

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	DMA, PDR, POR, PVD, PWM, Temp Sensor, WDT
Number of I/O	55
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2V ~ 3.6V
Data Converters	A/D 19x12b; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-LQFP
Supplier Device Package	64-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/stm32f051r8t7tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Figure 49.	LQFP32 package outline	106
Figure 50.	Recommended footprint for LQFP32 package	107
Figure 51.	LQFP32 package marking example	108
Figure 52.	UFQFPN32 package outline	109
Figure 53.	Recommended footprint for UFQFPN32 package	110
Figure 54.	UFQFPN32 package marking example	111
Figure 55.	LQFP64 P _D max versus T _A	114

8/122

3 Functional overview

Figure 1 shows the general block diagram of the STM32F051xx devices.

3.1 ARM[®]-Cortex[®]-M0 core

The ARM[®] Cortex[®]-M0 is a generation of ARM 32-bit RISC processors for embedded systems. It has been developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced system response to interrupts.

The ARM[®] Cortex[®]-M0 processors feature exceptional code-efficiency, delivering the high performance expected from an ARM core, with memory sizes usually associated with 8- and 16-bit devices.

The STM32F051xx devices embed ARM core and are compatible with all ARM tools and software.

3.2 Memories

The device has the following features:

- 8 Kbytes of embedded SRAM accessed (read/write) at CPU clock speed with 0 wait states and featuring embedded parity checking with exception generation for fail-critical applications.
- The non-volatile memory is divided into two arrays:
 - 16 to 64 Kbytes of embedded Flash memory for programs and data
 - Option bytes

The option bytes are used to write-protect the memory (with 4 KB granularity) and/or readout-protect the whole memory with the following options:

- Level 0: no readout protection
- Level 1: memory readout protection, the Flash memory cannot be read from or written to if either debug features are connected or boot in RAM is selected
- Level 2: chip readout protection, debug features (Cortex[®]-M0 serial wire) and boot in RAM selection disabled

3.3 Boot modes

At startup, the boot pin and boot selector option bit are used to select one of the three boot options:

- boot from User Flash memory
- boot from System Memory
- boot from embedded SRAM

The boot loader is located in System Memory. It is used to reprogram the Flash memory by using USART on pins PA14/PA15 or PA9/PA10.

DocID022265 Rev 7

3.4 Cyclic redundancy check calculation unit (CRC)

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a CRC-32 (Ethernet) polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of the software during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location.

3.5 **Power management**

3.5.1 **Power supply schemes**

- $V_{DD} = V_{DDIO1} = 2.0$ to 3.6 V: external power supply for I/Os (V_{DDIO1}) and the internal regulator. It is provided externally through VDD pins.
- V_{DDA} = from V_{DD} to 3.6 V: external analog power supply for ADC, DAC, Reset blocks, RCs and PLL (minimum voltage to be applied to V_{DDA} is 2.4 V when the ADC or DAC are used). It is provided externally through VDDA pin. The V_{DDA} voltage level must be always greater or equal to the V_{DD} voltage level and must be established first.
- V_{BAT} = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when V_{DD} is not present.

For more details on how to connect power pins, refer to *Figure 13: Power supply scheme*.

3.5.2 Power supply supervisors

The device has integrated power-on reset (POR) and power-down reset (PDR) circuits. They are always active, and ensure proper operation above a threshold of 2 V. The device remains in reset mode when the monitored supply voltage is below a specified threshold, $V_{POR/PDR}$, without the need for an external reset circuit.

- The POR monitors only the V_{DD} supply voltage. During the startup phase it is required that V_{DDA} should arrive first and be greater than or equal to V_{DD}.
- The PDR monitors both the V_{DD} and V_{DDA} supply voltages, however the V_{DDA} power supply supervisor can be disabled (by programming a dedicated Option bit) to reduce the power consumption if the application design ensures that V_{DDA} is higher than or equal to V_{DD}.

