

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051k4u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Digital-to-analog converter (DAC)

The 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- Left or right data alignment in 12-bit mode
- Synchronized update capability
- DMA capability
- External triggers for conversion

Five DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pins
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to *Table 24: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F051xx devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 18 capacitive sensing channels distributed over 6 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the

4 Pinouts and pin descriptions

Pinouts and pin descriptions

Figure 4. UFBGA64 package pinout

Na	me	Abbreviation	Definition						
Pin r	name	Unless otherwise safter reset is the safter set	specified in brackets below the pin name, the pin function during and ame as the actual pin name						
		S	Supply pin						
Pin	type	I	Input-only pin						
		I/O	Input / output pin						
		FT	5 V-tolerant I/O						
		FTf	5 V-tolerant I/O, FM+ capable						
I/O etr	ucturo	ТТа	3.3 V-tolerant I/O directly connected to ADC						
1/O Sti	ucture	TC	Standard 3.3 V I/O						
		В	Dedicated BOOT0 pin						
		RST	Bidirectional reset pin with embedded weak pull-up resistor						
No	tes	Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.							
Pin	Alternate functions	Functions selected	Functions selected through GPIOx_AFR registers						
functions	Additional functions	Functions directly	selected/enabled through peripheral registers						

|--|

Table 13. Pin definitions

	Ρ	in nu	umbe	er						Pin fur	nctions
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	Pin type I/O structure Notes		Alternate functions	Additional functions
1	B2	1	-	-	-	VBAT	S	-	-	Backup po	wer supply
2	A2	2	A6	-	-	PC13	I/O	TC	(1)(2)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2
3	A1	3	B6	-	-	PC14-OSC32_IN (PC14)	I/O	тс	(1)(2)	-	OSC32_IN
4	B1	4	C6	-	-	PC15-OSC32_OUT (PC15)	I/O	тс	(1)(2)	-	OSC32_OUT
5	C1	5	B5	2	2	PF0-OSC_IN (PF0)	I/O	FT	-	-	OSC_IN
6	D1	6	C5	3	3	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT

	Ρ	'in ni	umbe	er						Pin fur	nctions
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
22	G4	16	E3	12	12	PA6	I/O	ТТа	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT	ADC_IN6
23	H4	17	F4	13	13	PA7	I/O	ТТа	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7
24	H5	-	-	-	-	PC4	I/O	TTa	-	EVENTOUT	ADC_IN14
25	H6	-	-	-	-	PC5	I/O	TTa	-	TSC_G3_IO1	ADC_IN15
26	F5	18	F3	14	14	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT	ADC_IN8
27	G5	19	F2	15	15	PB1	I/O	ТТа	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9
28	G6	20	D2	-	16	PB2	I/O	FT	(4)	TSC_G3_IO4	-
29	G7	21	-	-	-	PB10	I/O	FT	(5)	I2C2_SCL, CEC, TIM2_CH3, TSC_SYNC	-
30	H7	22	-	-	-	PB11	I/O	FT	(5)	I2C2_SDA, TIM2_CH4, TSC_G6_IO1, EVENTOUT	-
31	D4	23	F1	16	0	VSS	S	-	-	Gro	und
32	E4	24	E1	17	17	VDD	S	-	-	Digital pov	ver supply

Table 13. Pin definitions (continued)

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 5C00 - 0x4000 6FFF	5 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 4800 - 0x4000 53FF	3 KB	Reserved
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
ADR	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1400 - 0x4000 1FFF	3 KB	Reserved
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 16. STM32F051xx peripheral register boundary addresses (continued)

6 Electrical characteristics

6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V_{SS}.

6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at $T_A = 25$ °C and $T_A = T_A max$ (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean $\pm 3\sigma$).

6.1.2 Typical values

Unless otherwise specified, typical data are based on $T_A = 25$ °C, $V_{DD} = V_{DDA} = 3.3$ V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean $\pm 2\sigma$).

6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.

