

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	HDMI-CEC, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, I ² S, POR, PWM, WDT
Number of I/O	55
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-UFBGA
Supplier Device Package	64-UFBGA (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051r8h6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

List of tables

Table 1.	Device summary	1
Table 2.	STM32F051xx family device features and peripheral count	11
Table 3.	Temperature sensor calibration values.	18
Table 4.	Internal voltage reference calibration values	18
Table 5.	Capacitive sensing GPIOs available on STM32F051xx devices	20
Table 6.	Effective number of capacitive sensing channels on STM32F051xx	20
Table 7.	Timer feature comparison	21
Table 8.	Comparison of I ² C analog and digital filters	24
Table 9.	STM32F051xx I ² C implementation	24
Table 10.	STM32F051xx USART implementation	25
Table 11.	STM32F051xx SPI/I ² S implementation	26
Table 12.	Legend/abbreviations used in the pinout table	31
Table 13.	Pin definitions	31
Table 14.	Alternate functions selected through GPIOA_AFR registers for port A	37
Table 15.	Alternate functions selected through GPIOB_AFR registers for port B	38
Table 16.	STM32F051xx peripheral register boundary addresses	40
Table 17.	Voltage characteristics	45
Table 18.	Current characteristics	46
Table 19.	Thermal characteristics.	46
Table 20.	General operating conditions	47
Table 21.	Operating conditions at power-up / power-down	48
Table 22.	Embedded reset and power control block characteristics.	48
Table 23.	Programmable voltage detector characteristics	48
Table 24.	Embedded internal reference voltage	49
Table 25.	Typical and maximum current consumption from V _{DD} at 3.6 V	50
Table 26.	Typical and maximum current consumption from the V _{DDA} supply	51
Table 27.	Typical and maximum current consumption in Stop and Standby modes	52
Table 28.	Typical and maximum current consumption from the V _{BAT} supply	53
Table 29.	Typical current consumption, code executing from Flash memory,	
	running from HSE 8 MHz crystal	54
Table 30.	Switching output I/O current consumption	56
Table 31.	Peripheral current consumption	57
Table 32.	Low-power mode wakeup timings	59
Table 33.	High-speed external user clock characteristics.	59
Table 34.	Low-speed external user clock characteristics	60
Table 35.	HSE oscillator characteristics	61
Table 36.	LSE oscillator characteristics (f _{LSE} = 32.768 kHz)	62
Table 37.	HSI oscillator characteristics.	64
Table 38.	HSI14 oscillator characteristics	65
Table 39.	LSI oscillator characteristics	66
Table 40.	PLL characteristics	66
Table 41.	Flash memory characteristics	66
Table 42.	Flash memory endurance and data retention	67
Table 43.	EMS characteristics	67
Table 44.	EMI characteristics	68
Table 45.	ESD absolute maximum ratings	69
Table 46.	Electrical sensitivities	69
Table 47.	I/O current injection susceptibility	70

1 Introduction

This datasheet provides the ordering information and mechanical device characteristics of the STM32F051xx microcontrollers.

This document should be read in conjunction with the STM32F0xxxx reference manual (RM0091). The reference manual is available from the STMicroelectronics website *www.st.com*.

For information on the ARM[®] Cortex[®]-M0 core, please refer to the Cortex[®]-M0 Technical Reference Manual, available from the www.arm.com website.

2 Description

The STM32F051xx microcontrollers incorporate the high-performance ARM[®] Cortex[®]-M0 32-bit RISC core operating at up to 48 MHz frequency, high-speed embedded memories (up to 64 Kbytes of Flash memory and 8 Kbytes of SRAM), and an extensive range of enhanced peripherals and I/Os. All devices offer standard communication interfaces (up to two I²Cs, up to two SPIs, one I²S, one HDMI CEC and up to two USARTs), one 12-bit ADC, one 12-bit DAC, six 16-bit timers, one 32-bit timer and an advanced-control PWM timer.