The device features an embedded programmable voltage detector (PVD) that monitors the V_{DD} power supply and compares it to the V_{PVD} threshold. An interrupt can be generated when V_{DD} drops below the V_{PVD} threshold and/or when V_{DD} is higher than the V_{PVD} threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software.

3.5.3 Voltage regulator

The regulator has two operating modes and it is always enabled after reset.

- Main (MR) is used in normal operating mode (Run).
- Low power (LPR) can be used in Stop mode where the power demand is reduced.

3.10.3 V_{BAT} battery voltage monitoring

This embedded hardware feature allows the application to measure the V_{BAT} battery voltage using the internal ADC channel ADC_IN18. As the V_{BAT} voltage may be higher than V_{DDA}, and thus outside the ADC input range, the V_{BAT} pin is internally connected to a bridge divider by 2. As a consequence, the converted digital value is half the V_{BAT} voltage.

3.11 Digital-to-analog converter (DAC)

The 12-bit buffered DAC channels can be used to convert digital signals into analog voltage signal outputs. The chosen design structure is composed of integrated resistor strings and an amplifier in non-inverting configuration.

This digital Interface supports the following features:

- Left or right data alignment in 12-bit mode
- Synchronized update capability
- DMA capability
- External triggers for conversion

Five DAC trigger inputs are used in the device. The DAC is triggered through the timer trigger outputs and the DAC interface is generating its own DMA requests.

3.12 Comparators (COMP)

The device embeds two fast rail-to-rail low-power comparators with programmable reference voltage (internal or external), hysteresis and speed (low speed for low power) and with selectable output polarity.

The reference voltage can be one of the following:

- External I/O
- DAC output pins
- Internal reference voltage or submultiple (1/4, 1/2, 3/4).Refer to *Table 24: Embedded internal reference voltage* for the value and precision of the internal reference voltage.

Both comparators can wake up from STOP mode, generate interrupts and breaks for the timers and can be also combined into a window comparator.

3.13 Touch sensing controller (TSC)

The STM32F051xx devices provide a simple solution for adding capacitive sensing functionality to any application. These devices offer up to 18 capacitive sensing channels distributed over 6 analog I/O groups.

Capacitive sensing technology is able to detect the presence of a finger near a sensor which is protected from direct touch by a dielectric (glass, plastic...). The capacitive variation introduced by the finger (or any conductive object) is measured using a proven implementation based on a surface charge transfer acquisition principle. It consists in charging the sensor capacitance and then transferring a part of the accumulated charges into a sampling capacitor until the voltage across this capacitor has reached a specific threshold. To limit the CPU bandwidth usage, this acquisition is directly managed by the

Figure 6. UFQFPN48 package pinout

Figure 7. WLCSP36 package pinout

1. The above figure shows the package in top view, changing from bottom view in the previous document versions.

	P	Pin nu	umbe	er						Pin functions		
LQFP64	UFBGA64	LQFP48/UFQFPN48	WLCSP36	LQFP32	UFQFPN32	Pin name (function upon reset)	Pin type	I/O structure	Notes	Alternate functions	Additional functions	
33	H8	25	-	-	-	PB12	I/O	FT	(5)	SPI2_NSS, TIM1_BKIN, TSC_G6_IO2, EVENTOUT	-	
34	G8	26	-	-	-	PB13	I/O	FT	(5)	SPI2_SCK, TIM1_CH1N, TSC_G6_IO3	-	
35	F8	27	-	-	-	PB14	I/O	FT	(5)	SPI2_MISO, TIM1_CH2N, TIM15_CH1, TSC_G6_IO4	-	
36	F7	28	-	-	-	PB15	I/O	FT	(5)	SPI2_MOSI, TIM1_CH3N, TIM15_CH1N, TIM15_CH2	RTC_REFIN	
37	F6	-	-	-	-	PC6	I/O	FT	-	TIM3_CH1	-	
38	E7	-	-	-	-	PC7	I/O	FT	-	TIM3_CH2	-	
39	E8	-	-	-	-	PC8	I/O	FT	-	TIM3_CH3	-	
40	D8	-	-	-	-	PC9	I/O	FT	-	TIM3_CH4	-	
41	D7	29	E2	18	18	PA8	I/O	FT	-	USART1_CK, TIM1_CH1, EVENTOUT, MCO	-	
42	C7	30	D1	19	19	PA9	I/O	FT	-	USART1_TX, TIM1_CH2, TIM15_BKIN, TSC_G4_IO1	-	
43	C6	31	C1	20	20	PA10	I/O	FT	-	USART1_RX, TIM1_CH3, TIM17_BKIN, TSC_G4_IO2	-	
44	C8	32	C2	21	21	PA11	I/O	FT	-	USART1_CTS, TIM1_CH4, COMP1_OUT, TSC_G4_IO3, EVENTOUT	-	

