

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

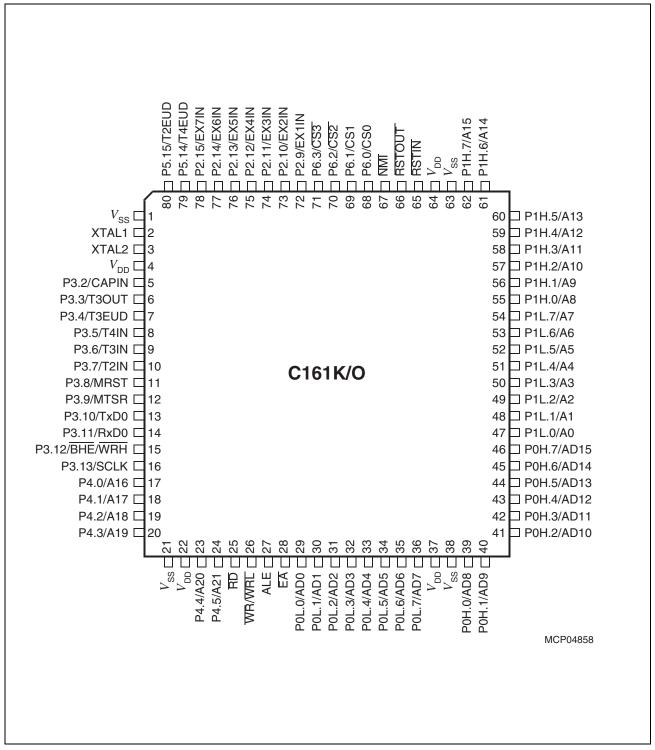
Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	63
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	P-MQFP-80-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161klmhabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

16-Bit Single-Chip Microcontroller C166 Family

C161K/O


C161K/O

- High Performance 16-bit CPU with 4-Stage Pipeline
 - 80 ns Instruction Cycle Time at 25 MHz CPU Clock
 - 400 ns Multiplication (16 \times 16 bit), 800 ns Division (32 / 16 bit)
 - Enhanced Boolean Bit Manipulation Facilities
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Single-Cycle Context Switching Support
 - 16 MBytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area
- 16-Priority-Level Interrupt System with 20 Sources, Sample-Rate down to 40 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC)
- Clock Generation via prescaler or via direct clock input
- On-Chip Memory Modules
 - 2 KBytes On-Chip Internal RAM (IRAM) on C161O,
 - 1 KByte IRAM on C161K
- On-Chip Peripheral Modules
 - Two Multi-Functional General Purpose Timer Units with 5 Timers on C161O, one Timer Unit with 3 Timers on C161K
 - Two Serial Channels (Synchronous/Asynchronous and High-Speed-Synchronous)
- Up to 4 MBytes External Address Space for Code and Data
 - Programmable External Bus Characteristics for Different Address Ranges
 - Multiplexed or Demultiplexed External Address/Data Buses with 8-Bit or 16-Bit Data Bus Width
 - Four Programmable Chip-Select Signals on C161O, two Chip-Select Signals on C161K
- Idle and Power Down Modes
- Programmable Watchdog Timer
- Up to 63 General Purpose I/O Lines
- Power Supply: the C161K/O can operate from a 5 V or a 3 V power supply
- Supported by a Large Range of Development Tools like C-Compilers, Macro-Assembler Packages, Emulators, Evaluation Boards, HLL-Debuggers, Simulators, Logic Analyzer Disassemblers, Programming Boards
- On-Chip Bootstrap Loader
- 80-Pin MQFP Package (0.65 mm pitch)

Pin Configuration MQFP Package

(top view)

Figure 2

Note: The **marked** signals are **only available in the C1610**. Please also refer to the detailed description below (shaded lines).

