

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	39
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-UFQFN Exposed Pad
Supplier Device Package	48-UFQFPN (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051c8u7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP32 package outline	106
Figure 50.	Recommended footprint for LQFP32 package	107
Figure 51.	LQFP32 package marking example	108
Figure 52.	UFQFPN32 package outline	109
Figure 53.	Recommended footprint for UFQFPN32 package	110
Figure 54.	UFQFPN32 package marking example	111
Figure 55.	LQFP64 P _D max versus T _A	114

8/122

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F051xx microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

2 Description

The STM32F051xx microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 64 Kbytes of Flash memory and 8 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I²Cs, up to two SPIs, one I²S, one HDMI CEC and up to two USARTs), one 12-bit ADC, one 12-bit DAC, six 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F051xx microcontrollers operate in the -40 to +85 $^{\circ}$ C and -40 to +105 $^{\circ}$ C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F051xx microcontrollers include devices in seven different packages ranging from 32 pins to 64 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F051xx microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

3 Functional overview

Figure 1 shows the general block diagram of the STM32F051xx devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F051xx devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

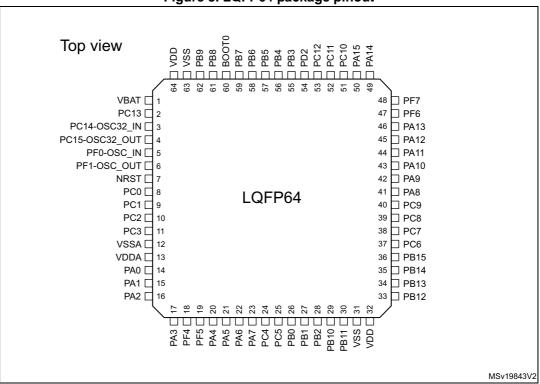
- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 16 to 64 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

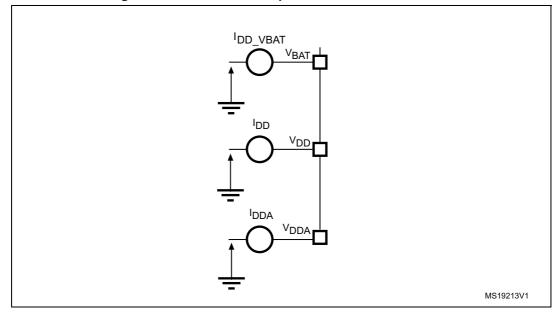
3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:


- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

DocID022265 Rev 7


4 Pinouts and pin descriptions

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

				All peripherals enabled					All peripherals disabled			
Symbol	Parameter	Conditions	f _{HCLK}	Tun	Μ	lax @ T,	A ⁽¹⁾	Tun	N	lax @ T,	A ⁽¹⁾	Unit
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C	
		HSE	48 MHz	14.0	15.3 ⁽²⁾	15.3	16.0 ⁽²⁾	2.8	3.0 ⁽²⁾	3.0	3.2 ⁽²⁾	
		bypass, PLL on	32 MHz	9.5	10.2	10.2	10.7	2.0	2.1	2.1	2.3	-
	Supply		24 MHz	7.3	7.8	7.8	8.3	1.5	1.7	1.7	1.9	
		HSE	8 MHz	2.6	2.9	2.9	3.0	0.6	0.8	0.8	0.8	
I _{DD}	current in Sleep	bypass, PLL off	1 MHz	0.4	0.6	0.6	0.6	0.2	0.4	0.4	0.4	mA
	mode		48 MHz	14.0	15.3	15.3	16.0	3.8	4.0	4.1	4.2	
		HSI clock, PLL on	32 MHz	9.5	10.2	10.2	10.7	2.6	2.7	2.8	2.8	
			24 MHz	7.3	7.8	7.8	8.3	2.0	2.1	2.1	2.1	
			HSI clock, PLL off	8 MHz	2.6	2.9	2.9	3.0	0.6	0.8	0.8	0.8

Table 25. Typical and maximum current consumption from V_{DD} at 3.6 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

				V _{DDA} = 2.4 V				V _{DDA} = 3.6 V					
Symbol	Parameter	Conditions (1)	f _{HCLK}	Turn	М	ax @ T _A	(2)	Turn	М	(2)	Unit		
				Тур	25 °C	85 °C	105 °C	Тур	25 °C	85 °C	105 °C		
		HSE	48 MHz	150	170 ⁽³⁾	178	182 ⁽³⁾	164	183 ⁽³⁾	195	198 ⁽³⁾		
	Ourselu	bypass, PLL on	32 MHz	104	121	126	128	113	129	135	138		
Supply current ir	current in		24 MHz	82	96	100	103	88	102	106	108		
	Run or	Clean	_	8 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	
I _{DDA}	mode, code	bypass, PLL off	1 MHz	2.0	2.7	3.1	3.3	3.5	3.8	4.1	4.4	μA	
	executing		48 MHz	220	240	248	252	244	263	275	278		
from Flash memory or RAM	from Flash	HSI clock, PLL on	32 MHz	174	191	196	198	193	209	215	218		
	,		24 MHz	152	167	173	174	168	183	190	192		
		HSI clock, PLL off	8 MHz	72	79	82	83	83.5	91	94	95		

