

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	25
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 13x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	32-LQFP
Supplier Device Package	32-LQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051k8t7

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Contents

1	Introd	duction				
2	Desci	ription .				
3	Funct	tional ov	verview			
	3.1	ARM [®] -0	Cortex [®] -M0 core			
	3.2	Memori	es 13			
	3.3	Boot mo	odes			
	3.4	Cyclic re	edundancy check calculation unit (CRC)			
	3.5	Power r	nanagement			
		3.5.1	Power supply schemes			
		3.5.2	Power supply supervisors			
		3.5.3	Voltage regulator			
		3.5.4	Low-power modes			
	3.6	Clocks a	and startup			
	3.7	General	General-purpose inputs/outputs (GPIOs) 16			
	3.8	Direct m	nemory access controller (DMA) 17			
	3.9	Interrup	ts and events			
		3.9.1	Nested vectored interrupt controller (NVIC)			
		3.9.2	Extended interrupt/event controller (EXTI)			
	3.10	Analog-	to-digital converter (ADC) 17			
		3.10.1	Temperature sensor			
		3.10.2	Internal voltage reference (V _{REFINT})			
		3.10.3	V _{BAT} battery voltage monitoring			
	3.11	Digital-t	o-analog converter (DAC) 19			
	3.12	Compar	rators (COMP) 19			
	3.13	Touch s	ensing controller (TSC) 19			
	3.14	Timers a	and watchdogs			
		3.14.1	Advanced-control timer (TIM1)			
		3.14.2	General-purpose timers (TIM2, 3, 14, 15, 16, 17)			
		3.14.3	Basic timer TIM6			
		3.14.4	Independent watchdog (IWDG) 22			
		3.14.5	System window watchdog (WWDG)23			

DocID022265 Rev 7

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

3.14.2 General-purpose timers (TIM2, 3, 14, 15, 16, 17)

There are six synchronizable general-purpose timers embedded in the STM32F051xx devices (see *Table 7* for differences). Each general-purpose timer can be used to generate PWM outputs, or as simple time base.

TIM2, TIM3

STM32F051xx devices feature two synchronizable 4-channel general-purpose timers. TIM2 is based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler. TIM3 is based on a 16-bit auto-reload up/downcounter and a 16-bit prescaler. They feature 4 independent channels each for input capture/output compare, PWM or one-pulse mode output. This gives up to 12 input captures/output compares/PWMs on the largest packages.

The TIM2 and TIM3 general-purpose timers can work together or with the TIM1 advancedcontrol timer via the Timer Link feature for synchronization or event chaining.

TIM2 and TIM3 both have independent DMA request generation.

These timers are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 3 hall-effect sensors.

Their counters can be frozen in debug mode.

TIM14

This timer is based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM14 features one single channel for input capture/output compare, PWM or one-pulse mode output.

Its counter can be frozen in debug mode.

TIM15, TIM16 and TIM17

These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler.

TIM15 has two independent channels, whereas TIM16 and TIM17 feature one single channel for input capture/output compare, PWM or one-pulse mode output.

The TIM15, TIM16 and TIM17 timers can work together, and TIM15 can also operate with TIM1 via the Timer Link feature for synchronization or event chaining.

TIM15 can be synchronized with TIM16 and TIM17.

TIM15, TIM16 and TIM17 have a complementary output with dead-time generation and independent DMA request generation.

Their counters can be frozen in debug mode.

3.14.3 Basic timer TIM6

This timer is mainly used for DAC trigger generation. It can also be used as a generic 16-bit time base.

3.14.4 Independent watchdog (IWDG)

The independent watchdog is based on an 8-bit prescaler and 12-bit downcounter with user-defined refresh window. It is clocked from an independent 40 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It

DocID022265 Rev 7

3.18 Serial peripheral interface (SPI) / Inter-integrated sound interface (I²S)

Up to two SPIs are able to communicate up to 18 Mbit/s in slave and master modes in fullduplex and half-duplex communication modes. The 3-bit prescaler gives 8 master mode frequencies and the frame size is configurable from 4 bits to 16 bits.

