



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                  |
|----------------------------|-------------------------------------------------------------------------|
| Core Processor             | ARM® Cortex®-M0                                                         |
| Core Size                  | 32-Bit Single-Core                                                      |
| Speed                      | 48MHz                                                                   |
| Connectivity               | HDMI-CEC, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART               |
| Peripherals                | DMA, I <sup>2</sup> S, POR, PWM, WDT                                    |
| Number of I/O              | 27                                                                      |
| Program Memory Size        | 16KB (16K × 8)                                                          |
| Program Memory Type        | FLASH                                                                   |
| EEPROM Size                | -                                                                       |
| RAM Size                   | 8K x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 2V ~ 3.6V                                                               |
| Data Converters            | A/D 13x12b; D/A 1x12b                                                   |
| Oscillator Type            | Internal                                                                |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                       |
| Mounting Type              | Surface Mount                                                           |
| Package / Case             | 32-UFQFN Exposed Pad                                                    |
| Supplier Device Package    | 32-UFQFPN (5x5)                                                         |
| Purchase URL               | https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051k4u6tr |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

# Contents

| 1 | Introd | duction             | uction                                            |  |  |  |  |  |  |
|---|--------|---------------------|---------------------------------------------------|--|--|--|--|--|--|
| 2 | Desci  | ription .           |                                                   |  |  |  |  |  |  |
| 3 | Funct  | tional ov           | verview                                           |  |  |  |  |  |  |
|   | 3.1    | ARM <sup>®</sup> -0 | Cortex <sup>®</sup> -M0 core                      |  |  |  |  |  |  |
|   | 3.2    | Memori              | es 13                                             |  |  |  |  |  |  |
|   | 3.3    | Boot mo             | odes                                              |  |  |  |  |  |  |
|   | 3.4    | Cyclic re           | edundancy check calculation unit (CRC)            |  |  |  |  |  |  |
|   | 3.5    | Power r             | nanagement                                        |  |  |  |  |  |  |
|   |        | 3.5.1               | Power supply schemes                              |  |  |  |  |  |  |
|   |        | 3.5.2               | Power supply supervisors                          |  |  |  |  |  |  |
|   |        | 3.5.3               | Voltage regulator                                 |  |  |  |  |  |  |
|   |        | 3.5.4               | Low-power modes                                   |  |  |  |  |  |  |
|   | 3.6    | Clocks a            | and startup                                       |  |  |  |  |  |  |
|   | 3.7    | General             | I-purpose inputs/outputs (GPIOs) 16               |  |  |  |  |  |  |
|   | 3.8    | Direct m            | nemory access controller (DMA) 17                 |  |  |  |  |  |  |
|   | 3.9    | Interrup            | ts and events                                     |  |  |  |  |  |  |
|   |        | 3.9.1               | Nested vectored interrupt controller (NVIC)       |  |  |  |  |  |  |
|   |        | 3.9.2               | Extended interrupt/event controller (EXTI)        |  |  |  |  |  |  |
|   | 3.10   | Analog-             | to-digital converter (ADC) 17                     |  |  |  |  |  |  |
|   |        | 3.10.1              | Temperature sensor                                |  |  |  |  |  |  |
|   |        | 3.10.2              | Internal voltage reference (V <sub>REFINT</sub> ) |  |  |  |  |  |  |
|   |        | 3.10.3              | V <sub>BAT</sub> battery voltage monitoring       |  |  |  |  |  |  |
|   | 3.11   | Digital-t           | o-analog converter (DAC) 19                       |  |  |  |  |  |  |
|   | 3.12   | Compar              | rators (COMP) 19                                  |  |  |  |  |  |  |
|   | 3.13   | Touch s             | ensing controller (TSC) 19                        |  |  |  |  |  |  |
|   | 3.14   | Timers a            | and watchdogs                                     |  |  |  |  |  |  |
|   |        | 3.14.1              | Advanced-control timer (TIM1)                     |  |  |  |  |  |  |
|   |        | 3.14.2              | General-purpose timers (TIM2, 3, 14, 15, 16, 17)  |  |  |  |  |  |  |
|   |        | 3.14.3              | Basic timer TIM6                                  |  |  |  |  |  |  |
|   |        | 3.14.4              | Independent watchdog (IWDG) 22                    |  |  |  |  |  |  |
|   |        | 3.14.5              | System window watchdog (WWDG)23                   |  |  |  |  |  |  |