Table 26. Typical and maximum current consumption from the $\rm V_{DDA}$ supply

 Current consumption from the V_{DDA} supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I_{DDA} is independent of clock frequencies.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Symbol	Parameter	6	Typical con Run i	sumption in node		sumption in mode	Unit			
Symbol		i diameter	raiametei	i uluncici	f _{HCLK}	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	23.2	13.3	13.2	3.1				
		36 MHz	17.6	10.3	10.1	2.6				
		32 MHz	15.6	9.3	9.0	2.4				
	Current	24 MHz	12.1	7.4	7.0	2.0				
	consumption	16 MHz	8.4	5.1	5.0	1.6	m۸			
I _{DD}	from V _{DD}	8 MHz	4.5	3.0	2.8	1.1	mA			
	supply	4 MHz	2.8	2.0	2.0	1.1				
		2 MHz	1.9	1.5	1.5	1.0				
		1 MHz	1.5	1.3	1.3	1.0				
		500 kHz	1.2	1.2	1.1	1.0				
		48 MHz		1	51					
		36 MHz		11	13					
		32 MHz		1(01					
	Current	24 MHz		7	9					
I _{DDA}	consumption	16 MHz		5	7		μA			
'DDA	from V _{DDA} supply	8 MHz		2	.2		μΛ			
	Suppry	4 MHz		2	.2		_			
		2 MHz		2	.2					
		1 MHz		2	.2					
		500 kHz		2	.2					

Table 29. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 48: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

		T is is a second s	-
	Peripheral	Typical consumption at 25 °C	Unit
	APB-Bridge ⁽²⁾	3	
	SYSCFG	3	
	ADC ⁽³⁾	5	
	TIM1	17	
	SPI1	10	
	USART1	19	
	TIM15	11	
	TIM16	8	
	TIM17	8	
	DBG (MCU Debug Support)	0.5	
	TIM2	17	
APB	TIM3	3 13	
	TIM6	3	
	TIM14	6	
	WWDG	1	
	SPI2	7	
	USART2	7	
	I2C1	4	
	I2C2	5	
	DAC	2	
	PWR	1	
	CEC	2	
	All APB peripherals	149	

 Table 31. Peripheral current consumption (continued)

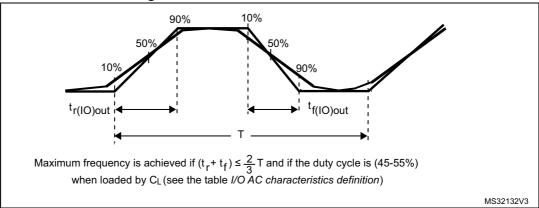
1. The BusMatrix automatically is active when at least one master is ON (CPU or DMA1)

2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.

3. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC is not included. Refer to the tables of characteristics in the subsequent sections.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
		TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DDIOx}	-	-	± 0.1	
Input leakage current ⁽²⁾	Input leakage	TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA
	current	TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2	
		FT and FTf I/O V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 48. I/O static characteristics (continued)


1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 47: I/O current injection susceptibility.*

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 21* for standard I/Os, and in *Figure 22* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	v
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V	NRST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ns
V _{NF(NRST)}		$2.0 < V_{DD} < 3.6$	500 ⁽³⁾	-	_	115

Table 51. NRST pin characteristics

1. Data based on design simulation only. Not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

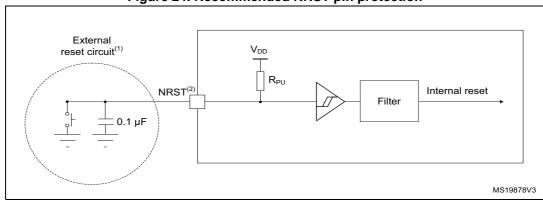


Figure 24. Recommended NRST pin protection

1. The external capacitor protects the device against parasitic resets.

 The user must ensure that the level on the NRST pin can go below the V_{IL(NRST)} max level specified in Table 51: NRST pin characteristics. Otherwise the reset will not be taken into account by the device.