Table 13. Pin definitions (continued)

trigger circuits used to discriminate the input value. Unless this specific configuration is required by the application, this supply current consumption can be avoided by configuring these I/Os in analog mode. This is notably the case of ADC input pins which should be configured as analog inputs.

Caution: Any floating input pin can also settle to an intermediate voltage level or switch inadvertently, as a result of external electromagnetic noise. To avoid current consumption related to floating pins, they must either be configured in analog mode, or forced internally to a definite digital value. This can be done either by using pull-up/down resistors or by configuring the pins in output mode.

I/O dynamic current consumption

In addition to the internal peripheral current consumption measured previously (see *Table 31: Peripheral current consumption*), the I/Os used by an application also contribute to the current consumption. When an I/O pin switches, it uses the current from the I/O supply voltage to supply the I/O pin circuitry and to charge/discharge the capacitive load (internal or external) connected to the pin:

$$I_{SW} = V_{DDIOx} \times f_{SW} \times C$$

where

 I_{SW} is the current sunk by a switching I/O to charge/discharge the capacitive load

V_{DDIOx} is the I/O supply voltage

 $\rm f_{SW}$ is the I/O switching frequency

C is the total capacitance seen by the I/O pin: C = C_{INT} + C_{EXT} + C_S

 C_S is the PCB board capacitance including the pad pin.

The test pin is configured in push-pull output mode and is toggled by software at a fixed frequency.

Electrical characteristics

Symbol	Parameter	Conditions ⁽¹⁾	I/O toggling frequency (f _{SW})	Тур	Unit	
			4 MHz	0.07		
		$V_{\text{REVO}} = 3.3 V$	8 MHz	0.15		
		$C = C_{INT}$	16 MHz	0.31		
			24 MHz	0.53		
			48 MHz	0.92		
			4 MHz	0.18		
		V _{DDIOx} = 3.3 V	8 MHz	0.37		
		C _{EXT} = 0 pF	16 MHz	0.76		
		$C = C_{INT} + C_{EXT} + C_S$	24 MHz	1.39		
			48 MHz	2.188		
			4 MHz	0.32		
	I/O current	$V_{DDIOx} = 3.3 V$ $C_{EXT} = 10 pF$ $C = C_{INT} + C_{EXT} + C_S$	8 MHz	0.64	. mA	
			16 MHz	1.25		
			24 MHz	2.23		
low			48 MHz	4.442		
.200	consumption		4 MHz	0.49		
		$V_{DDIOX} = 3.3 V$ $C_{EXT} = 22 pF$ $C = C_{INT} + C_{EXT} + C_{S}$	8 MHz	0.94		
			16 MHz	2.38		
			24 MHz	3.99		
			4 MHz	0.64		
		$V_{\text{DDIOx}} = 3.3 \text{ V}$	8 MHz	1.25		
		$C = C_{INT} + C_{EXT} + C_S$	16 MHz	3.24		
			24 MHz	5.02		
		V _{DDIOx} = 3.3 V	4 MHz	0.81		
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.7		
		$C = C_{INT} + C_{EXT} + C_{S}$ $C = C_{int}$	16 MHz	3.67		
		V _{DDIOX} = 2.4 V	4 MHz	0.66		
		$C_{EXT} = 47 \text{ pF}$	8 MHz	1.43	-	
		$C = C_{INT} + C_{EXT} + C_{S}$	16 MHz	2.45		
		C = C _{int}	24 MHz	4.97		

