

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Speed48MHzConnectivityHDMI-CEC, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8					
Core Size32-Bit Single-CoreSpeed48MHzConnectivityHDMI-CEC, I/C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, I/S, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	Product Status	Active			
Speed48MHzConnectivityHDMI-CEC, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K × 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K × 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed Pad	Core Processor	ARM® Cortex®-M0			
ConnectivityHDMI-CEC, I²C, IrDA, LINbus, SPI, UART/USARTPeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed Pad	Core Size	32-Bit Single-Core			
PeripheralsDMA, I²S, POR, PWM, WDTNumber of I/O27Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed Pad	Speed	48MHz			
Number of I/O27Program Memory Size16KB (16K × 8)Program Memory TypeFLASHEEROM Size-RAM Size8K × 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSuppler Device Package-	Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART			
Program Memory Size16KB (16K x 8)Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	Peripherals	DMA, I ² S, POR, PWM, WDT			
Program Memory TypeFLASHEEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	Number of I/O	27			
EEPROM Size-RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	Program Memory Size	16KB (16K x 8)			
RAM Size8K x 8Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	Program Memory Type	FLASH			
Voltage - Supply (Vcc/Vdd)2V ~ 3.6VData ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	EEPROM Size	-			
Data ConvertersA/D 13x12b; D/A 1x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	RAM Size	8K x 8			
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case32-UFQFN Exposed PadSupplier Device Package-	Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V			
Operating Temperature -40°C ~ 105°C (TA) Mounting Type Surface Mount Package / Case 32-UFQFN Exposed Pad Supplier Device Package -	Data Converters	A/D 13x12b; D/A 1x12b			
Mounting Type Surface Mount Package / Case 32-UFQFN Exposed Pad Supplier Device Package -	Oscillator Type	Internal			
Package / Case 32-UFQFN Exposed Pad Supplier Device Package -	Operating Temperature	-40°C ~ 105°C (TA)			
Supplier Device Package -	Mounting Type	Surface Mount			
	Package / Case	32-UFQFN Exposed Pad			
Purchase URL https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051k4u7tr	Supplier Device Package	·			
	Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051k4u7tr			

