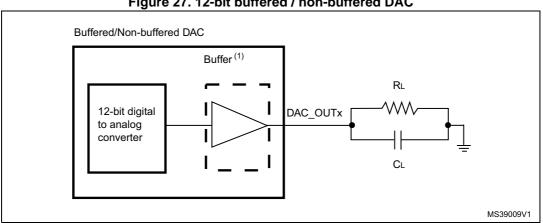

Symbol	Parameter	Min	Тур	Max	Unit	Comments	
Gain error ⁽³⁾	Gain error	-	-	±0.5	%	Given for the DAC in 12-bit configuration	
t _{SETTLING} ⁽³⁾	Settling time (full scale: for a 10-bit input code transition between the lowest and the highest input codes when DAC_OUT reaches final value ±1LSB	-	3	4	μs	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ	
Update rate ⁽³⁾	Max frequency for a correct DAC_OUT change when small variation in the input code (from code i to i+1LSB)	-	-	1	MS/s	C _{LOAD} ≤ 50 pF, R _{LOAD} ≥ 5 kΩ	
t _{WAKEUP} ⁽³⁾	Wakeup time from off state (Setting the ENx bit in the DAC Control register)	-	6.5	10	μs	$C_{LOAD} \le 50 \text{ pF}, R_{LOAD} \ge 5 \text{ k}\Omega$ input code between lowest and highest possible ones.	
PSRR+ ⁽¹⁾	Power supply rejection ratio (to V _{DDA}) (static DC measurement	-	-67	-40	dB	No R _{LOAD} , C _{LOAD} = 50 pF	

Table 55. DAC characteristics (continued)

1. Guaranteed by design, not tested in production.

2. The DAC is in "quiescent mode" when it keeps the value steady on the output so no dynamic consumption is involved.

3. Data based on characterization results, not tested in production.

Figure 27. 12-bit buffered / non-buffered DAC

The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external loads directly without the use of an external operational amplifier. The buffer can be bypassed by configuring the BOFFx bit in the DAC_CR register. 1.

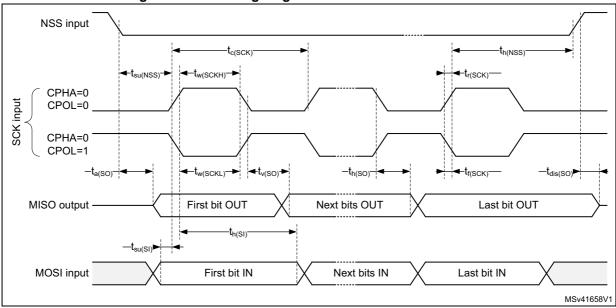
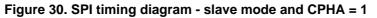
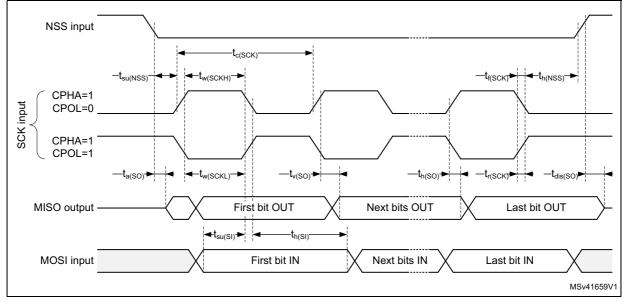




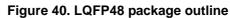
Figure 29. SPI timing diagram - slave mode and CPHA = 0

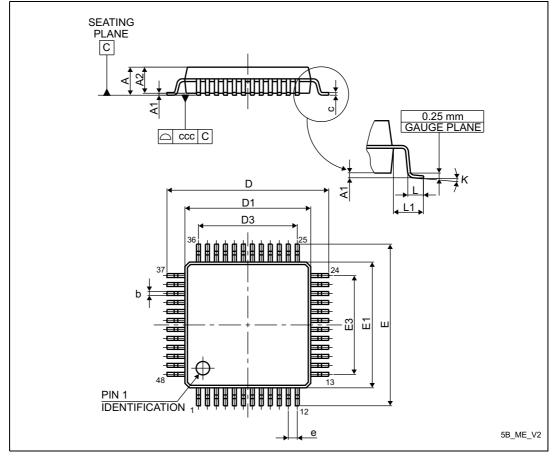
1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

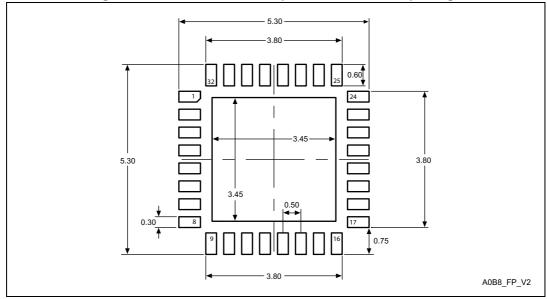
Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.


Figure 36. UFBGA64 package marking example


 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.3 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.


1. Drawing is not to scale.

Symbol		millimeters		inches ⁽¹⁾			
	Min	Тур	Max	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 73. UFQFPN32 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 53. Recommended footprint for UFQFPN32 package

1. Dimensions are expressed in millimeters.