The STM32F051xx microcontrollers operate in the -40 to +85 $^{\circ}$ C and -40 to +105 $^{\circ}$ C temperature ranges, from a 2.0 to 3.6 V power supply. A comprehensive set of power-saving modes allows the design of low-power applications.

The STM32F051xx microcontrollers include devices in seven different packages ranging from 32 pins to 64 pins with a die form also available upon request. Depending on the device chosen, different sets of peripherals are included.

These features make the STM32F051xx microcontrollers suitable for a wide range of applications such as application control and user interfaces, hand-held equipment, A/V receivers and digital TV, PC peripherals, gaming and GPS platforms, industrial applications, PLCs, inverters, printers, scanners, alarm systems, video intercoms and HVACs.

In Standby mode, it is put in power down mode. In this mode, the regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption (but the contents of the registers and SRAM are lost).

3.5.4 Low-power modes

The STM32F051xx microcontrollers support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources:

Sleep mode

In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs.

Stop mode

Stop mode achieves very low power consumption while retaining the content of SRAM and registers. All clocks in the 1.8 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low power mode.

The device can be woken up from Stop mode by any of the EXTI lines. The EXTI line source can be one of the 16 external lines, the PVD output, RTC, I2C1, USART1,, COMPx or the CEC.

The CEC, USART1 and I2C1 peripherals can be configured to enable the HSI RC oscillator so as to get clock for processing incoming data. If this is used when the voltage regulator is put in low power mode, the regulator is first switched to normal mode before the clock is provided to the given peripheral.

• Standby mode

The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.8 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, SRAM and register contents are lost except for registers in the RTC domain and Standby circuitry.

The device exits Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on the WKUP pins, or an RTC event occurs.

Note: The RTC, the IWDG, and the corresponding clock sources are not stopped by entering Stop or Standby mode.

3.6 Clocks and startup

System clock selection is performed on startup, however the internal RC 8 MHz oscillator is selected as default CPU clock on reset. An external 4-32 MHz clock can be selected, in which case it is monitored for failure. If failure is detected, the system automatically switches back to the internal RC oscillator. A software interrupt is generated if enabled. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example on failure of an indirectly used external crystal, resonator or oscillator).

Several prescalers allow the application to configure the frequency of the AHB and the APB domains. The maximum frequency of the AHB and the APB domains is 48 MHz.

sensor, voltage reference, VBAT voltage measurement) channels and performs conversions in single-shot or scan modes. In scan mode, automatic conversion is performed on a selected group of analog inputs.

The ADC can be served by the DMA controller.

An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds.

3.10.1 Temperature sensor

The temperature sensor (TS) generates a voltage $V_{\mbox{\scriptsize SENSE}}$ that varies linearly with temperature.

The temperature sensor is internally connected to the ADC_IN16 input channel which is used to convert the sensor output voltage into a digital value.

The sensor provides good linearity but it has to be calibrated to obtain good overall accuracy of the temperature measurement. As the offset of the temperature sensor varies from chip to chip due to process variation, the uncalibrated internal temperature sensor is suitable for applications that detect temperature changes only.

To improve the accuracy of the temperature sensor measurement, each device is individually factory-calibrated by ST. The temperature sensor factory calibration data are stored by ST in the system memory area, accessible in read-only mode.

Calibration value name	Description	Memory address
TS_CAL1	TS ADC raw data acquired at a temperature of 30 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7B8 - 0x1FFF F7B9
TS_CAL2	TS ADC raw data acquired at a temperature of 110 °C (\pm 5 °C), V _{DDA} = 3.3 V (\pm 10 mV)	0x1FFF F7C2 - 0x1FFF F7C3

Table 3. Temperature sensor calibration values

3.10.2 Internal voltage reference (V_{REFINT})

The internal voltage reference (V_{REFINT}) provides a stable (bandgap) voltage output for the ADC and comparators. V_{REFINT} is internally connected to the ADC_IN17 input channel. The precise voltage of V_{REFINT} is individually measured for each part by ST during production test and stored in the system memory area. It is accessible in read-only mode.