Table 30. S	Switching	output I/O	current	consumption
-------------	-----------	------------	---------	-------------

1. C_S = 7 pF (estimated value).

6.3.6 Wakeup time from low-power mode

The wakeup times given in *Table 32* are the latency between the event and the execution of the first user instruction. The device goes in low-power mode after the WFE (Wait For Event) instruction, in the case of a WFI (Wait For Interruption) instruction, 16 CPU cycles must be added to the following timings due to the interrupt latency in the Cortex M0 architecture.

The SYSCLK clock source setting is kept unchanged after wakeup from Sleep mode. During wakeup from Stop or Standby mode, SYSCLK takes the default setting: HSI 8 MHz.

The wakeup source from Sleep and Stop mode is an EXTI line configured in event mode. The wakeup source from Standby mode is the WKUP1 pin (PA0).

All timings are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*.

Symbol	Perameter	Conditions	Typ @Vdd = Vdda					Mox	Unit
	Farameter		= 2.0 V	= 2.4 V	= 2.7 V	= 3 V	= 3.3 V	wax	Unit
twustop	Wakeup from Stop mode	Regulator in run mode	3.2	3.1	2.9	2.9	2.8	5	
		Regulator in low power mode	7.0	5.8	5.2	4.9	4.6	9	
t _{wustandby}	Wakeup from Standby mode	-	60.4	55.6	53.5	52	51	-	μs
t _{WUSLEEP}	Wakeup from Sleep mode	-		4 S)	SCLK cy	cles		-	

 Table 32. Low-power mode wakeup timings

6.3.7 External clock source characteristics

High-speed external user clock generated from an external source

In bypass mode the HSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in Section 6.3.14. However, the recommended clock input waveform is shown in *Figure 15: High-speed external clock source AC timing diagram*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Max	Unit
f _{HSE_ext}	User external clock source frequency	-	8	32	MHz
V _{HSEH}	OSC_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V
V _{HSEL}	OSC_IN input pin low level voltage	el voltage V _{SS} - 0.3 V _{DDIOx}		v	
t _{w(HSEH)} t _{w(HSEL)}	OSC_IN high or low time	15	-	-	ns
t _{r(HSE)} t _{f(HSE)}	OSC_IN rise or fall time	-	-	20	113

Table 33. High-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Figure 15. High-speed external clock source AC timing diagram

Low-speed external user clock generated from an external source

In bypass mode the LSE oscillator is switched off and the input pin is a standard GPIO.

The external clock signal has to respect the I/O characteristics in *Section 6.3.14*. However, the recommended clock input waveform is shown in *Figure 16*.

Symbol	Parameter ⁽¹⁾	Min	Тур	Мах	Unit	
f _{LSE_ext}	User external clock source frequency	-	32.768	1000	kHz	
V_{LSEH}	OSC32_IN input pin high level voltage	0.7 V _{DDIOx}	-	V _{DDIOx}	V	
V_{LSEL}	OSC32_IN input pin low level voltage	2_IN input pin low level voltage V _{SS} - 0.3 V _{DDIOx}		0.3 V _{DDIOx}	v	
t _{w(LSEH)} t _{w(LSEL)}	OSC32_IN high or low time	450	-	-	nc	
t _{r(LSE)} t _{f(LSE)}	OSC32_IN rise or fall time	-	-	50	115	

Table 34. Low-speed external user clock characteristics

1. Guaranteed by design, not tested in production.

Figure 17. Typical application with an 8 MHz crystal

1. R_{EXT} value depends on the crystal characteristics.

Low-speed external clock generated from a crystal resonator

The low-speed external (LSE) clock can be supplied with a 32.768 kHz crystal resonator oscillator. All the information given in this paragraph are based on design simulation results obtained with typical external components specified in *Table 36*. In the application, the resonator and the load capacitors have to be placed as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. Refer to the crystal resonator manufacturer for more details on the resonator characteristics (frequency, package, accuracy).