One standard I²S interface (multiplexed with SPI1) supporting four different audio standards can operate as master or slave at half-duplex communication mode. It can be configured to transfer 16 and 24 or 32 bits with 16-bit or 32-bit data resolution and synchronized by a specific signal. Audio sampling frequency from 8 kHz up to 192 kHz can be set by an 8-bit programmable linear prescaler. When operating in master mode, it can output a clock for an external audio component at 256 times the sampling frequency.

SPI features ⁽¹⁾	SPI1	SPI2
Hardware CRC calculation	Х	Х
Rx/Tx FIFO	Х	Х
NSS pulse mode	Х	Х
I ² S mode	Х	-
TI mode	Х	Х

1. X = supported.

3.19 High-definition multimedia interface (HDMI) - consumer electronics control (CEC)

The device embeds a HDMI-CEC controller that provides hardware support for the Consumer Electronics Control (CEC) protocol (Supplement 1 to the HDMI standard).

This protocol provides high-level control functions between all audiovisual products in an environment. It is specified to operate at low speeds with minimum processing and memory overhead. It has a clock domain independent from the CPU clock, allowing the HDMI_CEC controller to wakeup the MCU from Stop mode on data reception.

3.20 Serial wire debug port (SW-DP)

An ARM SW-DP interface is provided to allow a serial wire debugging tool to be connected to the MCU.

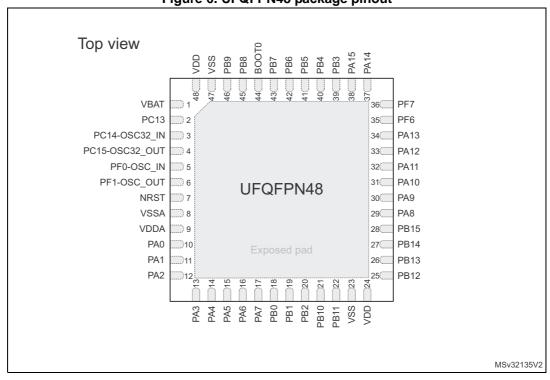
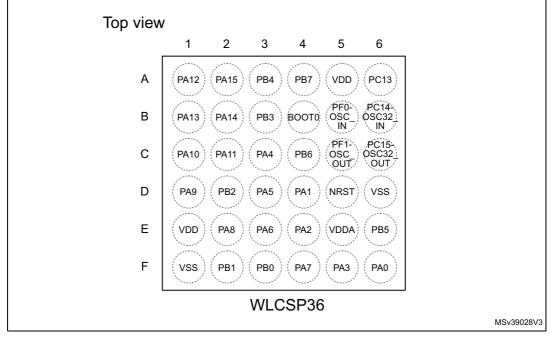