Table 4.	Internal	voltage	reference	calibration	values

Calibration value name	Description	Memory address
VREFINT_CAL	Raw data acquired at a temperature of 30 °C (± 5 °C), V _{DDA} = 3.3 V (± 10 mV)	0x1FFF F7BA - 0x1FFF F7BB

The RTC clock sources can be:

- a 32.768 kHz external crystal
- a resonator or oscillator
- the internal low-power RC oscillator (typical frequency of 40 kHz)
- the high-speed external clock divided by 32

3.16 Inter-integrated circuit interface (I²C)

Up to two I²C interfaces (I2C1 and I2C2) can operate in multimaster or slave modes. Both can support Standard mode (up to 100 kbit/s) and Fast mode (up to 400 kbit/s) and, I2C1 also supports Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive.

Both support 7-bit and 10-bit addressing modes, multiple 7-bit slave addresses (two addresses, one with configurable mask). They also include programmable analog and digital noise filters.

Aspect	Analog filter	Digital filter
Pulse width of suppressed spikes	≥ 50 ns	Programmable length from 1 to 15 I2Cx peripheral clocks
Benefits	Available in Stop mode	 Extra filtering capability vs. standard requirements Stable length
Drawbacks	Variations depending on temperature, voltage, process	Wakeup from Stop on address match is not available when digital filter is enabled.

Table 8. C	Comparison	of I ² C analog	and digital filters
		•••••••••••••••••••••••••••••••••••••••	

In addition, I2C1 provides hardware support for SMBUS 2.0 and PMBUS 1.1: ARP capability, Host notify protocol, hardware CRC (PEC) generation/verification, timeouts verifications and ALERT protocol management. I2C1 also has a clock domain independent from the CPU clock, allowing the I2C1 to wake up the MCU from Stop mode on address match.

The I2C peripherals can be served by the DMA controller.

Refer to Table 9 for the differences between I2C1 and I2C2.

Table 9. STM32F051xx I ² C in	nplementation
--	---------------

I ² C features ⁽¹⁾	I2C1	I2C2
7-bit addressing mode	Х	Х
10-bit addressing mode	Х	Х
Standard mode (up to 100 kbit/s)	Х	Х
Fast mode (up to 400 kbit/s)	Х	Х
Fast Mode Plus (up to 1 Mbit/s) with 20 mA output drive I/Os	Х	-
Independent clock	Х	-

I ² C features ⁽¹⁾	I2C1	I2C2
SMBus	Х	-
Wakeup from STOP	Х	-

Table 9. STM32F051xx I	² C implementation	on (continued)
------------------------	-------------------------------	----------------

1. X = supported.

3.17 Universal synchronous/asynchronous receiver/transmitter (USART)

The device embeds up to two universal synchronous/asynchronous receivers/transmitters (USART1, USART2) which communicate at speeds of up to 6 Mbit/s.

They provide hardware management of the CTS, RTS and RS485 DE signals, multiprocessor communication mode, master synchronous communication and single-wire half-duplex communication mode. USART1 supports also SmartCard communication (ISO 7816), IrDA SIR ENDEC, LIN Master/Slave capability and auto baud rate feature, and has a clock domain independent of the CPU clock, allowing to wake up the MCU from Stop mode.

The USART interfaces can be served by the DMA controller.