Symbol	Parameter	Conditions ⁽¹⁾	Min ⁽²⁾	Тур	Max ⁽²⁾	Unit
		low drive capability	-	0.5	0.9	
	ISE current consumption	medium-low drive capability	-	-	1	
DD	LSE current consumption	medium-high drive capability	-	-	1.3	μΑ
		high drive capability	-	-	1.6	
		low drive capability	5	-	-	
~	Oscillator transconductance	medium-low drive capability	8	-	-	
9 _m		medium-high drive capability	15	-	-	- μΑ/ν
		high drive capability	25	-	-	
$t_{\rm SU(LSE)}^{(3)}$	Startup time	V _{DDIOx} is stabilized	-	2	-	s

Table 36. LSE oscillato	r characteristics	(f _{LSE} = 32.768 kHz)
-------------------------	-------------------	---------------------------------

1. Refer to the note and caution paragraphs below the table, and to the application note AN2867 "Oscillator design guide for ST microcontrollers".

2. Guaranteed by design, not tested in production.

 t_{SU(LSE)} is the startup time measured from the moment it is enabled (by software) to a stabilized 32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly with the crystal manufacturer

Software recommendations

The software flowchart must include the management of runaway conditions such as:

- Corrupted program counter
- Unexpected reset
- Critical Data corruption (for example control registers)

Prequalification trials

Most of the common failures (unexpected reset and program counter corruption) can be reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1 second.

To complete these trials, ESD stress can be applied directly on the device, over the range of specification values. When unexpected behavior is detected, the software can be hardened to prevent unrecoverable errors occurring (see application note AN1015).

Electromagnetic Interference (EMI)

The electromagnetic field emitted by the device are monitored while a simple application is executed (toggling 2 LEDs through the I/O ports). This emission test is compliant with IEC 61967-2 standard which specifies the test board and the pin loading.

Symbol	Parameter	Conditions	Monitored	Max vs. [f _{HSE} /f _{HCLK}]	Unit
Symbol	i arameter	Conditions	frequency band	8/48 MHz	Onic
		V _{DD} = 3.6 V, T _A = 25 °C, LQFP64 package compliant with IEC 61967-2 0.1 to 30 MHz -3 0.1 to 30 MHz 28 130 MHz to 1 GHz 23 EMI Level 4	0.1 to 30 MHz	-3	
\$	Dook lovel		28	dBµV	
S _{EMI}	Peak level		130 MHz to 1 GHz	23	
			EMI Level	4	-

Table 44. EMI characteristics

6.3.12 Electrical sensitivity characteristics

Based on three different tests (ESD, LU) using specific measurement methods, the device is stressed in order to determine its performance in terms of electrical sensitivity.

Electrostatic discharge (ESD)

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n+1) supply pins). This test conforms to the JESD22-A114/C101 standard.

Symbol	Parameter	Conditions	Min	Тур	Мах	Unit
l _{lkg}		TC, FT and FTf I/O TTa in digital mode V _{SS} ≤ V _{IN} ≤ V _{DDIOx}	-	-	± 0.1	
	Input leakage	TTa in digital mode V _{DDIOx} ≤ V _{IN} ≤ V _{DDA}	-	-	1	μA
	current	TTa in analog mode V _{SS} ≤ V _{IN} ≤ V _{DDA}	-	-	± 0.2	
		FT and FTf I/O V _{DDIOx} ≤ V _{IN} ≤ 5 V	-	-	10	
R _{PU}	Weak pull-up equivalent resistor (3)	V _{IN} = V _{SS}	25	40	55	kΩ
R _{PD}	Weak pull-down equivalent resistor ⁽³⁾	V _{IN} = - V _{DDIOx}	25	40	55	kΩ
C _{IO}	I/O pin capacitance	-	-	5	-	pF

Table 48. I/O static characteristics (continued)

1. Data based on design simulation only. Not tested in production.

2. The leakage could be higher than the maximum value, if negative current is injected on adjacent pins. Refer to *Table 47: I/O current injection susceptibility*.

 Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is minimal (~10% order).

All I/Os are CMOS- and TTL-compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements is shown in *Figure 21* for standard I/Os, and in *Figure 22* for 5 V-tolerant I/Os. The following curves are design simulation results, not tested in production.

Output driving current

The GPIOs (general purpose input/outputs) can sink or source up to +/-8 mA, and sink or source up to +/- 20 mA (with a relaxed V_{OL}/V_{OH}).

In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2:

- The sum of the currents sourced by all the I/Os on V_{DDIOx}, plus the maximum consumption of the MCU sourced on V_{DD}, cannot exceed the absolute maximum rating ΣI_{VDD} (see *Table 17: Voltage characteristics*).
- The sum of the currents sunk by all the I/Os on V_{SS}, plus the maximum consumption of the MCU sunk on V_{SS}, cannot exceed the absolute maximum rating ΣI_{VSS} (see *Table 17: Voltage characteristics*).

Output voltage levels

Unless otherwise specified, the parameters given in the table below are derived from tests performed under the ambient temperature and supply voltage conditions summarized in *Table 20: General operating conditions*. All I/Os are CMOS- and TTL-compliant (FT, TTa or TC unless otherwise specified).

Symbol	Parameter	Conditions	Min	Max	Unit	
V _{OL}	Output low level voltage for an I/O pin	CMOS port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	V _{DDIOx} –0.4	-	V	
V _{OL}	Output low level voltage for an I/O pin	TTL port ⁽²⁾	-	0.4		
V _{OH}	Output high level voltage for an I/O pin	I _{IO} = 8 mA V _{DDIOx} ≥ 2.7 V	2.4	-	V	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	I _{IO} = 20 mA	-	1.3	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	V _{DDIOx} ≥2.7 V	V _{DDIOx} -1.3	-	v	
V _{OL} ⁽³⁾	Output low level voltage for an I/O pin	11.1=6 mA	-	0.4	V	
V _{OH} ⁽³⁾	Output high level voltage for an I/O pin	1101 – 0 MA	V _{DDIOx} -0.4	-	v	
V _{OLFm+} ⁽³⁾	V _{OLFm+} ⁽³⁾	Output low level voltage for an FTf I/O pin in	I _{IO} = 20 mA V _{DDIOx} ≥ 2.7 V	-	0.4	V
		I _{IO} = 10 mA	-	0.4	V	

Table 49. Output voltage characteristics⁽¹⁾

1. The I_{IO} current sourced or sunk by the device must always respect the absolute maximum rating specified in Table 17: Voltage characteristics, and the sum of the currents sourced or sunk by all the I/Os (I/O ports and control pins) must always respect the absolute maximum ratings ΣI_{IO} .

2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52.

3. Data based on characterization results. Not tested in production.

T _s (cycles)	t _S (μs)	R _{AIN} max (kΩ) ⁽¹⁾
28.5	2.04	25.2
41.5	2.96	37.2
55.5	3.96	50
71.5	5.11	NA
239.5	17.1	NA

Table 53. R_{AIN} max for f_{ADC} = 14 MHz (continued)