DocID022265 Rev 7



|   |        | 3.14.6                | SysTick timer                                                                   | 23 |
|---|--------|-----------------------|---------------------------------------------------------------------------------|----|
|   | 3.15   | Real-tim              | e clock (RTC) and backup registers                                              | 23 |
|   | 3.16   | Inter-inte            | egrated circuit interface (I <sup>2</sup> C)                                    | 24 |
|   | 3.17   | Universa              | al synchronous/asynchronous receiver/transmitter (USART)                        | 25 |
|   | 3.18   | Serial pe             | eripheral interface (SPI) / Inter-integrated sound interface (I <sup>2</sup> S) | 26 |
|   | 3.19   | High-def<br>electroni | inition multimedia interface (HDMI) - consumer                                  | 26 |
|   | 3.20   | Serial wi             | re debug port (SW-DP)                                                           | 26 |
| 4 | Pinou  | its and p             | bin descriptions                                                                | 27 |
| 5 | went   | bry map               | ping                                                                            | 29 |
| 6 | Electr | rical cha             | racteristics                                                                    | 42 |
|   | 6.1    | Paramet               | er conditions                                                                   | 42 |
|   |        | 6.1.1                 | Minimum and maximum values                                                      | 42 |
|   |        | 6.1.2                 | Typical values                                                                  | 42 |
|   |        | 6.1.3                 | Typical curves                                                                  | 42 |
|   |        | 6.1.4                 | Loading capacitor                                                               | 42 |
|   |        | 6.1.5                 | Pin input voltage                                                               | 42 |
|   |        | 6.1.6                 | Power supply scheme                                                             | 43 |
|   |        | 6.1.7                 | Current consumption measurement                                                 | 44 |
|   | 6.2    | Absolute              | e maximum ratings                                                               | 45 |
|   | 6.3    | Operatin              | g conditions                                                                    | 47 |
|   |        | 6.3.1                 | General operating conditions                                                    | 47 |
|   |        | 6.3.2                 | Operating conditions at power-up / power-down                                   | 47 |
|   |        | 6.3.3                 | Embedded reset and power control block characteristics                          | 48 |
|   |        | 6.3.4                 | Embedded reference voltage                                                      | 49 |
|   |        | 6.3.5                 | Supply current characteristics                                                  | 49 |
|   |        | 6.3.6                 | Wakeup time from low-power mode                                                 | 59 |
|   |        | 6.3.7                 | External clock source characteristics                                           | 59 |
|   |        | 6.3.8                 | Internal clock source characteristics                                           | 63 |
|   |        | 6.3.9                 | PLL characteristics                                                             | 66 |
|   |        | 6.3.10                | Memory characteristics                                                          | 66 |
|   |        | 6.3.11                | EMC characteristics                                                             | 67 |
|   |        | 6.3.12                | Electrical sensitivity characteristics                                          | 68 |
|   |        | 6.3.13                | I/O current injection characteristics                                           | 69 |
|   |        |                       |                                                                                 |    |



In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

#### 3.5.4 Low-power modes

The STM32F051xx microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

#### Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

#### Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1,, COMPx or the CEC.

The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral.

#### • Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

### 3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.



### 3.10.3 V<sub>BAT</sub> battery voltage monitoring

This embedded hardware feature allows the application to measure the V<sub>BAT</sub> battery voltage using the internal ADC channel ADC\_IN18. As the V<sub>BAT</sub> voltage may be higher than V<sub>DDA</sub>, and thus outside the ADC input range, the V<sub>BAT</sub> pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V<sub>BAT</sub> voltage.

### 3.11 Digital-to-analog converter (DAC)

The 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- Left or right data alignment in 12-bit mode
- Synchronized update capability
- DMA capability
- External triggers for conversion

Five DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

### 3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pins
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to *Table 24: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

### **3.13** Touch sensing controller (TSC)

The STM32F051xx devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 18 capacitive sensing channels distributed over 6 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the



hardware touch sensing controller and only requires few external components to operate. For operation, one capacitive sensing GPIO in each group is connected to an external capacitor and cannot be used as effective touch sensing channel.

The touch sensing controller is fully supported by the STMTouch touch sensing firmware library, which is free to use and allows touch sensing functionality to be implemented reliably in the end application.

| Group | Capacitive sensing<br>signal name | Pin<br>name | Group | Capacitive sensing<br>signal name | Pin<br>name |
|-------|-----------------------------------|-------------|-------|-----------------------------------|-------------|
|       | TSC_G1_IO1                        | PA0         |       | TSC_G4_IO1                        | PA9         |
| 1     | TSC_G1_IO2                        | PA1         | 1     | TSC_G4_IO2                        | PA10        |
|       | TSC_G1_IO3                        | PA2         | 4     | TSC_G4_IO3                        | PA11        |
|       | TSC_G1_IO4                        | PA3         |       | TSC_G4_IO4                        | PA12        |
|       | TSC_G2_IO1                        | PA4         |       | TSC_G5_IO1                        | PB3         |
| 2     | TSC_G2_IO2                        | PA5         | 5     | TSC_G5_IO2                        | PB4         |
| 2     | TSC_G2_IO3                        | PA6         | 5     | TSC_G5_IO3                        | PB6         |
|       | TSC_G2_IO4                        | PA7         |       | TSC_G5_IO4                        | PB7         |
|       | TSC_G3_IO1                        | PC5         |       | TSC_G6_IO1                        | PB11        |
| 3     | TSC_G3_IO2                        | PB0         | 6     | TSC_G6_IO2                        | PB12        |
| 5     | TSC_G3_IO3                        | PB1         | 0     | TSC_G6_IO3                        | PB13        |
|       | TSC_G3_IO4                        | PB2         |       | TSC_G6_IO4                        | PB14        |

 Table 5. Capacitive sensing GPIOs available on STM32F051xx devices

| Table 6. | Effective number | of capacitive | sensing cl | hannels on S | FM32F051xx |
|----------|------------------|---------------|------------|--------------|------------|
|----------|------------------|---------------|------------|--------------|------------|

|                                       | Number of capacitive sensing channels |    |             |                            |                          |  |  |  |
|---------------------------------------|---------------------------------------|----|-------------|----------------------------|--------------------------|--|--|--|
| Analog I/O group                      | STM32F051Rx STM32F051Cx               |    | STM32F051Tx | STM32F051KxU<br>(UFQFPN32) | STM32F051KxT<br>(LQFP32) |  |  |  |
| G1                                    | 3                                     | 3  | 3           | 3                          | 3                        |  |  |  |
| G2                                    | 3                                     | 3  | 3           | 3                          | 3                        |  |  |  |
| G3                                    | 3                                     | 2  | 2           | 2                          | 1                        |  |  |  |
| G4                                    | 3                                     | 3  | 3           | 3                          | 3                        |  |  |  |
| G5                                    | 3                                     | 3  | 3           | 3                          | 3                        |  |  |  |
| G6                                    | 3                                     | 3  | 0           | 0                          | 0                        |  |  |  |
| Number of capacitive sensing channels | 18                                    | 17 | 14          | 14                         | 13                       |  |  |  |

### 3.14 Timers and watchdogs

The STM32F051xx devices include up to six general-purpose timers, one basic timer and an advanced control timer.

