

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	63
Program Memory Size	•
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	·
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	P-MQFP-80-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161klmhabxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C161K/O

Revision History:		2001-01		V2.0		
Previous \	/ersion:	03.97	(Preliminary)			
		09.96	(Advance Information)			
Page	Subjects	(major chang	ges since last revision)			
All	Converted	d to Infineon la	iyout			
All	C161V rei	C161V removed				
2	Ordering Codes and Cross-Reference replaced with Derivative Synopsis					
5 - 8	Open drain functionality described for P2, P3, P6					
8	Bidirectional reset introduced					
19	Figure up	dated				
28, 29	Revised d	lescription of A	Absolute Max. Ratings and Op	erating Conditions		
32 - 56	Specificat	ions for reduc	ed supply voltage introduced			
35	Reduced	power consun	nption			
36 , 37	Clock Ger	neration Mode	s added			
38 , 39	Descriptio	n of External	Clock Drive improved			
41 - 56	Standard	25-MHz timing	g introduced (timing granularity	/ 2 ns)		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Introduction

The C161K/O is a derivative of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. It combines high CPU performance (up to 12.5 million instructions per second) with peripheral functionality and enhanced IO-capabilities. The C161K/O is especially suited for cost sensitive applications.

Figure 1 Logic Symbol

Table 2	Fable 2Pin Definitions and Functions (cont'd)						
Symbol	Pin Num	Input Outp.	Function				
P2		IO	Port 2 is a 7-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 2 outputs can be configured as push/ pull or open drain drivers. The following Port 2 pins serve for alternate functions:				
P2.9 P2.10 P2.11 P2.12	72 73 74 75	 	EX1INFast External Interrupt 1 InputEX2INFast External Interrupt 2 InputEX3INFast External Interrupt 3 InputEX4INFast External Interrupt 4 Input				
	76 77 78	 	 EX5IN Fast External Interrupt 5 Input EX6IN Fast External Interrupt 6 Input EX7IN Fast External Interrupt 7 Input These external interrupts are only available in the C1610. 				
P5 P5.14 P5.15	79 80	 	Port 5 is a 2-bit input-only port with Schmitt-Trigger char. Thepins of Port 5 also serve as timer inputs:T4EUDGPT1 Timer T4 External Up/Down Control InputT2EUDGPT1 Timer T2 External Up/Down Control Input				
V _{DD}	4, 22, 37, 64	_	Digital Supply Voltage: + 5 V or + 3 V during normal operation and idle mode. ≥ 2.5 V during power down mode.				
V _{SS}	1, 21, 38, 63	-	Digital Ground.				

Note: The following behavioral differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader may be activated when POL.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

Functional Description

The architecture of the C161K/O combines advantages of both RISC and CISC processors and of advanced peripheral subsystems in a very well-balanced way. In addition the on-chip memory blocks allow the design of compact systems with maximum performance.

The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the C161K/O.

Note: All time specifications refer to a CPU clock of 25 MHz (see definition in the AC Characteristics section).

Figure 3 Block Diagram

The program memory, the internal RAM (IRAM) and the set of generic peripherals are connected to the CPU via separate buses. A fourth bus, the XBUS, connects external resources as well as additional on-chip resources, the X-Peripherals (see Figure 3).

Central Processing Unit (CPU)

The main core of the CPU consists of a 4-stage instruction pipeline, a 16-bit arithmetic and logic unit (ALU) and dedicated SFRs. Additional hardware has been spent for a separate multiply and divide unit, a bit-mask generator and a barrel shifter.

Based on these hardware provisions, most of the C161K/O's instructions can be executed in just one machine cycle which requires 80 ns at 25 MHz CPU clock. For example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: branches in 2 cycles, a 16×16 bit multiplication in 5 cycles and a 32-/16 bit division in 10 cycles. Another pipeline optimization, the so-called 'Jump Cache', allows reducing the execution time of repeatedly performed jumps in a loop from 2 cycles to 1 cycle.

Figure 4

CPU Block Diagram

Table 3 C161K/O	Interrupt N	odes			
Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
External Interrupt 4	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
External Interrupt 5	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
External Interrupt 6	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
External Interrupt 7	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Reg.	CRIR	CRIE	CRINT	00'009C _H	27 _H
ASC0 Transmit	S0TIR	SOTIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	S0TBIE	SOTBINT	00'011C _H	47 _H
ASC0 Receive	S0RIR	SORIE	SORINT	00'00AC _H	2B _H
ASC0 Error	S0EIR	S0EIE	S0EINT	00'00B0 _H	2C _H
SSC Transmit	SCTIR	SCTIE	SCTINT	00'00B4 _H	2D _H

. T

Note: The shaded interrupt nodes are only available in the C1610, not in the C161K.