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

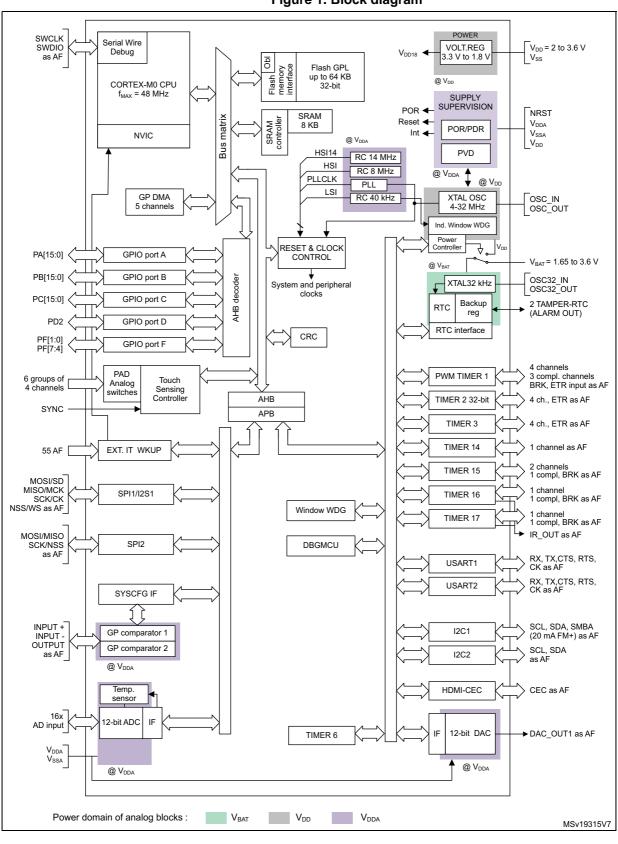


Figure 1. Block diagram

DocID022265 Rev 7

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

Pinouts and pin descriptions

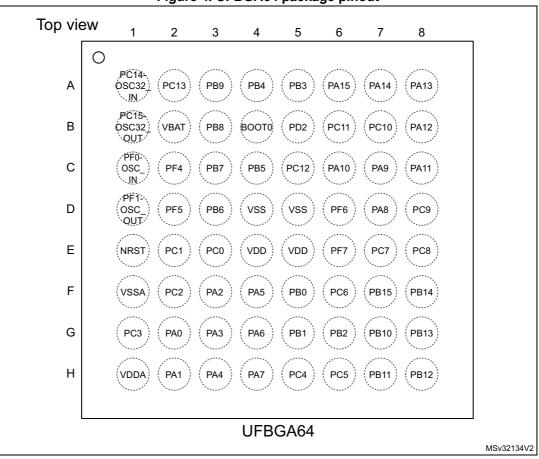
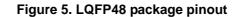
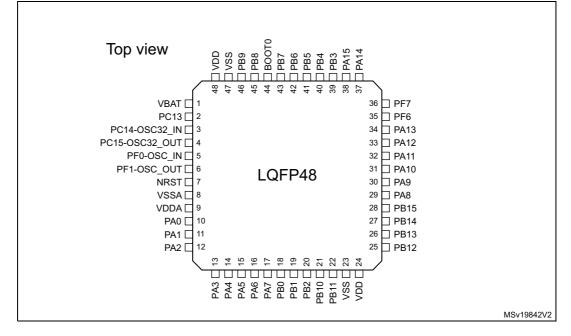




Figure 4. UFBGA64 package pinout

DocID022265 Rev 7

Na	me	Abbreviation	Definition			
Pin r	name	Unless otherwise specified in brackets below the pin name, the pin function during a after reset is the same as the actual pin name				
		S	Supply pin			
Pin	type	I	Input-only pin			
		I/O	Input / output pin			
		FT	5 V-tolerant I/O			
		FTf 5 V-tolerant I/O, FM+ capable				
I/O otr	ucture	TTa 3.3 V-tolerant I/O directly connected to ADC				
1/O Sti	ucture	TC	Standard 3.3 V I/O			
		В	Dedicated BOOT0 pin			
		RST	Bidirectional reset pin with embedded weak pull-up resistor			
Notes		Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset.				
Pin	Alternate functions	Functions selected	through GPIOx_AFR registers			
functions	Additional functions	Functions directly	unctions directly selected/enabled through peripheral registers			

Table 13. Pin definitions

	Ρ	in nu	umbe	er						Pin fur	nctions		
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	Ŋ		I/O structure Notes		Alternate functions	Additional functions
1	B2	1	-	-	-	VBAT	S	-	-	Backup po	wer supply		
2	A2	2	A6	-	-	PC13	I/O	тс	(1)(2)	-	RTC_TAMP1, RTC_TS, RTC_OUT, WKUP2		
3	A1	3	B6	-	-	PC14-OSC32_IN (PC14)	I/O	тс	(1)(2)	-	OSC32_IN		
4	B1	4	C6	-	-	PC15-OSC32_OUT (PC15)	I/O	тс	(1)(2)	-	OSC32_OUT		
5	C1	5	B5	2	2	PF0-OSC_IN (PF0)	I/O	FT	-	-	OSC_IN		
6	D1	6	C5	3	3	PF1-OSC_OUT (PF1)	I/O	FT	-	-	OSC_OUT		

	P	Pin nu	umbe	er						Pin functions		
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
33	H8	25	-	-	-	PB12	I/O	FT	(5)	SPI2_NSS, TIM1_BKIN, TSC_G6_IO2, EVENTOUT	-	
34	G8	26	-	-	-	PB13	I/O	FT	(5)	SPI2_SCK, TIM1_CH1N, TSC_G6_IO3	-	
35	F8	27	-	-	-	PB14	I/O	FT	(5)	SPI2_MISO, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	-	
36	F7	28	-	-	-	PB15	I/O	FT	(5)	SPI2_MOSI, TIM1_CH3N, TIM15_CH1N, TIM15_CH2	RTC_REFIN	
37	F6	-	-	-	-	PC6	I/O	FT	-	TIM3_CH1	-	
38	E7	-	-	-	-	PC7	I/O	FT	-	TIM3_CH2	-	
39	E8	-	-	-	-	PC8	I/O	FT	-	TIM3_CH3	-	
40	D8	-	-	-	-	PC9	I/O	FT	-	TIM3_CH4	-	
41	D7	29	E2	18	18	PA8	I/O	FT	-	USART1_CK, TIM1_CH1, EVENTOUT, MCO	-	
42	C7	30	D1	19	19	PA9	I/O	FT	-	USART1_TX, TIM1_CH2, TIM15_BKIN, TSC_G4_IO1	-	
43	C6	31	C1	20	20	PA10	I/O	FT	-	USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2	-	
44	C8	32	C2	21	21	PA11	I/O	FT	-	USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT	-	