Typical and maximum current consumption

The MCU is placed under the following conditions:

- All I/O pins are in analog input mode •
- All peripherals are disabled except when explicitly mentioned
- The Flash memory access time is adjusted to the f_{HCLK} frequency:
 - 0 wait state and Prefetch OFF from 0 to 24 MHz _
 - 1 wait state and Prefetch ON above 24 MHz
- When the peripherals are enabled $f_{PCLK} = f_{HCLK}$

The parameters given in Table 25 to Table 31 are derived from tests performed under ambient temperature and supply voltage conditions summarized in Table 20: General operating conditions.

				All peripherals enabled					All peripherals disabled			
Symbol	Parameter	Conditions	f _{HCLK}	Turn	Max @ T _A ⁽¹⁾			Tun	Μ	Unit		
				тур	25 °C	85 °C	105 °C	тур	25 °C	85 °C	105 °C	
		HSF	48 MHz	22.0	22.8	22.8	23.8	11.8	12.7	12.7	13.3	
	bypass,	32 MHz	15.0	15.5	15.5	16.0	7.6	8.7	8.7	9.0		
	Supply	PLL on	24 MHz	12.2	13.2	13.2	13.6	7.2	7.9	7.9	8.1	
	current in	HSE	8 MHz	4.4	5.2	5.2	5.4	2.7	2.9	2.9	3.0	
	Run mode, code	bypass, PLL off	1 MHz	1.0	1.3	1.3	1.4	0.7	0.9	0.9	0.9	
	executing from Elash		48 MHz	22.0	22.8	22.8	23.8	11.8	12.7	12.7	13.3	
	memory	HSI clock, PLL on	32 MHz	15.0	15.5	15.5	16.0	7.6	8.7	8.7	9.0	
			24 MHz	12.2	13.2	13.2	13.6	7.2	7.9	7.9	8.1	
		HSI clock, PLL off	8 MHz	4.4	5.2	5.2	5.4	2.7	2.9	2.9	3.0	
DD		HSE bypass,	48 MHz	22.2	23.2 ⁽²⁾	23.2	24.4 ⁽²⁾	12.0	12.7 ⁽²⁾	12.7	13.3 ⁽²⁾	MA
			32 MHz	15.4	16.3	16.3	16.8	7.8	8.7	8.7	9.0	
Supply current in Run mode, code executing from RAM	PLL on	24 MHz	11.2	12.2	12.2	12.8	6.2	7.9	7.9	8.1	1	
	HSE	8 MHz	4.0	4.5	4.5	4.7	1.9	2.9	2.9	3.0		
	bypass, PLL off	1 MHz	0.6	0.8	0.8	0.9	0.3	0.6	0.6	0.7		
		48 MHz	22.2	23.2	23.2	24.4	12.0	12.7	12.7	13.3		
	from RAM	HSI clock, PLL on	32 MHz	15.4	16.3	16.3	16.8	7.8	8.7	8.7	9.0	-
			24 MHz	11.2	12.2	12.2	12.8	6.2	7.9	7.9	8.1	
		HSI clock, PLL off	8 MHz	4.0	4.5	4.5	4.7	1.9	2.9	2.9	3.0	

Table 2	25. Typical a	and max	imum curren	t consumptio	n from V _D	_D at 3.6 V

Sym- Para-					Typ @V _{DD} (V _{DD} = V _{DDA})						Max ⁽¹⁾													
Sym- bol	meter		Conditions	2.0 V	2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 ℃	T _A = 105 °C	Unit											
	Supply current		gulator in run de, all oscillators F	15	15.1	15.3	15.5	15.7	16	(2)		(2)												
I _{DD} I _{DD} I _{DD} I _{DD} Supply current Standby mode	Reg pov osc	gulator in low- ver mode, all sillators OFF	3.2	3.3	3.4	3.5	3.7	4	(2)		(2)													
	LSI ON	ON and IWDG	0.8	1.0	1.1	1.2	1.4	1.5	-	-	-													
	LSI OFF and IWDG OFF		0.7	0.8	0.9	1.0	1.1	1.3	2 ⁽²⁾	2.5	3 ⁽²⁾													
	Supply current	N	Regulator in run mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾												
in Stop mode Supply current	de de ouitorino	Regulator in low- power mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	μA												
	ipply E	LSI ON and IWDG ON	2.3	2.5	2.7	2.9	3.1	3.3	-	-	-													
	in Standby mode	in Standby mode	in Standby mode	in Standby mode	in Standby mode	in Standby mode	in Standby mode	n Standby mode	Standby mode	Standby mode	n Standby mode	in Standby mode	-	LSI OFF and IWDG OFF	1.8	1.9	2	2.2	2.3	2.5	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	
I _{DDA} Supply current in Stop mode	ΕF	Regulator in run mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-													
	in Stop mode	onitoring C	Regulator in low- power mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-												
	Supply current	DDA MC	LSI ON and IWDG ON	1.5	1.6	1.7	1.8	1.9	2.0	-	-	-												
	Standby mode	>	LSI OFF and IWDG OFF	1	1.0	1.1	1.1	1.2	1.2	-	-	-												

