

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	27
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-UFQFN Exposed Pad
Supplier Device Package	32-UFQFPN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051k6u6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 48.	I/O static characteristics
Table 49.	Output voltage characteristics
Table 50.	I/O AC characteristics
Table 51.	NRST pin characteristics
Table 52.	ADC characteristics
Table 53.	R_{AIN} max for f_{ADC} = 14 MHz
Table 54.	ADC accuracy
Table 55.	DAC characteristics
Table 56.	Comparator characteristics
Table 57.	TS characteristics
Table 58.	V _{BAT} monitoring characteristics
Table 59.	TIMx characteristics
Table 60.	IWDG min/max timeout period at 40 kHz (LSI)
Table 61.	WWDG min/max timeout value at 48 MHz (PCLK)
Table 62.	I ² C analog filter characteristics
Table 63.	SPI characteristics
Table 64.	I ² S characteristics
Table 65.	UFBGA64 package mechanical data
Table 66.	UFBGA64 recommended PCB design rules
Table 67.	LQFP64 package mechanical data
Table 68.	LQFP48 package mechanical data
Table 69.	UFQFPN48 package mechanical data
Table 70.	WLCSP36 package mechanical data
Table 71.	WLCSP36 recommended PCB design rules 104
Table 72.	LQFP32 package mechanical data
Table 73.	UFQFPN32 package mechanical data
Table 74.	Package thermal characteristics
Table 75.	Ordering information scheme
Table 76.	Document revision history

In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

3.5.4 Low-power modes

The STM32F051xx microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1,, COMPx or the CEC.

The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

The I/O configuration can be locked if needed following a specific sequence in order to avoid spurious writing to the I/Os registers.

3.8 Direct memory access controller (DMA)

The 5-channel general-purpose DMAs manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers.

The DMA supports circular buffer management, removing the need for user code intervention when the controller reaches the end of the buffer.

Each channel is connected to dedicated hardware DMA requests, with support for software trigger on each channel. Configuration is made by software and transfer sizes between source and destination are independent.

DMA can be used with the main peripherals: SPIx, I2Sx, I2Cx, USARTx, all TIMx timers (except TIM14), DAC and ADC.

3.9 Interrupts and events

3.9.1 Nested vectored interrupt controller (NVIC)

The STM32F0xx family embeds a nested vectored interrupt controller able to handle up to 32 maskable interrupt channels (not including the 16 interrupt lines of Cortex[®]-M0) and 4 priority levels.

- Closely coupled NVIC gives low latency interrupt processing
- Interrupt entry vector table address passed directly to the core
- Closely coupled NVIC core interface
- Allows early processing of interrupts
- Processing of late arriving higher priority interrupts
- Support for tail-chaining
- Processor state automatically saved
- Interrupt entry restored on interrupt exit with no instruction overhead

This hardware block provides flexible interrupt management features with minimal interrupt latency.

3.9.2 Extended interrupt/event controller (EXTI)

The extended interrupt/event controller consists of 24 edge detector lines used to generate interrupt/event requests and wake-up the system. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the internal clock period. Up to 55 GPIOs can be connected to the 16 external interrupt lines.

3.10 Analog-to-digital converter (ADC)

The 12-bit analog-to-digital converter has up to 16 external and 3 internal (temperature

DocID022265 Rev 7

sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $\mathsf{V}_{\mathsf{SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 $^{\circ}$ C (± 5 $^{\circ}$ C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 4. Internal voltage reference calib	oration values
---	----------------

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

can be used either as a watchdog to reset the device when a problem occurs, or as a free running timer for application timeout management. It is hardware or software configurable through the option bytes. The counter can be frozen in debug mode.

3.14.5 System window watchdog (WWDG)

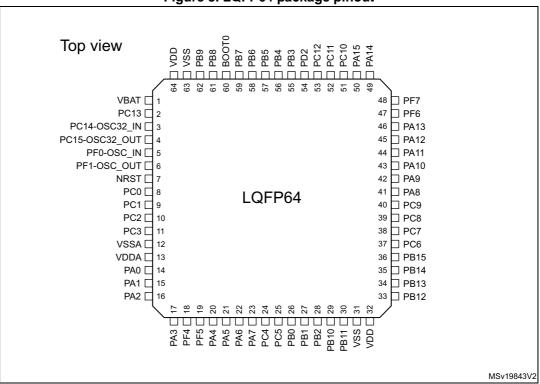
The system window watchdog is based on a 7-bit downcounter that can be set as free running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the APB clock (PCLK). It has an early warning interrupt capability and the counter can be frozen in debug mode.