Table 13. Pin definitions (continued)

<u> 1157</u>

Table 14. Alternate functions selected through GPIOA_AFR registers for port A AF0 AF1 AF2 AF3 Pin name AF4 AF5 AF7 AF6 USART2 CTS TIM2 CH1 ETR TSC G1 IO1 COMP1 OUT PA0 --EVENTOUT USART2_RTS TIM2_CH2 TSC_G1_IO2 PA1 _ TIM15_CH1 USART2_TX TIM2_CH3 TSC_G1_IO3 COMP2_OUT PA2 ---PA3 TIM15 CH2 USART2 RX TIM2_CH4 TSC G1 IO4 ----SPI1_NSS, I2S1_WS USART2_CK TSC_G2_IO1 TIM14_CH1 PA4 _ --_ SPI1_SCK, I2S1_CK CEC TIM2_CH1_ETR TSC_G2_IO2 PA5 _ --TSC G2 103 EVENTOUT COMP1 OUT PA6 SPI1 MISO, I2S1 MCK TIM3 CH1 TIM1 BKIN TIM16 CH1 SPI1_MOSI, I2S1_SD TIM3_CH2 TIM1_CH1N TSC_G2_IO4 TIM14_CH1 TIM17_CH1 EVENTOUT COMP2_OUT PA7 PA8 МСО USART1 CK TIM1_CH1 **EVENTOUT** _ -USART1 TX TIM15 BKIN TIM1 CH2 TSC G4 IO1 PA9 ----TIM17_BKIN USART1 RX TIM1 CH3 TSC_G4_IO2 PA10 ----EVENTOUT COMP1 OUT PA11 USART1_CTS TIM1 CH4 TSC_G4_IO3 ---EVENTOUT USART1_RTS TIM1 ETR TSC_G4_IO4 COMP2 OUT PA12 ---SWDIO IR_OUT PA13 _ ---SWCLK USART2_TX PA14

EVENTOUT

TIM2 CH1 ETR

-

-

_

_

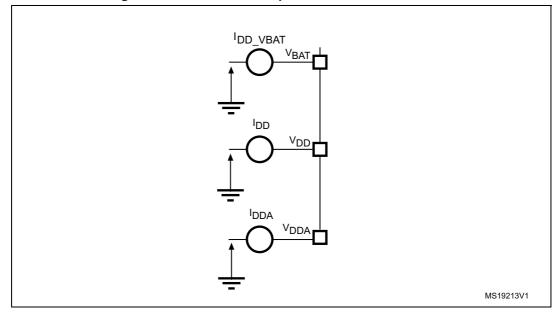
-

-

-

STM32F051x4 STM32F051x6 STM32F051x8

DocID022265 Rev 7


PA15

SPI1 NSS, I2S1 WS

USART2 RX

37/122

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit
			4 MHz	0.07	
		V _{DDIOx} = 3.3 V	8 MHz	0.15	
		C =C _{INT}	16 MHz	0.31	
			24 MHz	0.53	
			48 MHz	0.92	
			4 MHz	0.18	
		V _{DDIOx} = 3.3 V	8 MHz	0.37	
		C _{EXT} = 0 pF	16 MHz	0.76	
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39	
			48 MHz	2.188	
			4 MHz	0.32	
		V _{DDIOx} = 3.3 V	8 MHz	0.64	mA
		$C_{EXT} = 10 \text{ pF}$ $C = C_{INT} + C_{EXT} + C_S$	16 MHz	1.25	
			24 MHz	2.23	
I _{SW}	I/O current		48 MHz	4.442	
1210	consumption		4 MHz	0.49	
		$V_{DDIOx} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.94	
			16 MHz	2.38	
			24 MHz	3.99	
			4 MHz	0.64	
		V _{DDIOx} = 3.3 V C _{EXT} = 33 pF	8 MHz	1.25	
		$C_{EXT} = 35 \mu\text{F}$ $C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	3.24	
			24 MHz	5.02	
		V _{DDIOx} = 3.3 V	4 MHz	0.81	
		C _{EXT} = 47 pF	8 MHz	1.7	
		$C = C_{INT} + C_{EXT} + C_S$ $C = C_{int}$	16 MHz	3.67	
		V _{DDIOx} = 2.4 V	4 MHz	0.66	
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.43	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45	
		C = C _{int}	24 MHz	4.97	