Table 7 compares the features of the different timers.

| Timer<br>type      | Timer                                                       | Counter resolution | Counter<br>type      | Prescaler<br>factor        | DMA<br>request<br>generation | Capture/compare<br>channels | Complementary<br>outputs |
|--------------------|-------------------------------------------------------------|--------------------|----------------------|----------------------------|------------------------------|-----------------------------|--------------------------|
| Advanced control   | TIM1                                                        | 16-bit             | Up, down,<br>up/down | integer from<br>1 to 65536 | Yes                          | 4                           | 3                        |
|                    | TIM2                                                        | 32-bit             | Up, down,<br>up/down | integer from<br>1 to 65536 | Yes                          | 4                           | -                        |
|                    | TIM316-bitUp, down,<br>up/downinteger from<br>1 to 65536Yes |                    | 4                    | -                          |                              |                             |                          |
| General<br>purpose | TIM14                                                       | 16-bit             | Up                   | integer from<br>1 to 65536 | No                           | 1                           | -                        |
|                    | TIM15                                                       | 16-bit             | Up                   | integer from<br>1 to 65536 | Yes                          | 2                           | 1                        |
|                    | TIM16<br>TIM17                                              | 16-bit             | Up                   | integer from<br>1 to 65536 | Yes                          | 1                           | 1                        |
| Basic              | TIM6                                                        | 16-bit             | Up                   | integer from<br>1 to 65536 | Yes                          | -                           | -                        |

 Table 7. Timer feature comparison

### 3.14.1 Advanced-control timer (TIM1)

The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on six channels. It has complementary PWM outputs with programmable inserted dead times. It can also be seen as a complete general-purpose timer. The four independent channels can be used for:

- input capture
- output compare
- PWM generation (edge or center-aligned modes)
- one-pulse mode output

If configured as a standard 16-bit timer, it has the same features as the TIMx timer. If configured as the 16-bit PWM generator, it has full modulation capability (0-100%).

The counter can be frozen in debug mode.

Many features are shared with those of the standard timers which have the same architecture. The advanced control timer can therefore work together with the other timers via the Timer Link feature for synchronization or event chaining.



### 3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F051xx devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

### TIM2, TIM3

STM32F051xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

#### **TIM14**

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

#### TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

### 3.14.3 Basic timer TIM6

This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit time base.

### 3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It

DocID022265 Rev 7



## 6 Electrical characteristics

### 6.1 Parameter conditions

Unless otherwise specified, all voltages are referenced to V<sub>SS</sub>.

### 6.1.1 Minimum and maximum values

Unless otherwise specified, the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at  $T_A = 25$  °C and  $T_A = T_A max$  (given by the selected temperature range).

Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean  $\pm 3\sigma$ ).

### 6.1.2 Typical values

Unless otherwise specified, typical data are based on  $T_A = 25$  °C,  $V_{DD} = V_{DDA} = 3.3$  V. They are given only as design guidelines and are not tested.

Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean  $\pm 2\sigma$ ).

### 6.1.3 Typical curves

Unless otherwise specified, all typical curves are given only as design guidelines and are not tested.

### 6.1.4 Loading capacitor

The loading conditions used for pin parameter measurement are shown in *Figure 11*.

### 6.1.5 Pin input voltage

The input voltage measurement on a pin of the device is described in *Figure 12*.



DocID022265 Rev 7



|                 |                      |                       |                   |                         | 00                  |          | •                   | ,                        |                                     |       |                    |      |
|-----------------|----------------------|-----------------------|-------------------|-------------------------|---------------------|----------|---------------------|--------------------------|-------------------------------------|-------|--------------------|------|
|                 |                      |                       |                   | All peripherals enabled |                     |          |                     | All peripherals disabled |                                     |       |                    |      |
| Symbol          | Parameter            | Conditions            | f <sub>HCLK</sub> | Turn                    | м                   | lax @ T, | A <sup>(1)</sup>    | Tun                      | Max @ T <sub>A</sub> <sup>(1)</sup> |       |                    | Unit |
|                 |                      |                       |                   | тур                     | 25 °C               | 85 °C    | 105 °C              | 176                      | 25 °C                               | 85 °C | 105 °C             |      |
|                 |                      | HSE                   | 48 MHz            | 14.0                    | 15.3 <sup>(2)</sup> | 15.3     | 16.0 <sup>(2)</sup> | 2.8                      | 3.0 <sup>(2)</sup>                  | 3.0   | 3.2 <sup>(2)</sup> |      |
|                 |                      | bypass,<br>PLL on     | 32 MHz            | 9.5                     | 10.2                | 10.2     | 10.7                | 2.0                      | 2.1                                 | 2.1   | 2.3                | -    |
|                 |                      |                       | 24 MHz            | 7.3                     | 7.8                 | 7.8      | 8.3                 | 1.5                      | 1.7                                 | 1.7   | 1.9                |      |
|                 | Supply               | HSE                   | 8 MHz             | 2.6                     | 2.9                 | 2.9      | 3.0                 | 0.6                      | 0.8                                 | 0.8   | 0.8                |      |
| I <sub>DD</sub> | current in           | current in PLL off    | 1 MHz             | 0.4                     | 0.6                 | 0.6      | 0.6                 | 0.2                      | 0.4                                 | 0.4   | 0.4                | mA   |
|                 | mode                 |                       | 48 MHz            | 14.0                    | 15.3                | 15.3     | 16.0                | 3.8                      | 4.0                                 | 4.1   | 4.2                |      |
|                 | HSI clock,<br>PLL on | HSI clock,<br>PLL on  | 32 MHz            | 9.5                     | 10.2                | 10.2     | 10.7                | 2.6                      | 2.7                                 | 2.8   | 2.8                |      |
|                 |                      |                       | 24 MHz            | 7.3                     | 7.8                 | 7.8      | 8.3                 | 2.0                      | 2.1                                 | 2.1   | 2.1                |      |
|                 |                      | HSI clock,<br>PLL off | 8 MHz             | 2.6                     | 2.9                 | 2.9      | 3.0                 | 0.6                      | 0.8                                 | 0.8   | 0.8                |      |