3.14.6 SysTick timer

This timer is dedicated to real-time operating systems, but could also be used as a standard down counter. It features:

- a 24-bit down counter
- autoreload capability
- maskable system interrupt generation when the counter reaches 0
- programmable clock source (HCLK or HCLK/8)

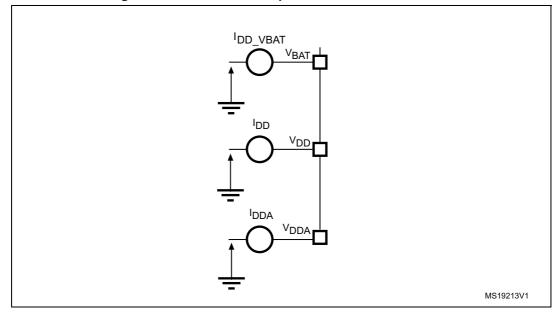
3.15 Real-time clock (RTC) and backup registers


The RTC and the five backup registers are supplied through a switch that takes power either on V_{DD} supply when present or through the V_{BAT} pin. The backup registers are five 32-bit registers used to store 20 bytes of user application data when V_{DD} power is not present. They are not reset by a system or power reset, or at wake up from Standby mode.

The RTC is an independent BCD timer/counter. Its main features are the following:

- calendar with subseconds, seconds, minutes, hours (12 or 24 format), week day, date, month, year, in BCD (binary-coded decimal) format
- automatic correction for 28, 29 (leap year), 30, and 31 day of the month
- programmable alarm with wake up from Stop and Standby mode capability
- on-the-fly correction from 1 to 32767 RTC clock pulses. This can be used to synchronize the RTC with a master clock
- digital calibration circuit with 1 ppm resolution, to compensate for quartz crystal inaccuracy
- two anti-tamper detection pins with programmable filter. The MCU can be woken up from Stop and Standby modes on tamper event detection
- timestamp feature which can be used to save the calendar content. This function can be triggered by an event on the timestamp pin, or by a tamper event. The MCU can be woken up from Stop and Standby modes on timestamp event detection
- reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision

4 Pinouts and pin descriptions



	P	in nu	umbe	er						Pin fur	nctions
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
22	G4	16	E3	12	12	PA6	I/O	TTa	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TIM1_BKIN, TIM16_CH1, COMP1_OUT, TSC_G2_IO3, EVENTOUT	ADC_IN6
23	H4	17	F4	13	13	PA7	I/O	ТТа	-	SPI1_MOSI, I2S1_SD, TIM3_CH2, TIM14_CH1, TIM1_CH1N, TIM17_CH1, COMP2_OUT, TSC_G2_IO4, EVENTOUT	ADC_IN7
24	H5	-	-	-	-	PC4	I/O	ТТа	-	EVENTOUT	ADC_IN14
25	H6	-	-	-	-	PC5	I/O	TTa	-	TSC_G3_IO1	ADC_IN15
26	F5	18	F3	14	14	PB0	I/O	ТТа	-	TIM3_CH3, TIM1_CH2N, TSC_G3_IO2, EVENTOUT	ADC_IN8
27	G5	19	F2	15	15	PB1	I/O	TTa	-	TIM3_CH4, TIM14_CH1, TIM1_CH3N, TSC_G3_IO3	ADC_IN9
28	G6	20	D2	-	16	PB2	I/O	FT	(4)	TSC_G3_IO4	-
29	G7	21	-	-	-	PB10	I/O	FT	(5)	I2C2_SCL, CEC, TIM2_CH3, TSC_SYNC	-
30	H7	22	-	-	-	PB11	I/O	FT	(5)	I2C2_SDA, TIM2_CH4, TSC_G6_IO1, EVENTOUT	-
31	D4	23	F1	16	0	VSS	S	-	-	Gro	und
32	E4	24	E1	17	17	VDD	S	-	-	Digital pov	ver supply

Table 13. Pin definitions (continued)

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics* and *Table 19: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage	- 0.3	4.0	V
V _{DDA} -V _{SS}	External analog supply voltage	- 0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
VIN (BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} - 0.3	4.0	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara		-

Table 17. Voltage characteristics ⁽¹⁾)
--	---

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 18: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

	e 23. Programmable voltage de			3 (0011	macaj	
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V	PVD threshold 6	Rising edge	2.66	2.78	2.9	V
V _{PVD6}		Falling edge	2.56	2.68	2.8	V
V	PVD threshold 7	Rising edge	2.76	2.88	3	V
V _{PVD7}		Falling edge	2.66	2.78	2.9	V
V _{PVDhyst} ⁽¹⁾	PVD hysteresis	-	-	100	-	mV
I _{DD(PVD)}	PVD current consumption	-	-	0.15	0.26 ⁽¹⁾	μA