Table 30.	Switching	output I/O	current	consumption
-----------	-----------	------------	---------	-------------

1. C_S = 7 pF (estimated value).

	Peripheral	Typical consumption at 25 °C	Unit			
	APB-Bridge ⁽²⁾	3				
	SYSCFG	3				
	ADC ⁽³⁾	5				
	TIM1	17				
	SPI1	10				
	USART1	19				
	TIM15	11				
	TIM16	8				
	TIM17	8				
	DBG (MCU Debug Support)	0.5				
	TIM2	17				
APB	TIM3	13	µA/MHz			
	TIM6	3				
	TIM14	6				
	WWDG	1				
	SPI2	7				
	USART2	7				
	I2C1	4				
	I2C2	5				
	DAC	2				
	PWR	1				
	CEC	2				
	All APB peripherals	149				

 Table 31. Peripheral current consumption (continued)

1. The BusMatrix automatically is active when at least one master is ON (CPU or DMA1)

2. The APBx Bridge is automatically active when at least one peripheral is ON on the same Bus.

3. The power consumption of the analog part (I_{DDA}) of peripherals such as ADC is not included. Refer to the tables of characteristics in the subsequent sections.

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

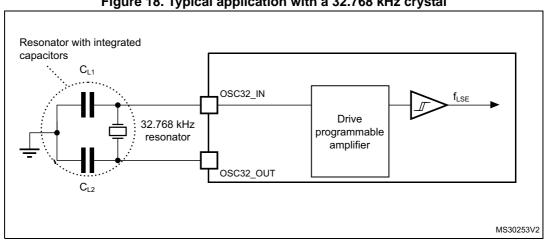


Figure 18. Typical application with a 32.768 kHz crystal

Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden to add one.

6.3.8 Internal clock source characteristics

The parameters given in *Table 37* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*. The provided curves are characterization results, not tested in production.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

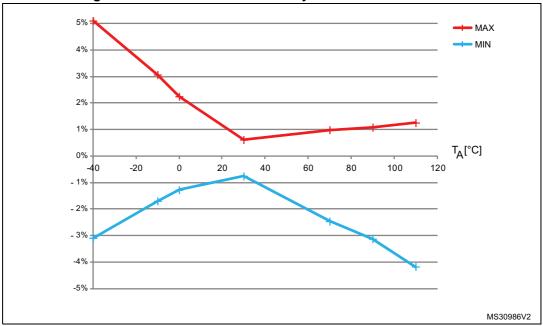

Symbol	Parameter	Conditions	Min	Тур	Max	Unit	
f _{HSI14}	Frequency	-	-	14	-	MHz	
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%	
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%	
		T _A = -40 to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%	
ACC	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%	
ACC _{HSI14}		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%	
		T _A = 25 °C	-1	-	1	%	
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs	
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA	

Table 38. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI14 oscillator accuracy characterization results

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 50*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Мах	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
x0	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25		
	t _{r(IO)out}	Output rise time		-	25	ns	
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50	MHz	
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	20		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5	- ns	
11	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5		
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8	1	
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12	-	
(4)	t _{r(IO)out}	Output rise time		-	34	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 50	. I/O	AC	characteristics ⁽¹⁾⁽²⁾
----------	-------	----	-----------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 23*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 53. R_{AIN} max for f_{ADC} = 14 MHz (continued)

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Test conditions		Max ⁽⁴⁾	Unit
ET	Total unadjusted error		±1.3	±2	
EO	Offset error	$f_{PCLK} = 48 \text{ MHz},$	±1	±1.5	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 k Ω V _{DDA} = 3 V to 3.6 V	±0.5	±1.5	LSB
ED	Differential linearity error	$T_A = 25 $ °C	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	$f_{PCLK} = 48 \text{ MHz},$	±1.9	±2.8	
EG	Gain error	f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ V _{DDA} = 2.7 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_A = -40$ to 105 °C	±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	f _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 2.4 V to 3.6 V	±2.8	±3	LSB
ED	Differential linearity error	$T_A = 25 \text{°C}$	±0.7	±1.3]
EL	Integral linearity error		±1.2	±1.7	1

Table 54. ADC accuracy $^{(1)(2)(3)}$

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.14 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.