1. Guaranteed by design, not tested in production.

Symbol	Parameter	Test conditions	Тур	Max ⁽⁴⁾	Unit
ET	Total unadjusted error	f _{PCLK} = 48 MHz,	±1.3	±2	
EO	Offset error		±1	±1.5	
EG	Gain error	$T_{ADC} = 14 \text{ MHz}, R_{AIN} < 10 \text{ k}\Omega$	±0.5	±1.5	LSB
ED	Differential linearity error	$T_A = 25 \text{ °C}$	±0.7	±1	
EL	Integral linearity error		±0.8	±1.5	
ET	Total unadjusted error	f_{PCLK} = 48 MHz, f_{ADC} = 14 MHz, R_{AIN} < 10 kΩ V_{DDA} = 2.7 V to 3.6 V T_A = - 40 to 105 °C	±3.3	±4	
EO	Offset error		±1.9	±2.8	
EG	Gain error		±2.8	±3	LSB
ED	Differential linearity error		±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	
ET	Total unadjusted error		±3.3	±4	
EO	Offset error	f _{PCLK} = 48 MHz,	±1.9	±2.8	
EG	Gain error	t _{ADC} = 14 MHz, R _{AIN} < 10 kΩ V _{DDA} = 2.4 V to 3.6 V T _A = 25 °C	±2.8	±3	LSB
ED	Differential linearity error		±0.7	±1.3	
EL	Integral linearity error		±1.2	±1.7	

Table 54. ADC accuracy $^{(1)(2)(3)}$

1. ADC DC accuracy values are measured after internal calibration.

 ADC Accuracy vs. Negative Injection Current: Injecting negative current on any of the standard (non-robust) analog input pins should be avoided as this significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a Schottky diode (pin to ground) to standard analog pins which may potentially inject negative current. Any positive injection current within the limits specified for I_{INJ(PIN)} and ΣI_{INJ(PIN)} in Section 6.3.14 does not affect the ADC

Any positive injection current within the limits specified for $I_{INJ(PIN)}$ and $\Sigma I_{INJ(PIN)}$ in Section 6.3.14 does not affect the ADC accuracy.

3. Better performance may be achieved in restricted V_{DDA} , frequency and temperature ranges.

4. Data based on characterization results, not tested in production.

6.3.17 DAC electrical specifications

Symbol	Parameter	Min	Тур	Max	Unit	Comments
V _{DDA}	Analog supply voltage for DAC ON	2.4	-	3.6	V	-
D (1)	Resistive load with buffer	5	-	-	kΩ	Load connected to V _{SSA}
►LOAD` ′	ON	25	-	-	kΩ	Load connected to V _{DDA}
R ₀ ⁽¹⁾	Impedance output with buffer OFF	-	-	15	kΩ	When the buffer is OFF, the Minimum resistive load between DAC_OUT and V_{SS} to have a 1% accuracy is 1.5 M Ω
C _{LOAD} ⁽¹⁾	Capacitive load	-	-	50	pF	Maximum capacitive load at DAC_OUT pin (when the buffer is ON).
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer ON	0.2	-	-	V	It gives the maximum output excursion of the DAC. It corresponds to 12-bit input code (0x0E0) to (0xE1C) at
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer ON	-	-	V _{DDA} – 0.2	V	$V_{DDA} = 3.6 V \text{ and } (0x155) \text{ and}$ (0xEAB) at $V_{DDA} = 2.4 V$
DAC_OUT min ⁽¹⁾	Lower DAC_OUT voltage with buffer OFF	-	0.5	-	mV	It gives the maximum output
DAC_OUT max ⁽¹⁾	Higher DAC_OUT voltage with buffer OFF	-	-	V _{DDA} – 1LSB	V	excursion of the DAC.
lpp (¹)	DAC DC current	-	-	600	μA	With no load, middle code (0x800) on the input
'DDA	mode ⁽²⁾	-	-	700	μA	With no load, worst code (0xF1C) on the input
DNL ⁽³⁾	Differential non linearity Difference between two	-	-	±0.5	LSB	Given for the DAC in 10-bit configuration
	consecutive code-1LSB)	-	-	±2	LSB	Given for the DAC in 12-bit configuration
	Integral non linearity (difference between	-	-	±1	LSB	Given for the DAC in 10-bit configuration
INL ⁽³⁾	and the value at Code i on a line drawn between Code 0 and last Code 1023)	-	-	±4	LSB	Given for the DAC in 12-bit configuration
	Offset error	-	-	±10	mV	-
Offset ⁽³⁾	(difference between measured value at Code	-	-	±3	LSB	Given for the DAC in 10-bit at V _{DDA} = 3.6 V
	(0x800) and the ideal value = V _{DDA} /2)	-	-	±12	LSB	Given for the DAC in 12-bit at $V_{DDA} = 3.6 V$