 Table 23. Programmable voltage detector characteristics (continued)

1. Guaranteed by design, not tested in production.

6.3.4 Embedded reference voltage

The parameters given in *Table 24* are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter Conditions		Min	Тур	Max	Unit	
V _{REFINT}	Internal reference voltage	–40 °C < T _A < +105 °C	1.2	1.23	1.25	V	
t _{start}	ADC_IN17 buffer startup time	-	-	-	10 ⁽¹⁾	μs	
t _{S_vrefint}	ADC sampling time when reading the internal reference voltage	-	4 ⁽¹⁾	-	-	μs	
ΔV _{REFINT}	Internal reference voltage spread over the temperature range	V _{DDA} = 3 V	-	-	10 ⁽¹⁾	mV	
T _{Coeff}	Temperature coefficient	-	- 100 ⁽¹⁾	-	100 ⁽¹⁾	ppm/°C	

Table 24. Embedded internal reference voltage

1. Guaranteed by design, not tested in production.

6.3.5 Supply current characteristics

The current consumption is a function of several parameters and factors such as the operating voltage, ambient temperature, I/O pin loading, device software configuration, operating frequencies, I/O pin switching rate, program location in memory and executed binary code.

The current consumption is measured as described in *Figure 14: Current consumption measurement scheme*.

All Run-mode current consumption measurements given in this section are performed with a reduced code that gives a consumption equivalent to CoreMark code.

Symbol	Parameter	6	Typical con Run i	sumption in node	Typical con Sleep	Unit	
	Parameter	f _{HCLK}	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	23.2	13.3	13.2	3.1	
I _{DD}		36 MHz	17.6	10.3	10.1	2.6	
		32 MHz	15.6	9.3	9.0	2.4	
	Current	24 MHz	12.1	7.4	7.0	2.0	
	consumption	16 MHz	8.4	5.1	5.0	1.6	mA
	from V _{DD} supply	8 MHz	4.5	3.0	2.8	1.1	ША
	Supply	4 MHz	2.8	2.0	2.0	1.1	
		2 MHz	1.9	1.5	1.5	1.0	
		1 MHz	1.5	1.3	1.3	1.0	
		500 kHz	1.2	1.2	1.1	1.0	
		48 MHz		1	51		
		36 MHz		11	13		
		32 MHz		1(01		
	Current	24 MHz		7	9		
I _{DDA}	consumption	16 MHz		5	7		
'DDA	from V _{DDA} supply	8 MHz		2	.2		μA
	Suppry	4 MHz		2	.2		
		2 MHz		2	.2		
		1 MHz		2	.2		
		500 kHz		2	.2		

Table 29. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 48: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 35*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
		V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.5	-	
I _{DD}	HSE current consumption	V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{\rm SU(HSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

 t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

Symbol	Parameter	Conditions	Min ⁽¹⁾	Unit			
N _{END}	Endurance	T _A = -40 to +105 °C	10	kcycle			
	1 kcycle ⁽²⁾ at T _A = 85 °C	30					
t _{RET}	Data retention	1 kcycle ⁽²⁾ at T _A = 105 °C	10	Year			
		10 kcycle ⁽²⁾ at T _A = 55 °C	20				

 Table 42. Flash memory endurance and data retention

1. Data based on characterization results, not tested in production.

2. Cycling performed over the whole temperature range.

6.3.11 EMC characteristics

Susceptibility tests are performed on a sample basis during device characterization.

Functional EMS (electromagnetic susceptibility)

While a simple application is executed on the device (toggling 2 LEDs through I/O ports). the device is stressed by two electromagnetic events until a failure occurs. The failure is indicated by the LEDs:

- Electrostatic discharge (ESD) (positive and negative) is applied to all device pins until a functional disturbance occurs. This test is compliant with the IEC 61000-4-2 standard.
- **FTB**: A Burst of Fast Transient voltage (positive and negative) is applied to V_{DD} and V_{SS} through a 100 pF capacitor, until a functional disturbance occurs. This test is compliant with the IEC 61000-4-4 standard.

A device reset allows normal operations to be resumed.

The test results are given in *Table 43*. They are based on the EMS levels and classes defined in application note AN1709.

Symbol	Parameter	Conditions	Level/ Class
V _{FESD}		V_{DD} = 3.3 V, LQFP64, T _A = +25 °C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-2	2B
V _{EFTB}	Fast transient voltage burst limits to be applied through 100 pF on V_{DD} and V_{SS} pins to induce a functional disturbance	V_{DD} = 3.3 V, LQFP64, T _A = +25°C, f _{HCLK} = 48 MHz, conforming to IEC 61000-4-4	4B

Table 43. EMS characteristics

Designing hardened software to avoid noise problems

EMC characterization and optimization are performed at component level with a typical application environment and simplified MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in particular.