USART modes/features ⁽¹⁾	USART1	USART2
Hardware flow control for modem	Х	Х
Continuous communication using DMA	Х	Х
Multiprocessor communication	Х	х
Synchronous mode	Х	х
Smartcard mode	Х	-
Single-wire half-duplex communication	Х	Х
IrDA SIR ENDEC block	Х	-
LIN mode	Х	-
Dual clock domain and wakeup from Stop mode	Х	-
Receiver timeout interrupt	Х	-
Modbus communication	Х	-
Auto baud rate detection	Х	-
Driver Enable	Х	х

Table 10. STM32F051xx USART implementation

1. X = supported.

	F	Pin n	umbe	ər						Pin fu	nctions
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions
45	B8	33	A1	22	22	PA12	I/O	FT	-	USART1_RTS, TIM1_ETR, COMP2_OUT, TSC_G4_IO4, EVENTOUT	-
46	A8	34	B1	23	23	PA13 (SWDIO)	I/O	FT	(6)	IR_OUT, SWDIO	-
47	D6	35	-	-	-	PF6	I/O	FT	-	I2C2_SCL	-
48	E6	36	-	-	-	PF7	I/O	FT	-	I2C2_SDA	-
49	A7	37	B2	24	24	PA14 (SWCLK)	I/O	FT	(6)	USART2_TX, SWCLK	-
50	A6	38	A2	25	25	PA15	I/O	FT	-	SPI1_NSS, I2S1_WS, USART2_RX, TIM2_CH1_ETR, EVENTOUT	-
51	B7	-	-	-	-	PC10	I/O	FT	-		-
52	B6	-	-	-	-	PC11	I/O	FT	-		-
53	C5	-	-	-	-	PC12	I/O	FT	-		-
54	B5	-	-	-	-	PD2	I/O	FT	-	TIM3_ETR	-
55	A5	39	В3	26	26	PB3	I/O	FT	-	SPI1_SCK, I2S1_CK, TIM2_CH2, TSC_G5_IO1, EVENTOUT	-
56	A4	40	A3	27	27	PB4	I/O	FT	-	SPI1_MISO, I2S1_MCK, TIM3_CH1, TSC_G5_IO2, EVENTOUT	-
57	C4	41	E6	28	28	PB5	I/O	FT	-	SPI1_MOSI, I2S1_SD, I2C1_SMBA, TIM16_BKIN, TIM3_CH2	-

Table 13. Pin definitions (continued)

Bus	Boundary address	Size	Peripheral
	0x4000 7C00 - 0x4000 7FFF	1 KB	Reserved
	0x4000 7800 - 0x4000 7BFF	1 KB	CEC
	0x4000 7400 - 0x4000 77FF	1 KB	DAC
	0x4000 7000 - 0x4000 73FF	1 KB	PWR
	0x4000 5C00 - 0x4000 6FFF	5 KB	Reserved
	0x4000 5800 - 0x4000 5BFF	1 KB	I2C2
	0x4000 5400 - 0x4000 57FF	1 KB	I2C1
	0x4000 4800 - 0x4000 53FF	3 KB	Reserved
	0x4000 4400 - 0x4000 47FF	1 KB	USART2
	0x4000 3C00 - 0x4000 43FF	2 KB	Reserved
ADR	0x4000 3800 - 0x4000 3BFF	1 KB	SPI2
	0x4000 3400 - 0x4000 37FF	1 KB	Reserved
	0x4000 3000 - 0x4000 33FF	1 KB	IWDG
	0x4000 2C00 - 0x4000 2FFF	1 KB	WWDG
	0x4000 2800 - 0x4000 2BFF	1 KB	RTC
	0x4000 2400 - 0x4000 27FF	1 KB	Reserved
	0x4000 2000 - 0x4000 23FF	1 KB	TIM14
	0x4000 1400 - 0x4000 1FFF	3 KB	Reserved
	0x4000 1000 - 0x4000 13FF	1 KB	TIM6
	0x4000 0800 - 0x4000 0FFF	2 KB	Reserved
	0x4000 0400 - 0x4000 07FF	1 KB	TIM3
	0x4000 0000 - 0x4000 03FF	1 KB	TIM2

Table 16. STM32F051xx peripheral register boundary addresses (continued)