Table	55.	DAC	charac	teristics
Table	55.	DAO	charac	

Symbol		millimeters			inches ⁽¹⁾		
	Min	Тур	Max	Min	Тур	Max	
А	0.460	0.530	0.600	0.0181	0.0209	0.0236	
b	0.170	0.280	0.330	0.0067	0.0110	0.0130	
D	4.850	5.000	5.150	0.1909	0.1969	0.2028	
D1	3.450	3.500	3.550	0.1358	0.1378	0.1398	
E	4.850	5.000	5.150	0.1909	0.1969	0.2028	
E1	3.450	3.500	3.550	0.1358	0.1378	0.1398	
е	-	0.500	-	-	0.0197	-	
F	0.700	0.750	0.800	0.0276	0.0295	0.0315	
ddd	-	-	0.080	-	-	0.0031	
eee	-	-	0.150	-	-	0.0059	
fff	-	-	0.050	-	-	0.0020	

Table 65. UFBGA64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 35. Recommended footprint for UFBGA64 package

Table 66. UFBGA64 recommended PCB design rules

Dimension	Recommended values
Pitch	0.5
Dpad	0.280 mm
Dsm	0.370 mm typ. (depends on the soldermask registration tolerance)
Stencil opening	0.280 mm
Stencil thickness	Between 0.100 mm and 0.125 mm
Pad trace width	0.100 mm

7.2 LQFP64 package information

LQFP64 is a 64-pin, 10 x 10 mm low-profile quad flat package.

Figure 37. LQFP64 package outline

1. Drawing is not to scale.

Table 67. LQFP64	l package	mechanical	data
------------------	-----------	------------	------

Symbol		millimeters			inches ⁽¹⁾		
Symbol	Min	Тур	Max	Min	Тур	Max	
А	-	-	1.600	-	-	0.0630	
A1	0.050	-	0.150	0.0020	-	0.0059	
A2	1.350	1.400	1.450	0.0531	0.0551	0.0571	
b	0.170	0.220	0.270	0.0067	0.0087	0.0106	
С	0.090	-	0.200	0.0035	-	0.0079	
D	-	12.000	-	-	0.4724	-	
D1	-	10.000	-	-	0.3937	-	
D3	-	7.500	-	-	0.2953	-	
E	-	12.000	-	-	0.4724	-	
E1	-	10.000	-	-	0.3937	-	

Symbol		millimeters		inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
E3	-	7.500	-	-	0.2953	-
е	-	0.500	-	-	0.0197	-
К	0°	3.5°	7°	0°	3.5°	7°
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
CCC	-	-	0.080	-	-	0.0031

Table 67. LQFP64 package mechanical data (continued)

1. Values in inches are converted from mm and rounded to 4 decimal digits.

Figure 38. Recommended footprint for LQFP64 package

1. Dimensions are expressed in millimeters.

Device marking

The following figure gives an example of topside marking orientation versus pin 1 identifier location.

Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below.

Figure 45. UFQFPN48 package marking example

1. Parts marked as "ES", "E" or accompanied by an Engineering Sample notification letter, are not yet qualified and therefore not yet ready to be used in production and any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering samples in production. ST Quality has to be contacted prior to any decision to use these Engineering Samples to run qualification activity.