Table 2	Pi	n Definit	tions and Functions
Symbol	Pin Num	Input Outp.	Function
XTAL1	2	1	XTAL1: Input to the oscillator amplifier and input to the internal clock generator
XTAL2	3	0	XTAL2: Output of the oscillator amplifier circuit. To clock the device from an external source, drive XTAL1, while leaving XTAL2 unconnected. Minimum and maximum high/low and rise/fall times specified in the AC Characteristics must be observed.
P3		IO	Port 3 is a 12-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 3 outputs can be configured as push/ pull or open drain drivers. The Port 3 pins serve for following alternate functions:
P3.2	5	1	CAPIN GPT2 Register CAPREL Capture Input This alternate input is only available in the C1610 .
P3.3	6	0	T3OUT GPT1 Timer T3 Toggle Latch Output
P3.4	7	I	T3EUD GPT1 Timer T3 External Up/Down Control Input
P3.5	8		T4IN GPT1 Timer T4 Count/Gate/Reload/Capture Inp
P3.6	9		T3IN GPT1 Timer T3 Count/Gate Input
P3.7	10		T2IN GPT1 Timer T2 Count/Gate/Reload/Capture Inp
P3.8 P3.9	11 12	1/O 1/O	MRST SSC Master-Receive/Slave-Transmit Inp./Outp. MTSR SSC Master-Transmit/Slave-Receive Outp./Inp.
P3.9 P3.10	12	0	MTSRSSC Master-Transmit/Slave-Receive Outp./Inp.TxD0ASC0 Clock/Data Output (Async./Sync.)
P3.11	14	1/0	RxD0 ASC0 Data Input (Async.) or Inp./Outp. (Sync.)
P3.12	15	0	BHEExternal Memory High Byte Enable Signal,WRHExternal Memory High Byte Write Strobe
P3.13	16	I/O	SCLK SSC Master Clock Output / Slave Clock Input
Ρ4		IO	Port 4 is a 6-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 4 can be used to output the segment address lines:
P4.0	17	0	A16 Least Significant Segment Address Line
P4.1	18	0	A17 Segment Address Line
P4.2	19	0	A18 Segment Address Line
P4.3	20	0	A19 Segment Address Line
P4.4	23	0	A20 Segment Address Line
P4.5	24	0	A21 Most Significant Segment Address Line

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C161K/O instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C161K/O is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C161K/O supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C161K/O has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C161K/O interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 kBaud and half-duplex synchronous communication at up to 3.1 MBaud (@ 25 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 MBaud (@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception, and error handling three separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Special Function Registers Overview

The following table lists all SFRs which are implemented in the C161K/O in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Note: The shaded registers are only available in the C161O, not in the C161K.

Name Physical Address		8-Bit Addr.	Description	Reset Value	
ADDRSEL1 FE18 _H		FE18 _H	0C _H	Address Select Register 1	0000 _H
ADDRSEL2	2	FE1A _H	0D _H	Address Select Register 2	0000 _H
ADDRSEL	3	FE1C _H	0E _H	Address Select Register 3	0000 _H
ADDRSEL4	ŀ	FE1E _H	0F _H	Address Select Register 4	0000 _H
BUSCON0	b	FF0C _H	86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H	8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H	8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H	8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H	8D _H	Bus Configuration Register 4	0000 _H
CAPREL		FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC10IC	b	FF8C _H	C6 _H	EX2IN Interrupt Control Register	0000 _H
CC11IC	b	FF8E _H	C7 _H	EX3IN Interrupt Control Register	0000 _H
CC12IC	b	FF90 _H	C8 _H	EX4IN Interrupt Control Register	0000 _H
CC13IC	b	FF92 _H	C9 _H	EX5IN Interrupt Control Register	0000 _H
CC14IC	b	FF94 _H	CA _H	EX6IN Interrupt Control Register	0000 _H
CC15IC	b	FF96 _H	CB _H	EX7IN Interrupt Control Register	0000 _H
CC9IC	b	FF8A _H	C5 _H	EX1IN Interrupt Control Register	0000 _H
СР		FE10 _H	08 _H	CPU Context Pointer Register	FC00 _H
CRIC	b	FF6A _H	B5 _H	GPT2 CAPREL Interrupt Ctrl. Reg.	0000 _H
CSP		FE08 _H	04 _H	CPU Code Seg. Pointer Reg. (read only)	0000 _H

 Table 6
 C161K/O Registers, Ordered by Name

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C161K/ O and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C161K/O will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C161K/O.

DC Characteristics (Standard Supply Voltage Range)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		min.	max.			
Input low voltage (TTL, all except XTAL1)	V _{IL} SR	-0.5	0.2 V _{DD} - 0.1	V	_	
Input low voltage XTAL1	V_{IL2} SR	-0.5	0.3 V _{DD}	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH} SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	_	
Input high voltage XTAL1	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	_	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL} CC	_	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	<i>I</i> _{OL} = 1.6 mA	
Output high voltage ³⁾	V _{OH} CC	2.4	_	V	I _{OH} = -2.4 mA	
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)		0.9 V _{DD}	_	V	I _{OH} = -0.5 mA	
Output high voltage ³⁾	V _{OH1} CC	2.4	_	V	I _{OH} = -1.6 mA	
(all other outputs)		0.9 V _{DD}	_	V	I _{OH} = -0.5 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	±200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	-	±500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{C}}$	
RSTIN inactive current ⁴⁾	I _{RSTH} ⁵⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$	