Therefore it is recommended that the user applies EMC software optimization and prequalification tests in relation with the EMC level requested for his application.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit		
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to JESD22-A114	All	2	2000	V		
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \degree C$, conforming to ANSI/ESD STM5.3.1	All	C3	250	V		

 Table 45. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 46. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 47.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Symbol	Description	Func suscer	tional otibility	Unit
Cymbol	Description	Negative injection	Positive injection	Unit
	Injected current on BOOT0		NA	
I _{INJ}	Injected current on PA10, PA12, PB4, PB5, PB10, PB15 and PD2 pins with induced leakage current on adjacent pins less than $-10 \ \mu A$	-5	NA	mA
·IINJ	Injected current on all other FT and FTf pins	-5	NA	
	Injected current on PA6 and PC0	-0	+5	
	Injected current on all other TTa, TC and RST pins	-5	+5	

Table 47. I/	O current	injection	susceptibility
--------------	-----------	-----------	----------------

6.3.14 I/O port characteristics

General input/output characteristics

Unless otherwise specified, the parameters given in *Table 48* are derived from tests performed under the conditions summarized in *Table 20: General operating conditions*. All I/Os are designed as CMOS- and TTL-compliant (except BOOT0).

Symbol	Parameter	rameter Conditions Min		Тур	Max	Unit
		TC and TTa I/O	-	-	0.3 V _{DDIOx} +0.07 ⁽¹⁾	
	Low lovel input	FT and FTf I/O	-	-	0.475 V _{DDIOx} -0.2 ⁽¹⁾	
V _{IL}	Low level input voltage	BOOT0	-	-	0.3 V _{DDIOx} -0.3 ⁽¹⁾	V
		All I/Os except BOOT0 pin	-	-	0.3 V _{DDIOx}	
		TC and TTa I/O	0.445 V _{DDIOx} +0.398 ⁽¹⁾	-	-	
		FT and FTf I/O	0.5 V _{DDIOx} +0.2 ⁽¹⁾	-	-	
V _{IH}	High level input voltage	BOOT0	0.2 V _{DDIOx} +0.95 ⁽¹⁾	-	-	V
		All I/Os except BOOT0 pin	0.7 V _{DDIOx}	-	-	
		TC and TTa I/O	-	200 ⁽¹⁾	-	
V _{hys}	Schmitt trigger hysteresis	FT and FTf I/O	-	100 ⁽¹⁾	-	mV
	,	BOOT0	-	300 ⁽¹⁾	-	

Table 48. I/O static characteristics

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 50*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Мах	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
x0	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	10	MHz	
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25	ns	
	t _{r(IO)out}	Output rise time		-	25	115	
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	20		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5		
11	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	ns	
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12	-	
(4)	t _{r(IO)out} Output rise time			-	34	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

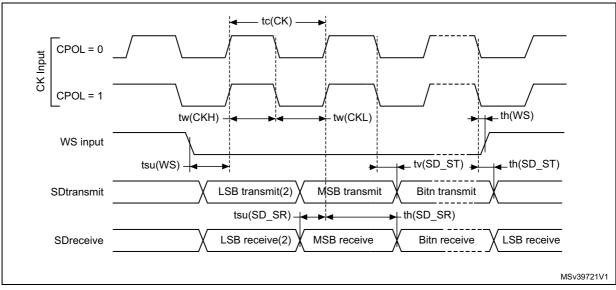
Table 50	. I/O	AC	characteristics ⁽¹⁾⁽²⁾
----------	-------	----	-----------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 23*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.



Symbol	Parameter	Parameter Conditions		Мах	Unit		
t _{su(SD_MR)}	Data input setup time	Master receiver	6	-			
t _{su(SD_SR)}		Slave receiver	2	-			
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-			
t _{h(SD_SR)} ⁽²⁾		Slave receiver	0.5	-			
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4	ns		
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	20			
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-]		
t _{h(SD_ST)}		Slave transmitter	13	-			

Table 64. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 32. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