Table 25. Typical and maximum current consumption from V<sub>DD</sub> at 3.6 V (continued)

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of  $I_{DD}$  and  $I_{DDA}$ ).

|                  |            |                       |                   | V <sub>DDA</sub> = 2.4 V |                    |                                     |                    | V <sub>DDA</sub> = 3.6 V |                                     |       |                    |      |
|------------------|------------|-----------------------|-------------------|--------------------------|--------------------|-------------------------------------|--------------------|--------------------------|-------------------------------------|-------|--------------------|------|
| Symbol           | Parameter  | Conditions<br>(1)     | f <sub>HCLK</sub> | True                     | M                  | Max @ T <sub>A</sub> <sup>(2)</sup> |                    |                          | Max @ T <sub>A</sub> <sup>(2)</sup> |       |                    | Unit |
|                  |            |                       |                   | тур                      | 25 °C              | 85 °C                               | 105 °C             | тур                      | 25 °C                               | 85 °C | 105 °C             |      |
|                  |            | HSF                   | 48 MHz            | 150                      | 170 <sup>(3)</sup> | 178                                 | 182 <sup>(3)</sup> | 164                      | 183 <sup>(3)</sup>                  | 195   | 198 <sup>(3)</sup> |      |
|                  | bypass     | bypass,               | 32 MHz            | 104                      | 121                | 126                                 | 128                | 113                      | 129                                 | 135   | 138                |      |
|                  | current in | current in            | 24 MHz            | 82                       | 96                 | 100                                 | 103                | 88                       | 102                                 | 106   | 108                |      |
|                  | Run or HSE | HSE                   | 8 MHz             | 2.0                      | 2.7                | 3.1                                 | 3.3                | 3.5                      | 3.8                                 | 4.1   | 4.4                |      |
| I <sub>DDA</sub> | mode,      | mode, PLL off         | 1 MHz             | 2.0                      | 2.7                | 3.1                                 | 3.3                | 3.5                      | 3.8                                 | 4.1   | 4.4                | μA   |
|                  | executing  |                       | 48 MHz            | 220                      | 240                | 248                                 | 252                | 244                      | 263                                 | 275   | 278                |      |
|                  | from Flash | HSI clock,<br>PLL on  | 32 MHz            | 174                      | 191                | 196                                 | 198                | 193                      | 209                                 | 215   | 218                |      |
|                  | RAM        |                       | 24 MHz            | 152                      | 167                | 173                                 | 174                | 168                      | 183                                 | 190   | 192                |      |
|                  |            | HSI clock,<br>PLL off | 8 MHz             | 72                       | 79                 | 82                                  | 83                 | 83.5                     | 91                                  | 94    | 95                 |      |

Table 26. Typical and maximum current consumption from the  $V_{DDA}$  supply

 Current consumption from the V<sub>DDA</sub> supply is independent of whether the digital peripherals are enabled or disabled, being in Run or Sleep mode or executing from Flash memory or RAM. Furthermore, when the PLL is off, I<sub>DDA</sub> is independent of clock frequencies.

2. Data based on characterization results, not tested in production unless otherwise specified.

3. Data based on characterization results and tested in production (using one common test limit for sum of  $I_{DD}$  and  $I_{DDA}$ ).



#### High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 35*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

| Symbol              | Parameter                   | Conditions <sup>(1)</sup>                                   | Min <sup>(2)</sup> | Тур     | Max <sup>(2)</sup> | Unit |
|---------------------|-----------------------------|-------------------------------------------------------------|--------------------|---------|--------------------|------|
| f <sub>OSC_IN</sub> | Oscillator frequency        | -                                                           | 4                  | 8       | 32                 | MHz  |
| R <sub>F</sub>      | Feedback resistor           | -                                                           | -                  | 200     | -                  | kΩ   |
|                     |                             | During startup <sup>(3)</sup>                               | -                  | -       | 8.5                |      |
|                     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 10 pF@8 MHz  | -                  | 0.4     | -                  |      |
| I <sub>DD</sub>     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 45 Ω,<br>CL = 10 pF@8 MHz  | -                  | 0.5     | -                  |      |
|                     | HSE current consumption     | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 5 pF@32 MHz  | -                  | 0.8     | -                  | mA   |
|                     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 10 pF@32 MHz | -                  | 1       | -                  |      |
|                     |                             | V <sub>DD</sub> = 3.3 V,<br>Rm = 30 Ω,<br>CL = 20 pF@32 MHz | -                  | - 1.5 - | -                  |      |
| 9 <sub>m</sub>      | Oscillator transconductance | Startup                                                     | 10                 | -       | -                  | mA/V |
| $t_{SU(HSE)}^{(4)}$ | Startup time                | $V_{DD}$ is stabilized                                      | -                  | 2       | -                  | ms   |

| Table 35. | HSE | oscillator | characteristics |
|-----------|-----|------------|-----------------|
|           | -   |            |                 |