6.3.16 12-bit ADC characteristics

Unless otherwise specified, the parameters given in *Table 52* are derived from tests performed under the conditions summarized in *Table 20: General operating conditions*.

Note: It is recommended to perform a calibration after each power-up.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{DDA}	Analog supply voltage for ADC ON	-	2.4	-	3.6	V
I _{DDA (ADC)}	Current consumption of the ADC ⁽¹⁾	V _{DDA} = 3.3 V	-	0.9	-	mA
f _{ADC}	ADC clock frequency	-	0.6	-	14	MHz
f _S ⁽²⁾	Sampling rate	12-bit resolution	0.043	-	1	MHz
f _{TRIG} ⁽²⁾	f _{TRIG} ⁽²⁾ External trigger frequency	f _{ADC} = 14 MHz, 12-bit resolution	-	-	823	kHz
		12-bit resolution	-	-	17	1/f _{ADC}
V _{AIN}	Conversion voltage range	-	0	-	V _{DDA}	V
R _{AIN} ⁽²⁾	External input impedance	See <i>Equation 1</i> and <i>Table 53</i> for details	-	-	50	kΩ
R _{ADC} ⁽²⁾	Sampling switch resistance	-	-	-	1	kΩ
C _{ADC} ⁽²⁾	Internal sample and hold capacitor	-	-	-	8	pF
↓ (2)(3)	Calibration time	f _{ADC} = 14 MHz		5.9		μs
t _{CAL} ⁽²⁾⁽³⁾	Calibration time	-		1/f _{ADC}		

Table 52. ADC characteristics

6.3.19 Temperature sensor characteristics

Table	57.	TS	characteristics
	• • •		

Symbol	Parameter	Min	Тур	Max	Unit
T _L ⁽¹⁾	V _{SENSE} linearity with temperature	-	± 1	± 2	°C
Avg_Slope ⁽¹⁾	Average slope	4.0	4.3	4.6	mV/°C
V ₃₀	Voltage at 30 °C (± 5 °C) ⁽²⁾	1.34	1.43	1.52	V
t _{START} ⁽¹⁾	ADC_IN16 buffer startup time	-	-	10	μs
t _{S_temp} ⁽¹⁾	ADC sampling time when reading the temperature	4	-	-	μs

1. Guaranteed by design, not tested in production.

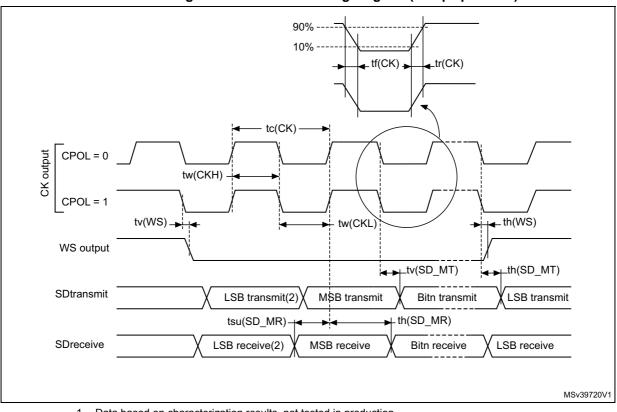
2. Measured at V_{DDA} = 3.3 V ± 10 mV. The V_{30} ADC conversion result is stored in the TS_CAL1 byte. Refer to Table 3: Temperature sensor calibration values.

6.3.20 V_{BAT} monitoring characteristics

Symbol	Parameter	Min	Тур	Мах	Unit
R	Resistor bridge for V _{BAT}	-	2 x 50	-	kΩ
Q	Ratio on V _{BAT} measurement	-	2	-	-
Er ⁽¹⁾	Error on Q	-1	-	+1	%
t _{S_vbat} ⁽¹⁾	ADC sampling time when reading the V_{BAT}	4	-	-	μs

Table 58. V_{BAT} monitoring characteristics

1. Guaranteed by design, not tested in production.


6.3.21 Timer characteristics

The parameters given in the following tables are guaranteed by design.

Refer to Section 6.3.14: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
t _{res(TIM)}	Timer resolution time	-	-	1	-	t _{TIMxCLK}
		f _{TIMxCLK} = 48 MHz	-	20.8	-	ns
f _{EXT}	Timer external clock	-	-	f _{TIMxCLK} /2	-	MHz
	frequency on CH1 to CH4	f _{TIMxCLK} = 48 MHz	-	24	-	MHz
t _{MAX_COUNT}	16-bit timer maximum	-	-	2 ¹⁶	-	t _{TIMxCLK}
	period	f _{TIMxCLK} = 48 MHz	-	1365	-	μs
	32-bit counter	-	-	2 ³²	-	t _{TIMxCLK}
	maximum period	f _{TIMxCLK} = 48 MHz	-	89.48	-	S