Figure 6. UFQFPN48 package pinout

Figure 7. WLCSP36 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

Bus	Boundary address	Size	Peripheral
	0x4800 1800 - 0x5FFF FFFF	~384 MB	Reserved
	0x4800 1400 - 0x4800 17FF	1 KB	GPIOF
	0x4800 1000 - 0x4800 13FF	1 KB	Reserved
	0x4800 0C00 - 0x4800 0FFF	1 KB	GPIOD
AHB2 —	0x4800 0800 - 0x4800 0BFF	1 KB	GPIOC
	0x4800 0400 - 0x4800 07FF	1 KB	GPIOB
	0x4800 0000 - 0x4800 03FF	1 KB	GPIOA
	0x4002 4400 - 0x47FF FFFF	~128 MB	Reserved
	0x4002 4000 - 0x4002 43FF	1 KB	TSC
	0x4002 3400 - 0x4002 3FFF	3 KB	Reserved
	0x4002 3000 - 0x4002 33FF	1 KB	CRC
	0x4002 2400 - 0x4002 2FFF	3 KB	Reserved
AHB1	0x4002 2000 - 0x4002 23FF	1 KB	Flash memory interface
	0x4002 1400 - 0x4002 1FFF	3 KB	Reserved
	0x4002 1000 - 0x4002 13FF	1 KB	RCC
	0x4002 0400 - 0x4002 0FFF	3 KB	Reserved
	0x4002 0000 - 0x4002 03FF	1 KB	DMA
	0x4001 8000 - 0x4001 FFFF	32 KB	Reserved
	0x4001 5C00 - 0x4001 7FFF	9 KB	Reserved
	0x4001 5800 - 0x4001 5BFF	1 KB	DBGMCU
	0x4001 4C00 - 0x4001 57FF	3 KB	Reserved
	0x4001 4800 - 0x4001 4BFF	1 KB	TIM17
	0x4001 4400 - 0x4001 47FF	1 KB	TIM16
	0x4001 4000 - 0x4001 43FF	1 KB	TIM15
	0x4001 3C00 - 0x4001 3FFF	1 KB	Reserved
	0x4001 3800 - 0x4001 3BFF	1 KB	USART1
	0x4001 3400 - 0x4001 37FF	1 KB	Reserved
	0x4001 3000 - 0x4001 33FF	1 KB	SPI1/I2S1
APB	0x4001 2C00 - 0x4001 2FFF	1 KB	TIM1
	0x4001 2800 - 0x4001 2BFF	1 KB	Reserved
	0x4001 2400 - 0x4001 27FF	1 KB	ADC
	0x4001 0800 - 0x4001 23FF	7 KB	Reserved
	0x4001 0400 - 0x4001 07FF	1 KB	EXTI
	0x4001 0000 - 0x4001 03FF	1 KB	SYSCFG + COMP
	0x4000 8000 - 0x4000 FFFF	32 KB	Reserved

Table 16. STM32F051xx peripheral register boundary addresses

DocID022265 Rev 7

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics* and *Table 19: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
V _{DD} -V _{SS}	External main supply voltage	- 0.3	4.0	V
V _{DDA} -V _{SS}	External analog supply voltage	- 0.3	4.0	V
V _{DD} -V _{DDA}	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
V _{BAT} –V _{SS}	External backup supply voltage	- 0.3	4.0	V
	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
V _{IN} ⁽²⁾	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
VIN (BOOT0	0	9.0	V
	Input voltage on any other pin	V _{SS} - 0.3	4.0	V
ΔV _{DDx}	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	see Section 6.3 sensitivity chara		-

Table 17. Voltage characteristics ⁽¹⁾)
--	---

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 18: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

Symbol Parameter		6	Typical consumption in Run modeTypical consumption in Sleep mode				Unit
Symbol	Falailletei	f _{HCLK}	Peripherals enabled	Peripherals disabled	Peripherals enabled	Peripherals disabled	Unit
		48 MHz	23.2	13.3	13.2	3.1	
		36 MHz	17.6	10.3	10.1	2.6	
		32 MHz	15.6	9.3	9.0	2.4	
	Current	24 MHz	12.1	7.4	7.0	2.0	
	consumption	16 MHz	8.4	5.1	5.0	1.6	mA
I _{DD}	from V _{DD}	8 MHz	4.5	3.0	2.8	1.1	ША
	supply	4 MHz	2.8	2.0	2.0	1.1	
		2 MHz	1.9	1.5	1.5	1.0	
		1 MHz	1.5	1.3	1.3	1.0	
		500 kHz	1.2	1.2	1.1	1.0	
		48 MHz		1	51		
		36 MHz		11	13		
		32 MHz		1(01		
	Current	24 MHz		7	9		
I _{DDA}	consumption	16 MHz		5	7		μA
'DDA	from V _{DDA} supply	8 MHz		2	.2		μΑ
		4 MHz		2.2]
		2 MHz		2	.2		
		1 MHz		2	.2		
		500 kHz		2	.2		

Table 29. Typical current consumption, code executing from Flash memory, running from HSE 8 MHz crystal

I/O system current consumption

The current consumption of the I/O system has two components: static and dynamic.