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the  $t_{SU(\text{HSE})}$  startup time

4. t<sub>SU(HSE)</sub> is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For  $C_{L1}$  and  $C_{L2}$ , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*).  $C_{L1}$  and  $C_{L2}$  are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of  $C_{L1}$  and  $C_{L2}$ . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing  $C_{L1}$  and  $C_{L2}$ .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.



## 6.3.17 DAC electrical specifications

| Symbol                           | Parameter                                                                                                   | Min | Тур | Max                     | Unit | Comments                                                                                                                |  |
|----------------------------------|-------------------------------------------------------------------------------------------------------------|-----|-----|-------------------------|------|-------------------------------------------------------------------------------------------------------------------------|--|
| V <sub>DDA</sub>                 | Analog supply voltage for<br>DAC ON                                                                         | 2.4 | -   | 3.6                     | V    | -                                                                                                                       |  |
| D (1)                            | Resistive load with buffer                                                                                  | 5   | -   | -                       | kΩ   | Load connected to V <sub>SSA</sub>                                                                                      |  |
| ►LOAD` ′                         | ON                                                                                                          | 25  | -   | -                       | kΩ   | Load connected to V <sub>DDA</sub>                                                                                      |  |
| R <sub>0</sub> <sup>(1)</sup>    | Impedance output with<br>buffer OFF                                                                         | -   | -   | 15                      | kΩ   | When the buffer is OFF, the Minimum resistive load between DAC_OUT and $V_{SS}$ to have a 1% accuracy is 1.5 M $\Omega$ |  |
| C <sub>LOAD</sub> <sup>(1)</sup> | Capacitive load                                                                                             | -   | -   | 50                      | pF   | Maximum capacitive load at DAC_OUT pin (when the buffer is ON).                                                         |  |
| DAC_OUT<br>min <sup>(1)</sup>    | Lower DAC_OUT voltage with buffer ON                                                                        | 0.2 | -   | -                       | V    | It gives the maximum output<br>excursion of the DAC.<br>It corresponds to 12-bit input<br>code (0x0E0) to (0xE1C) at    |  |
| DAC_OUT<br>max <sup>(1)</sup>    | Higher DAC_OUT voltage with buffer ON                                                                       | -   | -   | V <sub>DDA</sub> – 0.2  | V    | $V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$<br>(0xEAB) at $V_{DDA} = 2.4 V$                                      |  |
| DAC_OUT<br>min <sup>(1)</sup>    | Lower DAC_OUT voltage with buffer OFF                                                                       | -   | 0.5 | -                       | mV   | It gives the maximum output                                                                                             |  |
| DAC_OUT<br>max <sup>(1)</sup>    | Higher DAC_OUT voltage<br>with buffer OFF                                                                   | -   | -   | V <sub>DDA</sub> – 1LSB | V    | excursion of the DAC.                                                                                                   |  |
| I (1)                            | DAC DC current                                                                                              | -   | -   | 600                     | μA   | With no load, middle code<br>(0x800) on the input                                                                       |  |
| UDA                              | mode <sup>(2)</sup>                                                                                         | -   | -   | 700                     | μA   | With no load, worst code<br>(0xF1C) on the input                                                                        |  |
| DNL <sup>(3)</sup>               | Differential non linearity<br>Difference between two                                                        | -   | -   | ±0.5                    | LSB  | Given for the DAC in 10-bit configuration                                                                               |  |
|                                  | consecutive code-1LSB)                                                                                      | -   | -   | ±2                      | LSB  | Given for the DAC in 12-bit configuration                                                                               |  |
|                                  | Integral non linearity<br>(difference between                                                               | I   | -   | ±1                      | LSB  | Given for the DAC in 10-bit configuration                                                                               |  |
| INL <sup>(3)</sup>               | and the value at Code i<br>and the value at Code i on a<br>line drawn between Code 0<br>and last Code 1023) | -   | -   | ±4                      | LSB  | Given for the DAC in 12-bit configuration                                                                               |  |
|                                  | Offset error                                                                                                | -   | -   | ±10                     | mV   | -                                                                                                                       |  |
| Offset <sup>(3)</sup>            | (difference between<br>measured value at Code                                                               | -   | -   | ±3                      | LSB  | Given for the DAC in 10-bit at<br>V <sub>DDA</sub> = 3.6 V                                                              |  |
|                                  | (0x800) and the ideal value<br>= V <sub>DDA</sub> /2)                                                       | -   | -   | ±12                     | LSB  | Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$                                                                        |  |

| Table 55 | . DAC | chara | cteristic | s |
|----------|-------|-------|-----------|---|
|----------|-------|-------|-----------|---|