6.1.7 Current consumption measurement

Figure 14. Current consumption measurement scheme

6.2 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in *Table 17: Voltage characteristics*, *Table 18: Current characteristics* and *Table 19: Thermal characteristics* may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Min	Мах	Unit
$V_{DD}-V_{SS}$	External main supply voltage	- 0.3	4.0	V
$V_{DDA} - V_{SS}$	External analog supply voltage	- 0.3	4.0	V
$V_{DD} - V_{DDA}$	Allowed voltage difference for $V_{DD} > V_{DDA}$	-	0.4	V
$V_{BAT} - V_{SS}$	External backup supply voltage	- 0.3	4.0	V
) <i>(</i> (2)	Input voltage on FT and FTf pins	V _{SS} - 0.3	V _{DDIOx} + 4.0 ⁽³⁾	V
	Input voltage on TTa pins	V _{SS} - 0.3	4.0	V
VIN` ´	BOOT0	0	9.0	V
	Input voltage on any other pin	Min Max Unit -0.3 4.0 V $V_{SS} - 0.3$ $V_{DDIOx} + 4.0^{(3)}$ V $V_{SS} - 0.3$ 4.0 V 0 9.0 V $V_{SS} - 0.3$ 4.0 V $V_{SS} - 0.3$ 4.0 V 0 9.0 V $V_{SS} - 0.3$ 4.0 V $V_{SS} - 0.3$ 4.0 V $V_{SS} - 0.3$ 50 mV $ 50$ mV $ 50$ mV see $Section 6.3.12$: $Electrical$		
$ \Delta V_{DDx} $	Variations between different V_{DD} power pins	-	50	mV
V _{SSx} - V _{SS}	Variations between all the different ground pins	-	50	mV
V _{ESD(HBM)} Electrostatic discharge voltage (human body model)		see Section 6.3.12: Electrical sensitivity characteristics		

1. All main power (V_{DD} , V_{DDA}) and ground (V_{SS} , V_{SSA}) pins must always be connected to the external power supply, in the permitted range.

2. V_{IN} maximum must always be respected. Refer to *Table 18: Current characteristics* for the maximum allowed injected current values.

3. Valid only if the internal pull-up/pull-down resistors are disabled. If internal pull-up or pull-down resistor is enabled, the maximum limit is 4 V.

Sum	Boro		Conditions		Typ @V _{DD} (V _{DD} = V _{DDA})					Max ⁽¹⁾				
bol	meter				2.4 V	2.7 V	3.0 V	3.3 V	3.6 V	T _A = 25 °C	T _A = 85 °C	T _A = 105 °C	Unit	
IDD	Supply current	Re mo OF	gulator in run de, all oscillators F	15	15.1	15.3	15.5	15.7	16	(2)		(2)		
	in Stop mode	Re pov	Regulator in low- power mode, all oscillators OFF		3.3	3.4	3.5	3.7	4	(2)		(2)		
	Supply current	LS ON	I ON and IWDG	0.8	1.0	1.1	1.2	1.4	1.5	-	-	-		
	in Standby mode	LS OF	I OFF and IWDG F	0.7	0.8	0.9	1.0	1.1	1.3	2 ⁽²⁾	2.5	3 ⁽²⁾		
	Supply current in Stop mode Supply current in Standby mode	N	Regulator in run mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾		
		onitoring (Regulator in low- power mode, all oscillators OFF	1.9	2	2.2	2.3	2.5	2.6	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾	μA	
		^{DDA} m	LSI ON and IWDG ON	2.3	2.5	2.7	2.9	3.1	3.3	-	-	-		
		>	LSI OFF and IWDG OFF	1.8	1.9	2	2.2	2.3	2.5	3.5 ⁽²⁾	3.5	4.5 ⁽²⁾		
'DDA	Supply current	FF	Regulator in run mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-		
	in Stop mode	in Stop mode	onitoring C	Regulator in low- power mode, all oscillators OFF	1.1	1.2	1.2	1.2	1.3	1.4	-	-	-	
	Supply current	DDA MC	LSI ON and IWDG ON	1.5	1.6	1.7	1.8	1.9	2.0	-	-	-		
	in Standby mode	>	LSI OFF and IWDG OFF	1	1.0	1.1	1.1	1.2	1.2	-	-	-		