4. Data based on characterization results, not tested in production.

6.3.18 Comparator characteristics

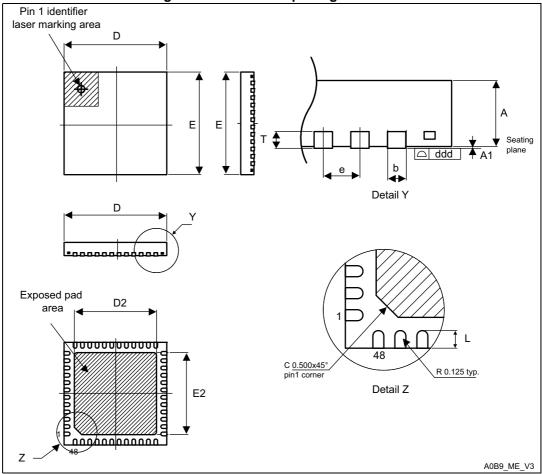

Symbol	Parameter	Conditions		Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit
V _{DDA}	Analog supply voltage	-	V_{DD}	-	3.6	V	
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	-	
V_{SC}	V _{REFINT} scaler offset voltage	-	-	±5	±10	mV	
t _{s_sc}	V _{REFINT} scaler startup time from power down	First $V_{\mbox{\scriptsize REFINT}}$ scaler activation after device power on		-	-	1000 (2)	ms
		Next activations		-	-	0.2	-
t _{START}	Comparator startup time	Startup time to reach pro specification	-	-	60	μs	
		Ultra-low power mode		-	2	4.5	μs
	Propagation delay for 200 mV step with 100 mV overdrive	Low power mode		-	0.7	1.5	
		Medium power mode		-	0.3	0.6	
		Lligh aroud mode	V _{DDA} ≥ 2.7 V	-	50	100	– ns
		High speed mode	V _{DDA} < 2.7 V	-	100	240	
t _D	Propagation delay for full range step with 100 mV overdrive	Ultra-low power mode		-	2	7	μs
		Low power mode		-	0.7	2.1	
		Medium power mode		-	0.3	1.2	
		High speed mode	V _{DDA} ≥ 2.7 V	-	90	180	- ns
			V _{DDA} < 2.7 V	-	110	300	
V _{offset}	Comparator offset error	-	-	±4	±10	mV	
dV _{offset} /dT	Offset error temperature coefficient	-	-	18	-	µV/°C	
	COMP current consumption	Ultra-low power mode		-	1.2	1.5	μΑ
1		Low power mode		-	3	5	
I _{DD} (COMP)		Medium power mode		-	10	15	
		High speed mode		-	75	100	

Table 56. Comparator characteristics

7.4 UFQFPN48 package information

UFQFPN48 is a 48-lead, 7x7 mm, 0.5 mm pitch, ultra-thin fine-pitch quad flat package.

1. Drawing is not to scale.

- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground.

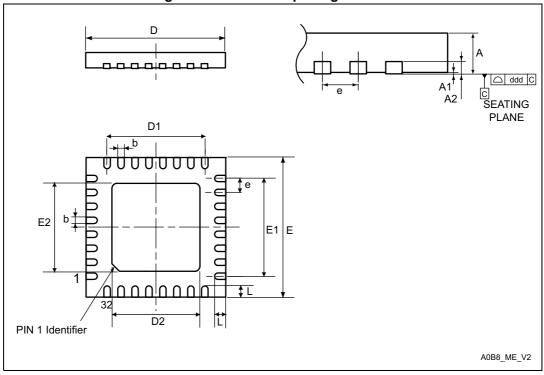
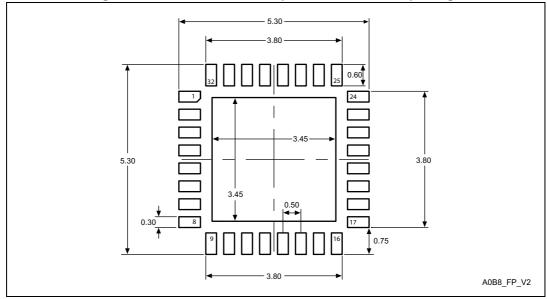