DC Characteristics (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.]	
RSTIN active current ⁴⁾	I _{RSTL} ⁶⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$
RD/WR inact. current ⁷⁾	I _{RWH} ⁵⁾	—	-40	μA	V_{OUT} = 2.4 V
RD/WR active current ⁷⁾	I _{RWL} ⁶⁾	-500	-	μA	$V_{OUT} = V_{OLmax}$
ALE inactive current ⁷⁾	$I_{ALEL}^{(5)}$	-	40	μA	$V_{OUT} = V_{OLmax}$
ALE active current ⁷⁾	I _{ALEH} ⁶⁾	500	-	μA	V_{OUT} = 2.4 V
Port 6 inactive current ⁷⁾	I _{P6H} ⁵⁾	-	-40	μA	V_{OUT} = 2.4 V
Port 6 active current ⁷⁾	I _{P6L} ⁶⁾	-500	-	μA	$V_{OUT} = V_{OL1max}$
PORT0 configuration current ⁷⁾	I _{P0H} ⁵⁾	—	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{POL}^{6)}$	-100	_	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	_	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁸⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Adapt-mode.
- ⁸⁾ Not 100% tested, guaranteed by design and characterization.

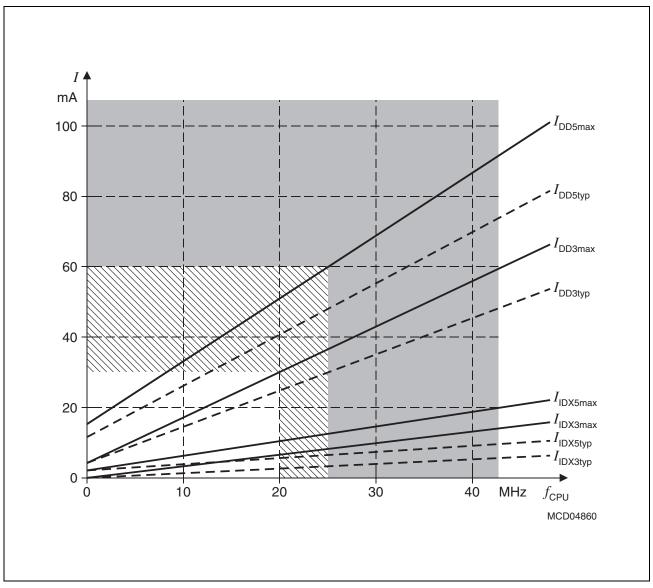


Figure 7 Supply/Idle Current as a Function of Operating Frequency

Table 9	CIGINO CIUCK		
CLKCFG (P0H.7-5)	$\begin{array}{c} \textbf{CPU Frequency} \\ f_{\text{CPU}} = f_{\text{OSC}} \times \textbf{F} \end{array}$		Notes
0 X X	$f_{OSC} \times 1$	1 to 25 MHz	Direct drive ¹⁾
1 X X	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler

Table 9	C161K/O Clock Generation Modes
---------	--------------------------------

¹⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

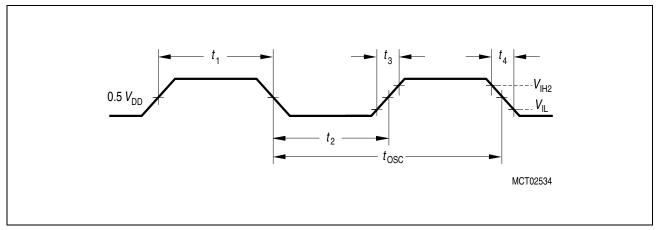
When prescaler operation is configured (CLKCFG = $1XX_B$) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Direct Drive

When direct drive is configured (CLKCFG = $0XX_B$) the CPU clock is directly driven from the internal oscillator with the input clock signal.


The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

Figure 9 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Table 12Memory Cycle Variables

Description	Symbol	Values
ALE Extension	<i>t</i> _A	TCL × <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL × (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL × (1 - <mttc>)</mttc>

Note: Please respect the maximum operating frequency of the respective derivative.