Table 27.	Typical and	maximum	current	consum	otion in	Stop	and	Standb	/ modes
			••••••						,

1. Data based on characterization results, not tested in production unless otherwise specified.

2. Data based on characterization results and tested in production (using one common test limit for sum of I_{DD} and I_{DDA}).

On-chip peripheral current consumption

The current consumption of the on-chip peripherals is given in *Table 31*. The MCU is placed under the following conditions:

- All I/O pins are in analog mode
- All peripherals are disabled unless otherwise mentioned
- The given value is calculated by measuring the current consumption
 - with all peripherals clocked off
 - with only one peripheral clocked on
- Ambient operating temperature and supply voltage conditions summarized in *Table 17: Voltage characteristics*

Peripheral		Typical consumption at 25 °C	Unit		
	BusMatrix ⁽¹⁾	5			
	DMA1	7			
	SRAM	1			
	Flash memory interface	14			
	CRC	2			
	GPIOA	9			
АПБ	GPIOB	12	μΑνινιπΖ		
	GPIOC	2			
	GPIOD	1			
	GPIOF	1			
	TSC	6			
	All AHB peripherals	55			

Table 31. Peripheral current consumption

High-speed internal (HSI) RC oscillator

Symbol	Parameter	Conditions	Min	Тур	Max	Unit					
f _{HSI}	Frequency	-	-	8	-	MHz					
TRIM	HSI user trimming step	-	-	-	1 ⁽²⁾	%					
DuCy _(HSI)	Duty cycle	-	45 ⁽²⁾	-	55 ⁽²⁾	%					
		T _A = -40 to 105°C	-2.8 ⁽³⁾	-	3.8 ⁽³⁾						
		T _A = -10 to 85°C	-1.9 ⁽³⁾	-	2.3 ⁽³⁾	%					
	Accuracy of the HSI	$T_A = 0$ to $85^{\circ}C$	-1.9 ⁽³⁾	-	2 ⁽³⁾						
ACCHSI	oscillator	$T_A = 0$ to $70^{\circ}C$	-1.3 ⁽³⁾	-	2 ⁽³⁾						
		$T_A = 0$ to 55°C	-1 ⁽³⁾	-	$\begin{array}{c c c c c c c } \hline Max & Unit \\ \hline - & MHz \\ \hline 1^{(2)} & \% \\ \hline 55^{(2)} & \% \\ \hline 3.8^{(3)} \\ \hline 2.3^{(3)} \\ \hline 2^{(3)} \\ \hline 2^{(3)} \\ \hline 2^{(3)} \\ \hline 1 \\ \hline 2^{(2)} & \mu s \\ \hline 100^{(2)} & \mu A \end{array}$						
		$T_A = 25^{\circ}C^{(4)}$	-1	-	1						
t _{su(HSI)}	HSI oscillator startup time	-	1 ⁽²⁾	-	2 ⁽²⁾	μs					
I _{DDA(HSI)}	HSI oscillator power consumption	-	-	80	100 ⁽²⁾	μA					

Table 37. HSI oscillator characteristics⁽¹⁾

1. V_{DDA} = 3.3 V, T_A = -40 to 105°C unless otherwise specified.

2. Guaranteed by design, not tested in production.

3. Data based on characterization results, not tested in production.

4. Factory calibrated, parts not soldered.

Figure 19. HSI oscillator accuracy characterization results for soldered parts

Electrical characteristics

Figure 25. ADC accuracy characteristics

Refer to Table 52: ADC characteristics for the values of RAIN, RADC and CADC. 1.