## 6.3.18 Comparator characteristics

| Symbol                   | Parameter                                     | Conditio                                           | ons                      | Min <sup>(1)</sup> | Тур | Max <sup>(1)</sup> | Unit  |  |
|--------------------------|-----------------------------------------------|----------------------------------------------------|--------------------------|--------------------|-----|--------------------|-------|--|
| V <sub>DDA</sub>         | Analog supply voltage                         | -                                                  |                          | V <sub>DD</sub>    | -   | 3.6                | V     |  |
| V <sub>IN</sub>          | Comparator input voltage range                | -                                                  |                          | 0                  | -   | V <sub>DDA</sub>   | -     |  |
| V <sub>SC</sub>          | V <sub>REFINT</sub> scaler offset<br>voltage  | -                                                  |                          | -                  | ±5  | ±10                | mV    |  |
| t <sub>s sc</sub>        | V <sub>REFINT</sub> scaler startup            | First V <sub>REFINT</sub> scaler activ<br>power on | vation after device      | -                  | -   | 1000<br>(2)        | ms    |  |
| _                        |                                               | Next activations                                   |                          | -                  | -   | 0.2                |       |  |
| t <sub>START</sub>       | Comparator startup<br>time                    | Startup time to reach pro<br>specification         | pagation delay           | -                  | -   | 60                 | μs    |  |
|                          |                                               | Ultra-low power mode                               |                          | -                  | 2   | 4.5                |       |  |
|                          | Propagation delay for                         | Low power mode                                     |                          |                    | 0.7 | 1.5                | μs    |  |
|                          | 200 mV step with<br>100 mV overdrive          | Medium power mode                                  |                          |                    | 0.3 | 0.6                |       |  |
|                          |                                               | High speed mode                                    | V <sub>DDA</sub> ≥2.7 V  | -                  | 50  | 100                | ne    |  |
| t_                       |                                               | nigh speed mode                                    | V <sub>DDA</sub> < 2.7 V | -                  | 100 | 240                | 115   |  |
| ۲D                       |                                               | Ultra-low power mode                               |                          |                    | 2   | 7                  | μs    |  |
|                          | Propagation delay for<br>full range step with | Low power mode                                     |                          |                    | 0.7 | 2.1                |       |  |
|                          |                                               | Medium power mode                                  |                          |                    | 0.3 | 1.2                |       |  |
|                          | 100 mV overdrive                              | High speed mode                                    | V <sub>DDA</sub> ≥ 2.7 V | -                  | 90  | 180                |       |  |
|                          |                                               | nigh speed mode                                    | V <sub>DDA</sub> < 2.7 V | -                  | 110 | 300                | - 115 |  |
| V <sub>offset</sub>      | Comparator offset error                       | -                                                  |                          | -                  | ±4  | ±10                | mV    |  |
| dV <sub>offset</sub> /dT | Offset error temperature coefficient          | -                                                  |                          | -                  | 18  | -                  | µV/°C |  |
|                          |                                               | Ultra-low power mode                               |                          | -                  | 1.2 | 1.5                |       |  |
|                          | COMP current                                  | Low power mode                                     |                          | -                  | 3   | 5                  |       |  |
| UD(COMP)                 | consumption                                   | Medium power mode                                  |                          | -                  | 10  | 15                 | μΛ    |  |
|                          |                                               | High speed mode                                    |                          | -                  | 75  | 100                |       |  |

Table 56. Comparator characteristics



| Symbol                                 | Parameter             | Conditions                               |                       | Min <sup>(1)</sup> | Тур | Max <sup>(1)</sup> | Unit |
|----------------------------------------|-----------------------|------------------------------------------|-----------------------|--------------------|-----|--------------------|------|
|                                        |                       | No hysteresis<br>(COMPxHYST[1:0]=00)     | -                     | -                  | 0   | -                  |      |
| V <sub>hys</sub> Comparator hysteresis |                       | High speed mode                          | 3                     |                    | 13  |                    |      |
|                                        | (COMPxHYST[1:0]=01)   | All other power modes                    | 5                     | 8                  | 10  |                    |      |
|                                        | Comparator hysteresis | Medium hysteresis<br>(COMPxHYST[1:0]=10) | High speed mode       | 7                  | 15  | 26                 | mV   |
|                                        |                       |                                          | All other power modes | 9                  |     | 19                 |      |
|                                        |                       |                                          | High speed mode       | 18                 |     | 49                 |      |
|                                        |                       | (COMPxHYST[1:0]=11)                      | All other power modes | 19                 | 31  | 40                 |      |

#### Table 56. Comparator characteristics (continued)

1. Data based on characterization results, not tested in production.

2. For more details and conditions see Figure 28: Maximum  $V_{REFINT}$  scaler startup time from power down.



#### Figure 28. Maximum $V_{\text{REFINT}}$ scaler startup time from power down



| Symbol          | Parameter                                                        | Min               | Max                | Unit |
|-----------------|------------------------------------------------------------------|-------------------|--------------------|------|
| t <sub>AF</sub> | Maximum width of spikes that are suppressed by the analog filter | 50 <sup>(2)</sup> | 260 <sup>(3)</sup> | ns   |

Table 62. I<sup>2</sup>C analog filter characteristics<sup>(1)</sup>

1. Guaranteed by design, not tested in production.

2. Spikes with widths below  $t_{AF(min)}$  are filtered.

3. Spikes with widths above  $t_{AF(max)}$  are not filtered

### SPI/I<sup>2</sup>S characteristics

Unless otherwise specified, the parameters given in *Table 63* for SPI or in *Table 64* for  $I^2S$  are derived from tests performed under the ambient temperature,  $f_{PCLKx}$  frequency and supply voltage conditions summarized in *Table 20: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I<sup>2</sup>S).