I/O static current consumption

All the I/Os used as inputs with pull-up generate current consumption when the pin is externally held low. The value of this current consumption can be simply computed by using the pull-up/pull-down resistors values given in *Table 48: I/O static characteristics*.

For the output pins, any external pull-down or external load must also be considered to estimate the current consumption.

Additional I/O current consumption is due to I/Os configured as inputs if an intermediate voltage level is externally applied. This current consumption is caused by the input Schmitt

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 31: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 $\rm f_{SW}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

High-speed external clock generated from a crystal/ceramic resonator

The high-speed external (HSE) clock can be supplied with a 4 to 32 MHz crystal/ceramic resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 35*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
f _{OSC_IN}	Oscillator frequency	-	4	8	32	MHz
R _F	Feedback resistor	-	-	200	-	kΩ
		During startup ⁽³⁾	-	-	8.5	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@8 MHz	-	0.4	-	
	HSE current consumption	V _{DD} = 3.3 V, Rm = 45 Ω, CL = 10 pF@8 MHz	-	0.5	-	
I _{DD}		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 5 pF@32 MHz	-	0.8	-	mA
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 10 pF@32 MHz	-	1	-	
		V _{DD} = 3.3 V, Rm = 30 Ω, CL = 20 pF@32 MHz	-	1.5	-	
9 _m	Oscillator transconductance	Startup	10	-	-	mA/V
$t_{SU(HSE)}^{(4)}$	Startup time	V _{DD} is stabilized	-	2	-	ms

1. Resonator characteristics given by the crystal/ceramic resonator manufacturer.

2. Guaranteed by design, not tested in production.

3. This consumption level occurs during the first 2/3 of the $t_{SU(\text{HSE})}$ startup time

4. t_{SU(HSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 8 MHz oscillation is reached. This value is measured for a standard crystal resonator and it can vary significantly with the crystal manufacturer

For C_{L1} and C_{L2} , it is recommended to use high-quality external ceramic capacitors in the 5 pF to 20 pF range (Typ.), designed for high-frequency applications, and selected to match the requirements of the crystal or resonator (see *Figure 17*). C_{L1} and C_{L2} are usually the same size. The crystal manufacturer typically specifies a load capacitance which is the series combination of C_{L1} and C_{L2} . PCB and MCU pin capacitance must be included (10 pF can be used as a rough estimate of the combined pin and board capacitance) when sizing C_{L1} and C_{L2} .

Note: For information on selecting the crystal, refer to the application note AN2867 "Oscillator design guide for ST microcontrollers" available from the ST website www.st.com.

High-speed internal 14 MHz (HSI14) RC oscillator (dedicated to ADC)

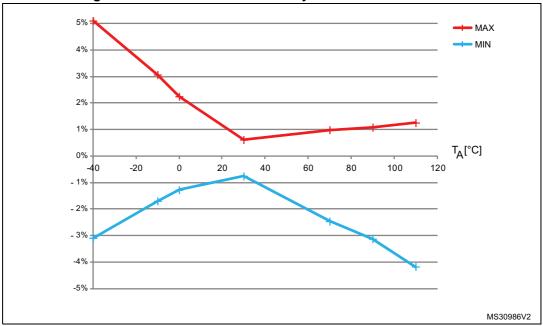

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
f _{HSI14}	Frequency	-	-	14	-	MHz
TRIM	HSI14 user-trimming step	-	-	-	1 ⁽²⁾	%
DuCy _(HSI14)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%
	Accuracy of the HSI14 oscillator (factory calibrated)	T _A = -40 to 105 °C	-4.2 ⁽³⁾	-	5.1 ⁽³⁾	%
100		T _A = −10 to 85 °C	-3.2 ⁽³⁾	-	3.1 ⁽³⁾	%
ACC _{HSI14}		T _A = 0 to 70 °C	-2.5 ⁽³⁾	-	2.3 ⁽³⁾	%
		T _A = 25 °C	-1	-	1	%
t _{su(HSI14)}	HSI14 oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs
I _{DDA(HSI14)}	HSI14 oscillator power consumption	-	-	100	150 ⁽²⁾	μA