 $C_{parasitic}$ represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the pad capacitance (roughly 7 pF). A high $C_{parasitic}$ value will downgrade conversion accuracy. To remedy this, f_{ADC} should be reduced. 2.

General PCB design guidelines

Power supply decoupling should be performed as shown in *Figure 13: Power supply* scheme. The 10 nF capacitor should be ceramic (good quality) and it should be placed as close as possible to the chip.

6.3.18 Comparator characteristics

Symbol	Parameter	Conditio	ons	Min ⁽¹⁾	Тур	Max ⁽¹⁾	Unit	
V _{DDA}	Analog supply voltage	-		V _{DD}	-	3.6	V	
V _{IN}	Comparator input voltage range	-	0	-	V _{DDA}	-		
V _{SC}	V _{REFINT} scaler offset voltage	-	-	±5	±10	mV		
t _{s_sc}	V _{REFINT} scaler startup	First V _{REFINT} scaler activ power on	vation after device	-	-	1000 (2)	ms	
_		Next activations		-	-	0.2		
t _{START}	Comparator startup time	Startup time to reach pro specification	-	-	60	μs		
		Ultra-low power mode			2	4.5	μs	
	Propagation delay for	Low power mode			0.7	1.5		
	200 mV step with 100 mV overdrive	Medium power mode	-	0.3	0.6			
		High speed mode	V _{DDA} ≥2.7 V	-	50	100	ns	
t_			V _{DDA} < 2.7 V	-	100	240		
۲D		Ultra-low power mode			2	7		
	Propagation delay for	Low power mode	-	0.7	2.1	μs		
	full range step with	Medium power mode			0.3	1.2		
	100 mV overdrive	High speed mode	V _{DDA} ≥ 2.7 V	-	90	180		
		nigh speed mode	V _{DDA} < 2.7 V	-	110	300	115	
V _{offset}	Comparator offset error	-		-	±4	±10	mV	
dV _{offset} /dT	Offset error temperature coefficient	-		-	18	-	µV/°C	
		Ultra-low power mode	-	1.2	1.5			
	COMP current	Low power mode		-	3	5	μA	
UD(COMP)	consumption	Medium power mode		-	10	15		
		High speed mode		-	75	100		

Table 56. Comparator characteristics

Prescaler divider	PR[2:0] bits	Min timeout RL[11:0]= 0x000	Max timeout RL[11:0]= 0xFFF	Unit						
/4	0	0.1	409.6							
/8	1	0.2	819.2							
/16	2	0.4	1638.4							
/32	3	0.8	3276.8	ms						
/64	4	1.6	6553.6							
/128	5	3.2	13107.2							
/256	6 or 7	6.4	26214.4							

Table 60. IWDG min/max timeout period at 40 kHz (LSI)⁽¹⁾

1. These timings are given for a 40 kHz clock but the microcontroller internal RC frequency can vary from 30 to 60 kHz. Moreover, given an exact RC oscillator frequency, the exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there is always a full RC period of uncertainty.

Prescaler	WDGTB	Min timeout value	Max timeout value	Unit
1	0	0.0853	5.4613	
2	1	0.1706	10.9226	me
4	2	0.3413	21.8453	1115
8	3	0.6826	43.6906	

Table 61. WWDG min/max timeout value at 48 MHz (PCLK)

6.3.22 Communication interfaces

I²C interface characteristics

The I^2C interface meets the timings requirements of the I^2C -bus specification and user manual rev. 03 for:

- Standard-mode (Sm): with a bit rate up to 100 kbit/s
- Fast-mode (Fm): with a bit rate up to 400 kbit/s
- Fast-mode Plus (Fm+): with a bit rate up to 1 Mbit/s.

The I²C timings requirements are guaranteed by design when the I2Cx peripheral is properly configured (refer to Reference manual).