| Symbol                                       | Parameter                        | Conditions                                            | Min         | Max         | Unit |  |
|----------------------------------------------|----------------------------------|-------------------------------------------------------|-------------|-------------|------|--|
| f <sub>SCK</sub>                             | SDI clock froguency              | Master mode                                           | -           | 18          |      |  |
| 1/t <sub>c(SCK)</sub>                        | SPI Clock frequency              | Slave mode                                            | -           | 18          |      |  |
| $t_{r(SCK)} \ t_{f(SCK)}$                    | SPI clock rise and fall time     | Capacitive load: C = 15 pF                            | -           | 6           | ns   |  |
| t <sub>su(NSS)</sub>                         | NSS setup time                   | Slave mode                                            | 4Tpclk      | -           |      |  |
| t <sub>h(NSS)</sub>                          | NSS hold time                    | Slave mode                                            | 2Tpclk + 10 | -           |      |  |
| t <sub>w(SCKH)</sub><br>t <sub>w(SCKL)</sub> | SCK high and low time            | Master mode, f <sub>PCLK</sub> = 36 MHz,<br>presc = 4 | Tpclk/2 -2  | Tpclk/2 + 1 |      |  |
| t <sub>su(MI)</sub>                          | Data input satur timo            | Master mode                                           | 4           | -           |      |  |
| t <sub>su(SI)</sub>                          |                                  | Slave mode                                            | 5           | -           |      |  |
| t <sub>h(MI)</sub>                           | Data input hold time             | Master mode                                           | 4           | -           |      |  |
| t <sub>h(SI)</sub>                           |                                  | Slave mode                                            | 5           | -           | ns   |  |
| t <sub>a(SO)</sub> <sup>(2)</sup>            | Data output access time          | Slave mode, f <sub>PCLK</sub> = 20 MHz                | 0           | 3Tpclk      | 1    |  |
| t <sub>dis(SO)</sub> <sup>(3)</sup>          | Data output disable time         | Slave mode                                            | 0           | 18          |      |  |
| t <sub>v(SO)</sub>                           | Data output valid time           | Slave mode (after enable edge)                        | -           | 22.5        |      |  |
| t <sub>v(MO)</sub>                           | Data output valid time           | Master mode (after enable edge)                       | -           | 6           |      |  |
| t <sub>h(SO)</sub>                           | Data output hold time            | Slave mode (after enable edge)                        | 11.5        | -           |      |  |
| t <sub>h(MO)</sub>                           |                                  | Master mode (after enable edge)                       | 2           | -           |      |  |
| DuCy(SCK)                                    | SPI slave input clock duty cycle | Slave mode                                            | 25          | 75          | %    |  |

| Table | 63. | SPI | characteristics( | 1) | ) |
|-------|-----|-----|------------------|----|---|
|-------|-----|-----|------------------|----|---|

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z





Figure 29. SPI timing diagram - slave mode and CPHA = 0





1. Measurement points are done at CMOS levels: 0.3  $V_{\text{DD}}$  and 0.7  $V_{\text{DD}}$ 



## 7 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK<sup>®</sup> packages, depending on their level of environmental compliance. ECOPACK<sup>®</sup> specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK<sup>®</sup> is an ST trademark.

### 7.1 UFBGA64 package information

UFBGA64 is a 64-ball, 5 x 5 mm, 0.5 mm pitch ultra-fine-profile ball grid array package.



Figure 34. UFBGA64 package outline

1. Drawing is not to scale.

| Symbol | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|--------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol | Min         | Тур   | Max   | Min                   | Тур    | Max    |
| А      | 0.460       | 0.530 | 0.600 | 0.0181                | 0.0209 | 0.0236 |
| A1     | 0.050       | 0.080 | 0.110 | 0.0020                | 0.0031 | 0.0043 |
| A2     | 0.400       | 0.450 | 0.500 | 0.0157                | 0.0177 | 0.0197 |
| A3     | 0.080       | 0.130 | 0.180 | 0.0031                | 0.0051 | 0.0071 |
| A4     | 0.270       | 0.320 | 0.370 | 0.0106                | 0.0126 | 0.0146 |



## 7.3 LQFP48 package information

LQFP48 is a 48-pin, 7 x 7 mm low-profile quad flat package.





1. Drawing is not to scale.



## 7.5 WLCSP36 package information

WLCSP36 is a 36-ball, 2.605 x 2.703 mm, 0.4 mm pitch wafer-level chip-scale package.





1. Drawing is not to scale.

| Symphol           | millimeters |       |       | inches <sup>(1)</sup> |        |        |
|-------------------|-------------|-------|-------|-----------------------|--------|--------|
| Symbol            | Min         | Тур   | Мах   | Min                   | Тур    | Мах    |
| А                 | 0.525       | 0.555 | 0.585 | 0.0207                | 0.0219 | 0.0230 |
| A1                | -           | 0.175 | -     | -                     | 0.0069 | -      |
| A2                | -           | 0.380 | -     | -                     | 0.0150 | -      |
| A3 <sup>(2)</sup> | -           | 0.025 | -     | -                     | 0.0010 | -      |
| b <sup>(3)</sup>  | 0.220       | 0.250 | 0.280 | 0.0087                | 0.0098 | 0.0110 |
| D                 | 2.570       | 2.605 | 2.640 | 0.1012                | 0.1026 | 0.1039 |
| E                 | 2.668       | 2.703 | 2.738 | 0.1050                | 0.1064 | 0.1078 |
| е                 | -           | 0.400 | -     | -                     | 0.0157 | -      |
| e1                | -           | 2.000 | -     | -                     | 0.0787 | -      |
| e2                | -           | 2.000 | -     | -                     | 0.0787 | -      |