Table 38. HSI14 oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105 °C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

Figure 20. HSI14 oscillator accuracy characterization results

Low-speed internal (LSI) RC oscillator

Table 39. LSI oscillator	characteristics ⁽¹⁾
--------------------------	--------------------------------

Symbol	Parameter	Min	Тур	Max	Unit
f _{LSI}	Frequency	30	40	50	kHz
t _{su(LSI)} ⁽²⁾	LSI oscillator startup time	-	-	85	μs
I _{DDA(LSI)} ⁽²⁾	LSI oscillator power consumption	-	0.75	1.2	μΑ

1. V_{DDA} = 3.3 V, T_A = –40 to 105 $^\circ\text{C}$ unless otherwise specified.

2. Guaranteed by design, not tested in production.

6.3.9 PLL characteristics

The parameters given in *Table 40* are derived from tests performed under ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Parameter		Value			
Symbol	Falameter	Min	Тур	Max	Unit	
f	PLL input clock ⁽¹⁾	1 ⁽²⁾	8.0	24 ⁽²⁾	MHz	
f _{PLL_IN}	PLL input clock duty cycle	40 ⁽²⁾	-	60 ⁽²⁾	%	
f _{PLL_OUT}	PLL multiplier output clock	16 ⁽²⁾	-	48	MHz	
t _{LOCK}	PLL lock time	-	-	200 ⁽²⁾	μs	
Jitter _{PLL}	Cycle-to-cycle jitter	-	_	300 ⁽²⁾	ps	

Table 40. PLL characteristics

1. Take care to use the appropriate multiplier factors to obtain PLL input clock values compatible with the range defined by f_{PLL_OUT}.

2. Guaranteed by design, not tested in production.

6.3.10 Memory characteristics

Flash memory

The characteristics are given at $T_A = -40$ to 105 °C unless otherwise specified.

Table 41. Flash memory characteristics

Symbol	Parameter	Conditions	Min	Тур	Max ⁽¹⁾	Unit
t _{prog}	16-bit programming time	T _A = - 40 to +105 °C	40	53.5	60	μs
t _{ERASE}	Page (1 KB) erase time	T _A = - 40 to +105 °C	20	-	40	ms
t _{ME}	Mass erase time	T _A = - 40 to +105 °C	20	-	40	ms
	Supply current	Write mode	-	-	10	mA
I _{DD} Supply current	Erase mode	-	-	12	mA	

1. Guaranteed by design, not tested in production.

Symbol	Ratings	Conditions	Packages	Class	Maximum value ⁽¹⁾	Unit	
V _{ESD(HBM)}	Electrostatic discharge voltage (human body model)	$T_A = +25 \degree C$, conforming to JESD22-A114	All	2	2000	V	
V _{ESD(CDM)}	Electrostatic discharge voltage (charge device model)	$T_A = +25 \degree C$, conforming to ANSI/ESD STM5.3.1	All	C3	250	V	

 Table 45. ESD absolute maximum ratings

1. Data based on characterization results, not tested in production.

Static latch-up

Two complementary static tests are required on six parts to assess the latch-up performance:

- A supply overvoltage is applied to each power supply pin.
- A current injection is applied to each input, output and configurable I/O pin.

These tests are compliant with EIA/JESD 78A IC latch-up standard.