The SDA and SCL I/O requirements are met with the following restrictions: the SDA and SCL I/O pins are not "true" open-drain. When configured as open-drain, the PMOS connected between the I/O pin and V_{DDIOx} is disabled, but is still present. Only FTf I/O pins support Fm+ low level output current maximum requirement. Refer to Section 6.3.14: I/O port characteristics for the I²C I/Os characteristics.

All I²C SDA and SCL I/Os embed an analog filter. Refer to the table below for the analog filter characteristics:

Figure 31. SPI timing diagram - master mode

1. Measurement points are done at CMOS levels: 0.3 V_{DD} and 0.7 V_{DD}

Table 64. I²S characteristics⁽¹⁾

Symbol	Parameter	Conditions	Min	Мах	Unit	
f _{CK} 1/t _{c(CK)}	I ² S clock frequency	Master mode (data: 16 bits, Audio frequency = 48 kHz)	1.597	1.601	MHz	
		Slave mode	0	6.5		
t _{r(CK)}	I ² S clock rise time		-	10		
t _{f(CK)}	I ² S clock fall time	Capacitive load CL - 15 pr	-	12		
t _{w(CKH)}	I ² S clock high time	Master f _{PCLK} = 16 MHz, audio	306	-		
t _{w(CKL)}	I ² S clock low time	frequency = 48 kHz	312	-	20	
t _{v(WS)}	WS valid time	Master mode	2	-	115	
t _{h(WS)}	WS hold time	Master mode	2	-		
t _{su(WS)}	WS setup time	Slave mode	7	-		
t _{h(WS)}	WS hold time	Slave mode	0	-		
DuCy(SCK)	I ² S slave input clock duty cycle	Slave mode	25	75	%	

Symbol	Parameter	Conditions	Min	Мах	Unit	
t _{su(SD_MR)}	Data input actus timo	Master receiver	6	-		
t _{su(SD_SR)}	Data input setup time	Slave receiver	2	-	• ns	
t _{h(SD_MR)} ⁽²⁾	Data input hold time	Master receiver	4	-		
t _{h(SD_SR)} ⁽²⁾		Slave receiver	0.5	-		
t _{v(SD_MT)} ⁽²⁾	Data output valid time	Master transmitter	-	4		
t _{v(SD_ST)} ⁽²⁾		Slave transmitter	-	20		
t _{h(SD_MT)}	Data output hold time	Master transmitter	0	-		
t _{h(SD_ST)}		Slave transmitter	13	-		

Table 64. I²S characteristics⁽¹⁾ (continued)

1. Data based on design simulation and/or characterization results, not tested in production.

2. Depends on f_{PCLK} . For example, if f_{PCLK} = 8 MHz, then T_{PCLK} = 1/ f_{PLCLK} = 125 ns.

Figure 32. I²S slave timing diagram (Philips protocol)

1. Measurement points are done at CMOS levels: 0.3 × V_{DDIOx} and 0.7 × V_{DDIOx}

2. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte.

Symbol	millimeters		inches ⁽¹⁾			
	Min	Тур	Мах	Min	Тур	Мах
А	0.500	0.550	0.600	0.0197	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
A3	-	0.152	-	-	0.0060	-
b	0.180	0.230	0.280	0.0071	0.0091	0.0110
D	4.900	5.000	5.100	0.1929	0.1969	0.2008
D1	3.400	3.500	3.600	0.1339	0.1378	0.1417
D2	3.400	3.500	3.600	0.1339	0.1378	0.1417
E	4.900	5.000	5.100	0.1929	0.1969	0.2008
E1	3.400	3.500	3.600	0.1339	0.1378	0.1417
E2	3.400	3.500	3.600	0.1339	0.1378	0.1417
е	-	0.500	-	-	0.0197	-
L	0.300	0.400	0.500	0.0118	0.0157	0.0197
ddd	-	-	0.080	-	-	0.0031

Table 73. UFQFPN32 package mechanical data

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 53. Recommended footprint for UFQFPN32 package

1. Dimensions are expressed in millimeters.