#### Table 70. WLCSP36 package mechanical data



|        |     |             | 0     | •                     | ,      |        |
|--------|-----|-------------|-------|-----------------------|--------|--------|
| Symbol |     | millimeters |       | inches <sup>(1)</sup> |        |        |
|        | Min | Тур         | Мах   | Min                   | Тур    | Мах    |
| F      | -   | 0.3025      | -     | -                     | 0.0119 | -      |
| G      | -   | 0.3515      | -     | -                     | 0.0138 | -      |
| aaa    | -   | -           | 0.100 | -                     | -      | 0.0039 |
| bbb    | -   | -           | 0.100 | -                     | -      | 0.0039 |
| ccc    | -   | -           | 0.100 | -                     | -      | 0.0039 |
| ddd    | -   | -           | 0.050 | -                     | -      | 0.0020 |
| eee    | -   | -           | 0.050 | -                     | -      | 0.0020 |

Table 70. WLCSP36 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

2. Back side coating.

3. Dimension is measured at the maximum bump diameter parallel to primary datum Z.



#### Figure 47. Recommended pad footprint for WLCSP36 package

#### Table 71. WLCSP36 recommended PCB design rules

| Dimension      | Recommended values                            |
|----------------|-----------------------------------------------|
| Pitch          | 0.4 mm                                        |
| Dpad           | 260 μm max. (circular)<br>220 μm recommended  |
| Dsm            | 300 μm min. (for 260 μm diameter pad)         |
| PCB pad design | Non-solder mask defined via underbump allowed |



| Date        | Revision                                   | Changes                                                                                                                                                                                                                                                                                                                          |
|-------------|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             |                                            | Added "Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection" in <i>Section Functional susceptibility to I/O current injection.</i><br>Replaced reference "JESD22-C101" with "ANSI/ESD STM5.3.1" in <i>Table : ESD absolute maximum ratings.</i> |
|             |                                            | and Standby modes and Table: Typical and maximum VDD consumption in Stop<br>consumption in Stop and Standby modes into Table: Typical and<br>maximum current consumption in Stop and Standby modes.<br>Updated:                                                                                                                  |
|             |                                            | - Table: Temperature sensor calibration values.                                                                                                                                                                                                                                                                                  |
|             |                                            | <ul> <li>Table: Internal voltage reference calibration values.</li> </ul>                                                                                                                                                                                                                                                        |
|             |                                            | – Table: Current characteristics,                                                                                                                                                                                                                                                                                                |
|             |                                            | – Table: General operating conditions,                                                                                                                                                                                                                                                                                           |
|             |                                            | <ul> <li>Table: Typical and maximum current consumption from the VDDA supply,</li> </ul>                                                                                                                                                                                                                                         |
|             |                                            | <ul> <li>Table: Low-power mode wakeup timings,</li> </ul>                                                                                                                                                                                                                                                                        |
|             |                                            | <ul> <li>Table: I/O current injection susceptibility,</li> </ul>                                                                                                                                                                                                                                                                 |
|             |                                            | <ul> <li>Table: I/O static characteristics,</li> </ul>                                                                                                                                                                                                                                                                           |
| 13-Jan-2014 | 4<br>(************************************ | <ul> <li>Table: Output voltage characteristics,</li> </ul>                                                                                                                                                                                                                                                                       |
|             | (continued)                                | – Table: NRST pin characteristics,                                                                                                                                                                                                                                                                                               |
|             |                                            | <ul> <li>Table: I<sup>2</sup>C analog filter characteristics,</li> </ul>                                                                                                                                                                                                                                                         |
|             |                                            | <ul> <li>Figure: Power supply scheme,</li> </ul>                                                                                                                                                                                                                                                                                 |
|             |                                            | <ul> <li>Figure: TC and TTa I/O input characteristics,</li> </ul>                                                                                                                                                                                                                                                                |
|             |                                            | <ul> <li>Figure: Five volt tolerant (FT and FTf) I/O input<br/>characteristics,</li> </ul>                                                                                                                                                                                                                                       |
|             |                                            | <ul> <li>Figure: I/O AC characteristics definition,</li> </ul>                                                                                                                                                                                                                                                                   |
|             |                                            | <ul> <li>Figure: ADC accuracy characteristics,</li> </ul>                                                                                                                                                                                                                                                                        |
|             |                                            | <ul> <li>Figure: Typical connection diagram using the ADC,</li> </ul>                                                                                                                                                                                                                                                            |
|             |                                            | <ul> <li>Figure: LQFP64 – 10 x 10 mm 64 pin low-profile quad flat<br/>package outline,</li> </ul>                                                                                                                                                                                                                                |
|             |                                            | <ul> <li>Figure: LQFP64 recommended footprint,</li> </ul>                                                                                                                                                                                                                                                                        |
|             |                                            | <ul> <li>Figure: LQFP48 – 7 x 7 mm, 48 pin low-profile quad flat<br/>package outline,</li> </ul>                                                                                                                                                                                                                                 |
|             |                                            | <ul> <li>Figure: LQFP48 recommended footprint,</li> </ul>                                                                                                                                                                                                                                                                        |
|             |                                            | <ul> <li>Figure: LQFP32 – 7 x 7 mm 32-pin low-profile quad flat<br/>package outline,</li> </ul>                                                                                                                                                                                                                                  |
|             |                                            | – Figure: LQFP32 recommended footprint,                                                                                                                                                                                                                                                                                          |
|             |                                            | <ul> <li>Figure: UFQFPN48 – 7 x 7 mm, 0.5 mm pitch, package outline.</li> </ul>                                                                                                                                                                                                                                                  |

Table 76. Document revision history (continued)