SCRINT

SCEINT

00'00B8_H

00'00BC_H

2E_H

 $2F_{H}$

SCRIE

SCEIE

SCRIR

SCEIR

SSC Receive

SSC Error

The C161K/O also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 4 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority	
Reset Functions: – Hardware Reset – Software Reset – W-dog Timer Overflow	-	RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	 	
Class A Hardware Traps: – Non-Maskable Interrupt – Stack Overflow – Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	 	
 Class B Hardware Traps: Undefined Opcode Protected Instruction Fault Illegal Word Operand Access 	UNDOPC PRTFLT ILLOPA	BTRAP BTRAP BTRAP	00'0028 _H 00'0028 _H 00'0028 _H	0A _H 0A _H 0A _H	1	
 Illegal Instruction Access Illegal External Bus Access 	ILLINA ILLBUS	BTRAP BTRAP	00'0028 _H 00'0028 _H	0A _H 0A _H	1	
Reserved	_	_	[2C _H – 3C _H]	[0B _H – 0F _H]	-	
Software Traps – TRAP Instruction	-	-	Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority	

Table 4Hardware Trap Summary

Table 6C161K/O Registers, Ordered by Name (cont'd)

Name		Physical Address	8-Bit Addr.	Description	Reset Value
SSCEIC	b	FF76 _H	BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H E	59 _H	SSC Receive Buffer	XXXX _H
SSCRIC	b	FF74 _H	BA _H	SSC Receive Interrupt Control Register	0000 _H
SSCTB		F0B0 _H E	58 _H	SSC Transmit Buffer	0000 _H
SSCTIC	b	FF72 _H	B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H	0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H	0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H	89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H
T2		FE40 _H	20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H	A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H	B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H	21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H	A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H	B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
Т4		FE44 _H	22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H	A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H	B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H	23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H	A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H	B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H	24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H	A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H	B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
TFR	b	FFAC _H	D6 _H	Trap Flag Register	0000 _H
WDT		FEAE _H	57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON	b	FFAE _H	D7 _H	Watchdog Timer Control Register	²⁾ 00XX _H
ZEROS	b	FF1C _H	8E _H	Constant Value 0's Register (read only)	0000 _H

¹⁾ The system configuration is selected during reset.

 $^{2)}\,$ The reset value depends on the indicated reset source.

DC Characteristics (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
RSTIN active current ⁴⁾	I _{RSTL} ⁶⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$
RD/WR inact. current ⁷⁾	I _{RWH} ⁵⁾	_	-40	μA	V_{OUT} = 2.4 V
RD/WR active current ⁷⁾	I _{RWL} ⁶⁾	-500	-	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE inactive current ⁷⁾	$I_{ALEL}^{(5)}$	_	40	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE active current ⁷⁾	I _{ALEH} ⁶⁾	500	-	μA	V_{OUT} = 2.4 V
Port 6 inactive current ⁷⁾	I _{P6H} ⁵⁾	-	-40	μA	V_{OUT} = 2.4 V
Port 6 active current ⁷⁾	<i>I</i> _{P6L} ⁶⁾	-500	-	μA	$V_{\rm OUT} = V_{\rm OL1max}$
PORT0 configuration current ⁷⁾	I _{P0H} ⁵⁾	-	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{P0L}^{6)}$	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁸⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Adapt-mode.
- ⁸⁾ Not 100% tested, guaranteed by design and characterization.

	Cronico Clock deneration modes						
CLKCFG (P0H.7-5)	CPU Frequency $f_{\text{CPU}} = f_{\text{OSC}} \times \mathbf{F}$	External Clock Input Range	Notes				
0 X X	$f_{\rm OSC} imes 1$	1 to 25 MHz	Direct drive ¹⁾				
1 X X	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler				

Table 9	C161K/O	Clock	Generation	Modes
---------	---------	-------	------------	-------

¹⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = $1XX_B$) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Direct Drive

When direct drive is configured (CLKCFG = $0XX_B$) the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Table 12 Memory Cycle Variables

Description	Symbol	Values
ALE Extension	t _A	TCL × <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL × (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL × (1 - <mttc>)</mttc>

Note: Please respect the maximum operating frequency of the respective derivative.