Table 27.	Typical and	maximum	current	consum	otion in	Stop	and	Standb	/ modes
			••••••						,

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 50*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Max	Unit		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz		
x0	t _{f(IO)out}	Parameter Maximum frequency ⁽³⁾ Output fall time Output rise time Maximum frequency ⁽³⁾ Output fall time Output rise time Maximum frequency ⁽³⁾ Output fall time Output rise time Output rise time Output rise time Output fall time Output rise time Pulse width of external signals detected by the EXTI controller	C _L = 50 pF	-	125	ne		
	t _{r(IO)out}	Output rise time		-	125	115		
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz		
01	01 $t_{f(IO)out}$ Output fall time $C_L = 50 \text{ pF}$		C _L = 50 pF	-	25	20		
	t _{r(IO)out}	Output rise time		-	25	ns		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50			
	f _{max(IO)out} Maximum frequency ⁽³⁾		$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30	MHz		
			C_L = 50 pF, V_{DDIOX} < 2.7 V	-	20			
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	V _{DDIOx} ≥2.7 V - 5				
11	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	ns		
			C_L = 50 pF, V_{DDIOX} < 2.7 V	-	12			
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	115		
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	-		
			C_L = 50 pF, V_{DDIOX} < 2.7 V	-	12			
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz		
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12	20		
(4)	t _{r(IO)out}	Output rise time		-	34	115		
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns		

Table 5	0. I/O	AC	characteristics ⁽	(1)	(2))
---------	--------	----	------------------------------	-----	-----	---

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 23*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

6.3.15 NRST pin characteristics

The NRST pin input driver uses the CMOS technology. It is connected to a permanent pull-up resistor, $\mathsf{R}_{\mathsf{PU}}.$

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
V _{IL(NRST)}	NRST input low level voltage	-	-	-	0.3 V _{DD} +0.07 ⁽¹⁾	V
V _{IH(NRST)}	NRST input high level voltage	-	0.445 V _{DD} +0.398 ⁽¹⁾	-	-	v
V _{hys(NRST)}	NRST Schmitt trigger voltage hysteresis	-	-	200	-	mV
R _{PU}	Weak pull-up equivalent resistor ⁽²⁾	V _{IN} = V _{SS}	25	40	55	kΩ
V _{F(NRST)}	NRST input filtered pulse	-	-	-	100 ⁽¹⁾	ns
V _{NF(NRST)}	NPST input not filtered pulse	$2.7 < V_{DD} < 3.6$	300 ⁽³⁾	-	-	ne
		2.0 < V _{DD} < 3.6	500 ⁽³⁾	-	-	113

Table 51. NRST pin characteristics

1. Data based on design simulation only. Not tested in production.

2. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimal (~10% order).

3. Data based on design simulation only. Not tested in production.

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit				
/4	0	0.1	409.6					
/8	1	0.2	819.2					
/16	2	0.4	1638.4					
/32	3	0.8	3276.8	ms				
/64	4	1.6	6553.6					
/128	5	3.2	13107.2					
/256	6 or 7	6.4	26214.4					

Table 60. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0 0.0853 5.4613		
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	1115
8	3	0.6826	43.6906	

Table 61. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Symbol	Parameter	Conditions	Min	Мах	Unit
t _{su(SD_MR)}	Data input actus timo	Master receiver	6	-	
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-	
t _{h(SD_SR)} ⁽²⁾		Slave receiver	0.5	-	
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4	115
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	20	
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-	
t _{h(SD_ST)}		Slave transmitter	13	-	

Table 64. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 32. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

7.1 UFBGA64 package information

UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.