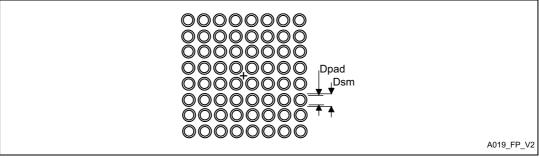


	Table 05. OFBGA04 package mechanical data (continued)								
Cumula al		millimeters			inches ⁽¹⁾				
Symbol	Min	Тур	Max	Min	Тур	Max			
А	0.460	0.530	0.600	0.0181	0.0209	0.0236			
b	0.170	0.280	0.330	0.0067	0.0110	0.0130			
D	4.850	5.000	5.150	0.1909	0.1969	0.2028			
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398			
Е	4.850	5.000	5.150	0.1909	0.1969	0.2028			
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398			
е	-	0.500	-	-	0.0197	-			
F	0.700	0.750	0.800	0.0276	0.0295	0.0315			
ddd	-	-	0.080	-	-	0.0031			
eee	-	-	0.150	-	-	0.0059			
fff	-	-	0.050	-	-	0.0020			

Table 65. UFBGA64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 35. Recommended footprint for UFBGA64 package

Table 66. UFBGA64 recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

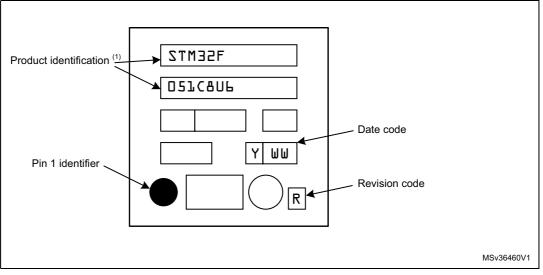


Figure 45. UFQFPN48 package marking example

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Each temperature range suffix corresponds to a specific guaranteed ambient temperature at maximum dissipation and, to a specific maximum junction temperature.

As applications do not commonly use the STM32F051xx at maximum dissipation, it is useful to calculate the exact power consumption and junction temperature to determine which temperature range will be best suited to the application.

The following examples show how to calculate the temperature range needed for a given application.

Example 1: High-performance application

Assuming the following application conditions:

Maximum ambient temperature T_{Amax} = 82 °C (measured according to JESD51-2), I_{DDmax} = 50 mA, V_{DD} = 3.5 V, maximum 20 I/Os used at the same time in output at low level with I_{OL} = 8 mA, V_{OL}= 0.4 V and maximum 8 I/Os used at the same time in output at low level with I_{OL} = 20 mA, V_{OL}= 1.3 V

 $P_{INTmax} = 50 \text{ mA} \times 3.5 \text{ V} = 175 \text{ mW}$

P_{IOmax} = 20 × 8 mA × 0.4 V + 8 × 20 mA × 1.3 V = 272 mW

This gives: P_{INTmax} = 175 mW and P_{IOmax} = 272 mW:

P_{Dmax} = 175 + 272 = 447 mW

Using the values obtained in *Table 74* T_{Jmax} is calculated as follows:

- For LQFP64, 45 °C/W

T_{Jmax} = 82 °C + (45 °C/W × 447 mW) = 82 °C + 20.115 °C = 102.115 °C

This is within the range of the suffix 6 version parts ($-40 < T_J < 105 \text{ °C}$) see *Table 20: General operating conditions*.

In this case, parts must be ordered at least with the temperature range suffix 6 (see *Section 8: Ordering information*).

With this given P_{Dmax} we can find the T_{Amax} allowed for a given device temperature range (order code suffix 6 or 7).

Suffix 6: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 105\text{-}20.115 = 84.885 ^{\circ}C$ Suffix 7: $T_{Amax} = T_{Jmax} - (45^{\circ}C/W \times 447 \text{ mW}) = 125\text{-}20.115 = 104.885 ^{\circ}C$

Example 2: High-temperature application

Using the same rules, it is possible to address applications that run at high ambient temperatures with a low dissipation, as long as junction temperature T_J remains within the specified range.

Assuming the following application conditions:

Maximum ambient temperature $T_{Amax} = 100 \text{ °C}$ (measured according to JESD51-2), $I_{DDmax} = 20 \text{ mA}, V_{DD} = 3.5 \text{ V}$, maximum 20 I/Os used at the same time in output at low level with $I_{OL} = 8 \text{ mA}, V_{OL} = 0.4 \text{ V}$ $P_{INTmax} = 20 \text{ mA} \times 3.5 \text{ V} = 70 \text{ mW}$ $P_{IOmax} = 20 \times 8 \text{ mA} \times 0.4 \text{ V} = 64 \text{ mW}$ This gives: $P_{INTmax} = 70 \text{ mW}$ and $P_{IOmax} = 64 \text{ mW}$: $P_{Dmax} = 70 + 64 = 134 \text{ mW}$

Thus: P_{Dmax} = 134 mW

Note:

DocID022265 Rev 7