Figure 52. UFQFPN32 package outline

1. Drawing is not to scale.


- 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life.
- 3. There is an exposed die pad on the underside of the UFQFPN package. This pad is used for the device ground and must be connected. It is referred to as pin 0 in *Table: Pin definitions*.

	millimeters			inches ⁽¹⁾			
Symbol	Min	Тур	Max	Min	Тур	Мах	
А	0.500	0.550	0.600	0.0197	0.0217	0.0236	
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020	
A3	-	0.152	-	-	0.0060	-	
b	0.180	0.230	0.280	0.0071	0.0091	0.0110	
D	4.900	5.000	5.100	0.1929	0.1969	0.2008	
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E	4.900	5.000	5.100	0.1929	0.1969	0.2008	
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417	
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417	
е	-	0.500	-	-	0.0197	-	
L	0.300	0.400	0.500	0.0118	0.0157	0.0197	
ddd	-	-	0.080	-	-	0.0031	

Table 73. UFQFPN32 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 53. Recommended footprint for UFQFPN32 package

1. Dimensions are expressed in millimeters.

7.8 Thermal characteristics

The maximum chip junction temperature (T_Jmax) must never exceed the values given in *Table 20: General operating conditions*.

The maximum chip-junction temperature, $T_{\rm J}$ max, in degrees Celsius, may be calculated using the following equation:

$$T_J max = T_A max + (P_D max x \Theta_{JA})$$

Where:

- T_A max is the maximum ambient temperature in °C,
- Θ_{JA} is the package junction-to-ambient thermal resistance, in °C/W,
- P_D max is the sum of P_{INT} max and P_{I/O} max (P_D max = P_{INT} max + P_{I/O}max),
- P_{INT} max is the product of I_{DD} and V_{DD}, expressed in Watts. This is the maximum chip internal power.

 $\mathsf{P}_{I\!/\!O}$ max represents the maximum power dissipation on output pins where:

 $\mathsf{P}_{\mathsf{I/O}} \max = \Sigma \; (\mathsf{V}_{\mathsf{OL}} \times \mathsf{I}_{\mathsf{OL}}) + \Sigma \; ((\mathsf{V}_{\mathsf{DDIOx}} - \mathsf{V}_{\mathsf{OH}}) \times \mathsf{I}_{\mathsf{OH}}),$

taking into account the actual V_{OL} / I_{OL} and V_{OH} / I_{OH} of the I/Os at low and high level in the application.

Symbol	Parameter	Value	Unit
	Thermal resistance junction-ambient LQFP64 - 10 × 10 mm / 0.5 mm pitch	45	
	Thermal resistance junction-ambient LQFP48 - 7 × 7 mm	55	
	Thermal resistance junction-ambient LQFP32 - 7 × 7 mm	56	
Θ_{JA}	Thermal resistance junction-ambient UFBGA64 - 5 × 5 mm	65	°C/W
	Thermal resistance junction-ambient UFQFPN48 - 7 × 7 mm	32	
	Thermal resistance junction-ambient UFQFPN32 - 5 × 5 mm	38	
	Thermal resistance junction-ambient WLCSP36 - 2.6 × 2.7 mm	60	

Table 74. Package thermal characteristics

7.8.1 Reference document

JESD51-2 Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air). Available from www.jedec.org

7.8.2 Selecting the product temperature range

When ordering the microcontroller, the temperature range is specified in the ordering information scheme shown in *Section 8: Ordering information*.

Date	Revision	Changes	
06-Jan-2017	7	 Section 6: Electrical characteristics: Table 36: LSE oscillator characteristics (f_{LSE} = 32.768 kHz) - information on configuring different drive capabilities removed. See the corresponding reference manual. Table 24: Embedded internal reference voltage - V_{REFINT} values Table 55: DAC characteristics - min. R_{LOAD} to V_{DDA} defined Figure 29: SPI timing diagram - slave mode and CPHA = 0 and Figure 30: SPI timing diagram - slave mode and CPHA = 1 enhanced and corrected Section 8: Ordering information: The name of the section changed from the previous "Part numbering" 	

Table 76. Document revision history (continued)

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

DocID022265 Rev 7