Figure 34. UFBGA64 package outline

1. Drawing is not to scale.

Symbol	millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max
А	0.460	0.530	0.600	0.0181	0.0209	0.0236
A1	0.050	0.080	0.110	0.0020	0.0031	0.0043
A2	0.400	0.450	0.500	0.0157	0.0177	0.0197
A3	0.080	0.130	0.180	0.0031	0.0051	0.0071
A4	0.270	0.320	0.370	0.0106	0.0126	0.0146

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
А	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.170	0.220	0.270	0.0067	0.0087	0.0106
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.500	-	-	0.2165	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.500	-	-	0.2165	-
е	-	0.500	-	-	0.0197	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.080	-	-	0.0031

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Symbol	millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Мах	Min	Тур	Мах
A	-	-	1.600	-	-	0.0630
A1	0.050	-	0.150	0.0020	-	0.0059
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571
b	0.300	0.370	0.450	0.0118	0.0146	0.0177
с	0.090	-	0.200	0.0035	-	0.0079
D	8.800	9.000	9.200	0.3465	0.3543	0.3622
D1	6.800	7.000	7.200	0.2677	0.2756	0.2835
D3	-	5.600	-	-	0.2205	-
E	8.800	9.000	9.200	0.3465	0.3543	0.3622
E1	6.800	7.000	7.200	0.2677	0.2756	0.2835
E3	-	5.600	-	-	0.2205	-
е	-	0.800	-	-	0.0315	-
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	3.5°	7°	0°	3.5°	7°
CCC	-	-	0.100	-	-	0.0039

1. Values in inches are converted from mm and rounded to 4 decimal digits.

1. Dimensions are expressed in millimeters.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F051xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 74* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see *Table 20: General operating conditions*.

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Note:

Date	Revision	Changes
		Added "Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection" in <i>Section Functional susceptibility to I/O current injection.</i> Replaced reference "JESD22-C101" with "ANSI/ESD STM5.3.1" in <i>Table : ESD absolute maximum ratings.</i>
		and Standby modes and Table: Typical and maximum VDD consumption in Stop consumption in Stop and Standby modes into Table: Typical and maximum current consumption in Stop and Standby modes. Updated:
		- Table: Temperature sensor calibration values.
		 Table: Internal voltage reference calibration values.
		– Table: Current characteristics,
		– Table: General operating conditions,
	4 (continued)	 Table: Typical and maximum current consumption from the VDDA supply,
		 Table: Low-power mode wakeup timings,
		 Table: I/O current injection susceptibility,
		 Table: I/O static characteristics,
13-Jan-2014		 Table: Output voltage characteristics,
		– Table: NRST pin characteristics,
		 Table: I²C analog filter characteristics,
		 Figure: Power supply scheme,
		 Figure: TC and TTa I/O input characteristics,
		 Figure: Five volt tolerant (FT and FTf) I/O input characteristics,
		 Figure: I/O AC characteristics definition,
		 Figure: ADC accuracy characteristics,
		 Figure: Typical connection diagram using the ADC,
		 Figure: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat package outline,
		 Figure: LQFP64 recommended footprint,
		 Figure: LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat package outline,
		 Figure: LQFP48 recommended footprint,
		 Figure: LQFP32 – 7 x 7 mm 32-pin low-profile quad flat package outline,
		– Figure: LQFP32 recommended footprint,
		 Figure: UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline.

Table 76. Document revision history (continued)

Date	Revision	Changes
Date 06-Jan-2017	Revision 7	Changes Section 6: Electrical characteristics: - Table 36: LSE oscillator characteristics (f _{LSE} = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. - Table 24: Embedded internal reference voltage - V _{REFINT} values - Table 55: DAC characteristics - min. R _{LOAD} to V _{DDA} defined - Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information:
		 The name of the section changed from the previous "Part numbering"

Table 76. Document revision history (continued)