AC Characteristics

Multiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (120 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> ₅	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	<i>t</i> 8	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	_	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	_	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	-	26	-	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	_	2TCL - 10 + <i>t</i> _C	-	ns

Multiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CPU Clock = 25 MHz		Variable C 1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Address float after \overline{RdCS} , WrCS (with RW delay)	<i>t</i> ₄₄	CC	_	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	20	-	TCL	ns
RdCS to Valid Data In (with RW delay)	t ₄₆	SR	_	16 + <i>t</i> _C	_	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇	SR	_	$36 + t_{\rm C}$	_	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$30 + t_{C}$	_	2TCL - 10 + <i>t</i> _C	_	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	$50 + t_{\rm C}$	_	3TCL - 10 + <i>t</i> _C	_	ns
Data valid to \overline{WrCS}	<i>t</i> ₅₀	CC	$26 + t_{\rm C}$	_	2TCL - 14 + <i>t</i> _C	-	ns
Data hold after RdCS	t ₅₁	SR	0	_	0	_	ns
Data float after RdCS	t ₅₂	SR	_	$20 + t_{F}$	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	t ₅₄	CC	$20 + t_{\sf F}$	-	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₆	CC	$20 + t_{\sf F}$	_	2TCL - 20 + <i>t</i> _F	_	ns

¹⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
Data valid to WrCS	<i>t</i> ₅₀ CC	$28 + t_{\rm C}$	_	2TCL - 22 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	_	ns
Data float after RdCS	<i>t</i> ₅₂ SR	_	30 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	$30 + t_{F}$	_	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	30 + <i>t</i> _F	_	2TCL - 20 + <i>t</i> _F	-	ns

¹⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

gure 12 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Normal ALE

re 14 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Syr	nbol	Max. CPU Clock = 25 MHz		Variable CPU Clock 1 / 2TCL = 1 to 25 MHz		Unit
			min.	max.	min.	max.	
Data valid to \overline{WR}	t ₂₂	CC	$20 + t_{\rm C}$	_	2TCL - 20	_	ns
					$+ t_{\rm C}$		
Data hold after \overline{WR}	t ₂₄	CC	10 + <i>t</i> _F	_	TCL - 10 + <i>t</i> _E	_	ns
ALE rising edge after RD, WR	t ₂₆	CC	-10 + <i>t</i> _F	-	-10 + <i>t</i> _F	_	ns
Address hold after WR ²⁾	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_{F}$	-	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ³⁾	t ₃₉	SR	_	$40 + t_{C} + 2t_{A}$	-	3TCL - 20 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	t ₄₁	CC	6 + <i>t</i> _F	-	TCL - 14 + <i>t</i> _F	_	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃	CC	$-4 + t_{A}$	-	-4 + t _A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	16 + <i>t</i> _C	-	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	_	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$30 + t_{\rm C}$	_	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
Data valid to WrCS	t ₅₀	CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	_	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	-	0	-	ns

Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Syr	nbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
			min.	max.	min.	max.	
Data valid to WR	t ₂₂	CC	$24 + t_{C}$	_	2TCL - 26	_	ns
					$+ t_{\rm C}$		
Data hold after \overline{WR}	t ₂₄	CC	15 + <i>t</i> _F	_	TCL - 10 + <i>t</i> _F	_	ns
ALE rising edge after RD, WR	t ₂₆	CC	-12 + <i>t</i> _F	-	-12 + <i>t</i> _F	_	ns
Address hold after WR ²⁾	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_{F}$	-	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈	CC	-8 - t _A	10 - <i>t</i> _A	-8 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ³⁾	t ₃₉	SR	_	$47 + t_{C} + 2t_{A}$	_	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	t ₄₁	CC	9 + <i>t</i> _F	-	TCL - 16 + <i>t</i> _F	_	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂	CC	19 + <i>t</i> _A	-	TCL - 6 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃	CC	$-6 + t_{A}$	-	-6 + <i>t</i> _A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	_	$45 + t_{\rm C}$	_	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	_	ns
Data valid to WrCS	<i>t</i> ₅₀	CC	$28 + t_{\rm C}$	-	2TCL - 22 + <i>t</i> _C	_	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	-	0	-	ns

Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Sym	bol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
			min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	_	30 + <i>t</i> _F	_	2TCL - 20 + 2 <i>t</i> _A + <i>t</i> _F 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	t ₆₈	SR	_	5 + <i>t</i> _F	_	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	t ₅₅	CC	-16 + <i>t</i> _F	-	-16 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₇	CC	9 + $t_{\sf F}$	-	TCL - 16 + <i>t</i> _F	-	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Demultiplexed Bus, With Read/Write Delay, Normal ALE

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com