Table 46. Electrical sensitivities

Symbol	Parameter	Conditions	Class
LU	Static latch-up class	$T_A = +105 \text{ °C conforming to JESD78A}$	II level A

6.3.13 I/O current injection characteristics

As a general rule, current injection to the I/O pins, due to external voltage below V_{SS} or above V_{DDIOx} (for standard, 3.3 V-capable I/O pins) should be avoided during normal product operation. However, in order to give an indication of the robustness of the microcontroller in cases when abnormal injection accidentally happens, susceptibility tests are performed on a sample basis during device characterization.

Functional susceptibility to I/O current injection

While a simple application is executed on the device, the device is stressed by injecting current into the I/O pins programmed in floating input mode. While current is injected into the I/O pin, one at a time, the device is checked for functional failures.

The failure is indicated by an out of range parameter: ADC error above a certain limit (higher than 5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of the -5 μ A/+0 μ A range) or other functional failure (for example reset occurrence or oscillator frequency deviation).

The characterization results are given in Table 47.

Negative induced leakage current is caused by negative injection and positive induced leakage current is caused by positive injection.

Input/output AC characteristics

The definition and values of input/output AC characteristics are given in *Figure 23* and *Table 50*, respectively. Unless otherwise specified, the parameters given are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

OSPEEDRy [1:0] value ⁽¹⁾	Symbol	Parameter	Conditions	Min	Мах	Unit	
	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
x0	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	125	ns	
	t _{r(IO)out}	Output rise time		-	125	115	
	f _{max(IO)out} Maximum frequency ⁽³⁾			-	10	MHz	
01	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	25	ns	
	t _{r(IO)out}	Output rise time		-	25		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	50		
	f _{max(IO)out}	Maximum frequency ⁽³⁾	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	30	MHz	
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	20		
			C_L = 30 pF, $V_{DDIOx} \ge 2.7 V$	-	5		
11	t _{f(IO)out}	Output fall time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12]	
			$C_L = 30 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	5	ns	
	t _{r(IO)out}	Output rise time	$C_L = 50 \text{ pF}, V_{DDIOx} \ge 2.7 \text{ V}$	-	8		
			C_L = 50 pF, V_{DDIOx} < 2.7 V	-	12		
Fm+	f _{max(IO)out}	Maximum frequency ⁽³⁾		-	2	MHz	
configuration	t _{f(IO)out}	Output fall time	C _L = 50 pF	-	12	-	
(4)	t _{r(IO)out}	Output rise time		-	34	ns	
-	t _{EXTIpw}	Pulse width of external signals detected by the EXTI controller	-	10	-	ns	

Table 50	. I/O	AC	characteristics ⁽¹⁾⁽²⁾
----------	-------	----	-----------------------------------

1. The I/O speed is configured using the OSPEEDRx[1:0] bits. Refer to the STM32F0xxxx RM0091 reference manual for a description of GPIO Port configuration register.

2. Guaranteed by design, not tested in production.

3. The maximum frequency is defined in *Figure 23*.

4. When Fm+ configuration is set, the I/O speed control is bypassed. Refer to the STM32F0xxxx reference manual RM0091 for a detailed description of Fm+ I/O configuration.

Symbol	Parameter	Min	Мах	Unit
t _{AF}	Maximum width of spikes that are suppressed by the analog filter	50 ⁽²⁾	260 ⁽³⁾	ns

Table 62. I²C analog filter characteristics⁽¹⁾

1. Guaranteed by design, not tested in production.

2. Spikes with widths below $t_{AF(min)}$ are filtered.

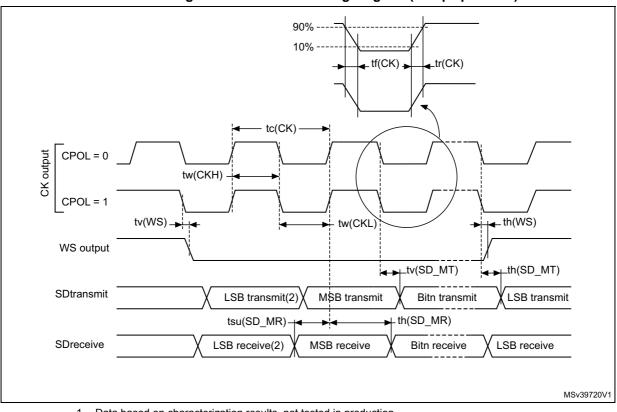
3. Spikes with widths above $t_{AF(max)}$ are not filtered