Figure 33. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Device marking

The following figure gives an example of topside marking orientation versus ball A1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 36. UFBGA64 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.2 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

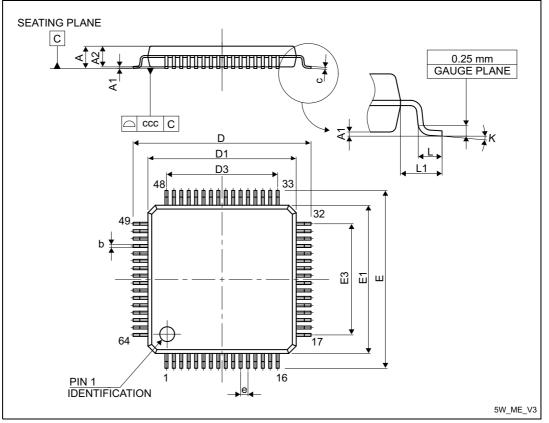


Figure 37. LQFP64 package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	-	12.000	-	-	0.4724	-
D1	-	10.000	-	-	0.3937	-
D3	-	7.500	-	-	0.2953	-
E	-	12.000	-	-	0.4724	-
E1	-	10.000	-	-	0.3937	-

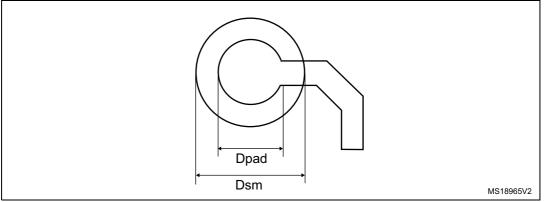

Table for the bell and bell and a data (bell in the bell and bell and bell and bell and bell and bell and bell						
Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
F	-	0.3025	-	-	0.0119	-
G	-	0.3515	-	-	0.0138	-
aaa	-	-	0.100	-	-	0.0039
bbb	-	-	0.100	-	-	0.0039
CCC	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee	-	-	0.050	-	-	0.0020

Table 70. WLCSP36 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.

Figure 47. Recommended pad footprint for WLCSP36 package

Table 71. WLCSP36 recommended PCB design rules

Dimension	Recommended values		
Pitch	0.4 mm		
Dpad	260 μm max. (circular) 220 μm recommended		
Dsm	300 μm min. (for 260 μm diameter pad)		
PCB pad design	Non-solder mask defined via underbump allowed		

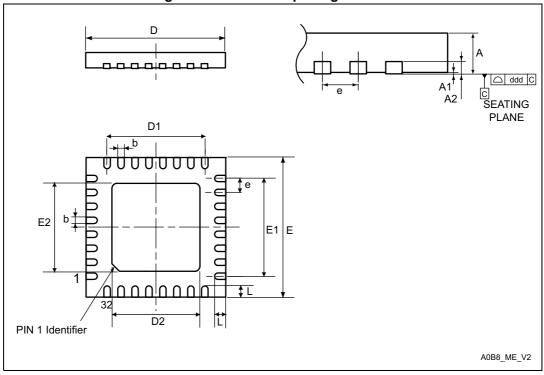


Figure 52. UFQFPN32 package outline

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table: Pin definitions*.

7.8 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 20: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
ΘJA	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP32 - 7 × 7 mm	56	
	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm	65	°C/W
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm	38	
	Thermal resistance junction-ambient WLCSP36 - 2.6 × 2.7 mm	60	

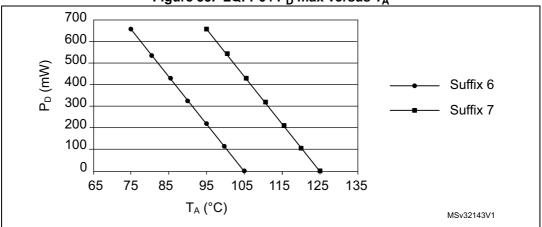
Table 74. Package thermal characteristics

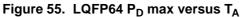
7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.8.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.


Using the values obtained in *Table* 74 T_{Jmax} is calculated as follows:


- For LQFP64, 45 °C/W
- $T_{Jmax} = 100 \text{ °C} + (45 \text{ °C/W} \times 134 \text{ mW}) = 100 \text{ °C} + 6.03 \text{ °C} = 106.03 \text{ °C}$

This is above the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$).

In this case, parts must be ordered at least with the temperature range suffix 7 (see *Section 8: Ordering information*) unless we reduce the power dissipation in order to be able to use suffix 6 parts.

Refer to *Figure 55* to select the required temperature range (suffix 6 or 7) according to your ambient temperature or power requirements.