AC Characteristics

Multiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (120 ns at 25 MHz CPU clock without waitstates)

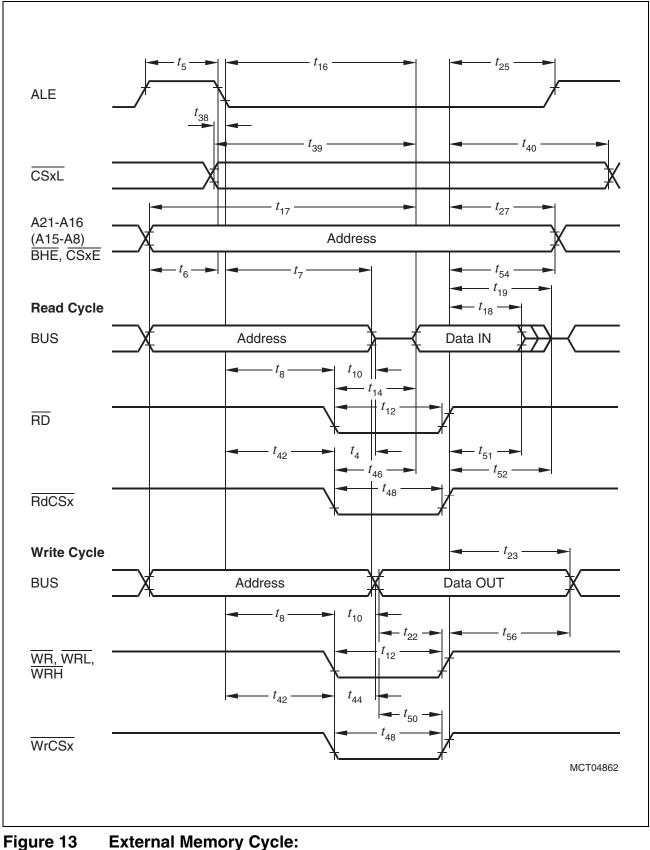
Parameter		nbol		PU Clock MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	t ₅	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
Address setup to ALE	<i>t</i> ₆	CC	$4 + t_A$	_	TCL - 16 + <i>t</i> _A	-	ns
Address hold after ALE	t ₇	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	t ₈	CC	$10 + t_{A}$	-	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to \overline{RD} , \overline{WR} (no RW-delay)	t ₉	CC	$-10 + t_{A}$	_	$-10 + t_{A}$	_	ns
Address float after RD, WR (with RW-delay)	t ₁₀	CC	-	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	_	26	-	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	_	2TCL - 10 + <i>t</i> _C	_	ns

Multiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (120 ns at 25 MHz CPU clock without waitstates)

Parameter		nbol	Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
RD, WR low time (no RW-delay)	t ₁₃	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	<i>t</i> ₁₄	SR	_	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$40 + t_{\rm C}$	-	3TCL - 20 + <i>t</i> _C	ns
ALE low to valid data in	<i>t</i> ₁₆	SR	_	$40 + t_{A} + t_{C}$	-	3TCL - 20 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$50 + 2t_A + t_C$	-	$4TCL - 30 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	_	ns
Data float after RD	t ₁₉	SR	_	$26 + t_{F}$	_	2TCL - 14 + <i>t</i> _F	ns
Data valid to WR	t ₂₂	CC	$20 + t_{\rm C}$	-	2TCL - 20 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₃	CC	$26 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , \overline{WR}	t ₂₅	CC	$26 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	$26 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	- 4 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	-	$40 + t_{C} + 2t_{A}$	_	$\begin{array}{l} \text{3TCL} - 20 \\ + t_{\text{C}} + 2t_{\text{A}} \end{array}$	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	$46 + t_{F}$	-	3TCL - 14 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	$16 + t_A$	-	TCL - 4 + <i>t</i> _A	_	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	<i>t</i> ₄₃	CC	$-4 + t_{A}$	-	-4 + t _A	-	ns


Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter		nbol	Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Data float after RD	t ₁₉	SR	-	$36 + t_{\rm F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to \overline{WR}	t ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₃	CC	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after $\overline{\text{RD}}$, $\overline{\text{WR}}$	t ₂₅	CC	$36 + t_{\sf F}$	-	2TCL - 14 + <i>t</i> _F	_	ns
Address hold after RD, WR	t ₂₇	CC	$36 + t_{\sf F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	-8 - t _A	10 - <i>t</i> _A	-8 - <i>t</i> A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	$47 + t_{C} + 2t_{A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	57 + <i>t</i> _F	-	3TCL - 18 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	19 + <i>t</i> _A	-	TCL - 6 + <i>t</i> _A	_	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	$-6 + t_{A}$	_	-6 + <i>t</i> _A	_	ns
Address float after RdCS, WrCS (with RW delay)	t ₄₄	CC	_	0	_	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	25	_	TCL	ns
RdCS to Valid Data In (with RW delay)	t ₄₆	SR	_	$20 + t_{\rm C}$	_	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇	SR	-	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	_	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	63 + <i>t</i> _C	-	3TCL - 12 + <i>t</i> _C	-	ns