SPI/I²S characteristics

Unless otherwise specified, the parameters given in *Table 63* for SPI or in *Table 64* for I^2S are derived from tests performed under the ambient temperature, f_{PCLKx} frequency and supply voltage conditions summarized in *Table 20: General operating conditions*.

Refer to Section 6.3.14: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI and WS, CK, SD for I²S).

Symbol	Parameter	Conditions	Min	Max	Unit
f _{SCK}		Master mode	-	18	MHz
1/t _{c(SCK)}	SPI clock frequency	Slave mode	-	18	IVITZ
t _{r(SCK)} t _{f(SCK)}	SPI clock rise and fall time	Capacitive load: C = 15 pF	-	6	ns
t _{su(NSS)}	NSS setup time	Slave mode	4Tpclk	-	
t _{h(NSS)}	NSS hold time	Slave mode	2Tpclk + 10	-	
t _{w(SCKH)} t _{w(SCKL)}	SCK high and low time	Master mode, f _{PCLK} = 36 MHz, presc = 4	Tpclk/2 -2	Tpclk/2 + 1	
t _{su(MI)}		Master mode	4	-	
t _{su(SI)}		Slave mode	5	-	
t _{h(MI)}	Data input hold time	Master mode	4	-	
t _{h(SI)}	Data input hold time	Slave mode	5	-	ns
t _{a(SO)} ⁽²⁾	Data output access time	Slave mode, f _{PCLK} = 20 MHz	0	3Tpclk	
t _{dis(SO)} ⁽³⁾	Data output disable time	Slave mode	0	18	
t _{v(SO)}	Data output valid time	Slave mode (after enable edge)	-	22.5	
t _{v(MO)}	Data output valid time	Master mode (after enable edge)	-	6	
t _{h(SO)}	Data output hold time	Slave mode (after enable edge)	11.5	-	
t _{h(MO)}		Master mode (after enable edge)	2	-	
DuCy(SCK)	SPI slave input clock duty cycle	Slave mode	25	75	%


Table	63.	SPI	characteristics ⁽¹⁾
-------	-----	-----	--------------------------------

1. Data based on characterization results, not tested in production.

2. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.

3. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z

Figure 33. I²S master timing diagram (Philips protocol)

- 1. Data based on characterization results, not tested in production.
- 2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

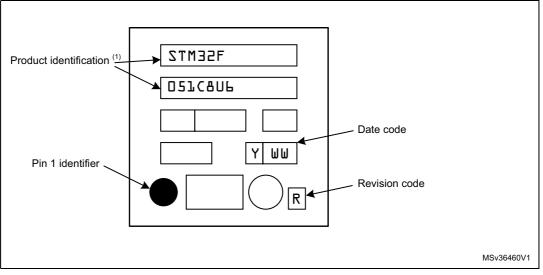


Figure 45. UFQFPN48 package marking example

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

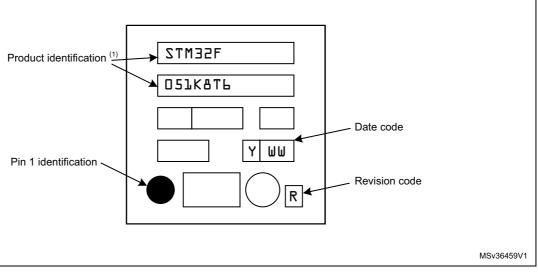


Figure 51. LQFP32 package marking example

 Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

7.7 UFQFPN32 package information

UFQFPN32 is a 32-pin, 5x5 mm, 0.5 mm pitch ultra-thin fine-pitch quad flat package.

8 Ordering information

For a list of available options (memory, package, and so on) or for further information on any aspect of this device, please contact your nearest ST sales office.

e family ST e family Performance e family Performance e family Performance neral-purpose Performance mily Performance STM32F051xx Performance unt Performance pins Performance pins Performance ode memory size Kbyte Kbyte Kbyte Kbyte Kbyte	M32	F 0	51		8 1	Г 6
P = ARM-based 32-bit microcontroller ct type neral-purpose mily STM32F051xx unt pins pins pins pins Kbyte Kbyte						
P = ARM-based 32-bit microcontroller ct type neral-purpose mily STM32F051xx unt pins pins pins pins Kbyte Kbyte						
ct type neral-purpose mily STM32F051xx unt pins pins pins pins pins bins bins bins bins bins bins bins b						
neral-purpose mily STM32F051xx unt pins pins pins pins pins bins pins pins pins Kbyte Kbyte						
neral-purpose mily STM32F051xx unt pins pins pins pins pins bins pins pins pins Kbyte Kbyte						
mily STM32F051xx unt pins pins pins pins ode memory size Kbyte Kbyte						
STM32F051xx unt pins pins pins pins ode memory size Kbyte Kbyte						
STM32F051xx unt pins pins pins pins ode memory size Kbyte Kbyte]			
unt pins pins pins pins ode memory size Kbyte Kbyte						
pins pins pins pins ode memory size Kbyte Kbyte						
pins pins pins ode memory size Kbyte Kbyte				J		
pins pins ode memory size Kbyte Kbyte						
pins ode memory size Kbyte Kbyte						
ode memory size Kbyte Kbyte						
Kbyte Kbyte						
Kbyte Kbyte						
Kbyte					J	
-						
ge						
BGA						
FP						
QFPN						
CSP						
rature range						
) °C to +85 °C						
) °C to +105 °C						
IS						

xxx = code ID of programmed parts (includes packing type) TR = tape and reel packing blank = tray packing

Data	Revision	Changes
Date	Revision	Changes
28-Aug-2015	5 (continued)	 Table 31: Peripheral current consumption Addition of WLCSP36 package. Updates in: Section 2: Description Table 2: STM32F051xx family device features and peripheral count Section 4: Pinouts and pin descriptions with the addition of Figure 7: WLCSP36 package pinout Table 13: Pin definitions Table 20: General operating conditions Section 7: Package information with the addition of Section 7.5: WLCSP36 package information Table 74: Package thermal characteristics Section 8: Part numbering Update of the device marking examples in Section 7: Package information.
16-Dec-2015	6	 Section 2: Description: Table 2: STM32F051xx family device features and peripheral count - number of SPIs corrected for 64-pin packages Figure 1: Block diagram modified Section 3: Functional overview: Figure 2: Clock tree modified; divider for CEC corrected Table 8: Comparison of I²C analog and digital filters - adding 20 mA information for FastPlus mode Section 4: Pinouts and pin descriptions: Package pinout figures updated (look and feel) Figure 7: WLCSP36 package pinout - now presented in top view Table 13: Pin definitions - notes added (VSSA corrected to pin 16 on LQFP32); note 5 added Section 5: Memory mapping: added information on STM32F051x4/x6 difference versus STM32F051x8 map in Figure 10 Section 6: Electrical characteristics: Table 24: Embedded internal reference voltage - removed - 40°C-85°C temperature range line and the associated note Table 48: I/O static characteristics - removed note Section 6.3.16: 12-bit ADC characteristics - changed introductory sentence Table 52: ADC characteristics updated and table footnotes 3 and 4 added Table 59: TIMx characteristics modified Table 64: I²S characteristics reorganized Figure 52: UFQFPN32 package outline - figure footnotes added

Table 76. Document revision history (continued)