gure 13 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

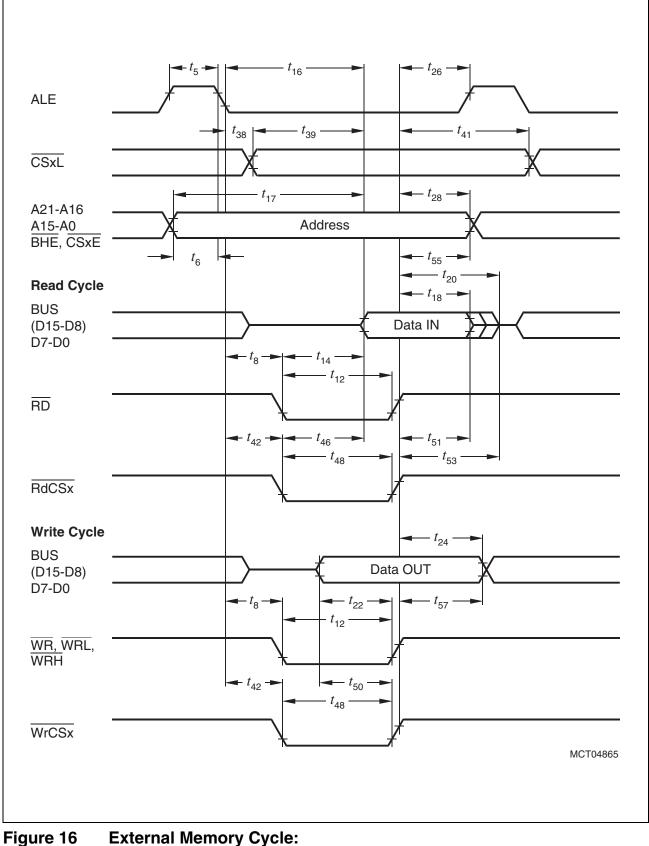
ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbo		PU Clock 5 MHz	Variable (1 / 2TCL =	Unit	
		min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	<i>t</i> ₅₃ SR	-	20 + <i>t</i> _F	_	2TCL - 20 + $2t_A + t_F$ 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	<i>t</i> ₆₈ SR	-	$0 + t_{F}$	-	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₅ CC	-6 + <i>t</i> _F	-	$-6 + t_{\rm F}$	-	ns
Data hold after WrCS	<i>t</i> ₅₇ CC	$6 + t_{F}$	-	TCL - 14 + <i>t</i> _F	_	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).


Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit
		min.	max.	min.	max.	
Data valid to \overline{WR}	t ₂₂ CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after \overline{WR}	t ₂₄ CC	15 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _F	-	ns
ALE rising edge after RD, WR	t ₂₆ CC	$-12 + t_{F}$	-	-12 + <i>t</i> _F	-	ns
Address hold after $\overline{WR}^{2)}$	t ₂₈ CC	$0 + t_{F}$	_	$0 + t_{F}$	_	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈ CC	-8 - t _A	10 - <i>t</i> _A	-8 - t _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data In ³⁾	<i>t</i> ₃₉ SR	-	$47 + t_{\rm C} + 2t_{\rm A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	<i>t</i> ₄₁ CC	9 + $t_{\rm F}$	-	TCL - 16 + <i>t</i> _F	_	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂ CC	19 + <i>t</i> _A	-	TCL - 6 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃ CC	$-6 + t_{A}$	_	-6 + <i>t</i> _A	_	ns
RdCS to Valid Data In (with RW-delay)	<i>t</i> ₄₆ SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	<i>t</i> ₄₇ SR	_	$45 + t_{\rm C}$	_	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈ CC	$38 + t_{\rm C}$	-	2TCL - 12 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	<i>t</i> ₄₉ CC	$63 + t_{\rm C}$	-	3TCL - 12 + <i>t</i> _C	-	ns
Data valid to WrCS	<i>t</i> ₅₀ CC	28 + <i>t</i> _C	-	2TCL - 22 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	_	ns

Demultiplexed Bus, With Read/Write Delay, Normal ALE