

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	63
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	P-MQFP-80-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161ol25mhabxuma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2001-01

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

This document describes several derivatives of the C161 group. **Table 1** enumerates these derivatives and summarizes the differences. As this document refers to all of these derivatives, some descriptions may not apply to a specific product.

Derivative ¹⁾	Max. Oper. Frequency	Operating Voltage	IRAM [KB]	Nr of CSs	Ext. Intr.	CAP IN
SAF-C161K-LM	20 MHz	4.5 to 5.5 V	1	2	4	
SAB-C161K-LM	20 MHz	4.5 to 5.5 V	1	2	4	
SAF-C161K-L25M	25 MHz	4.5 to 5.5 V	1	2	4	
SAB-C161K-L25M	25 MHz	4.5 to 5.5 V	1	2	4	
SAF-C161K-LM3V	20 MHz	3.0 to 3.6 V	1	2	4	
SAB-C161K-LM3V	20 MHz	3.0 to 3.6 V	1	2	4	
SAF-C161O-LM	20 MHz	4.5 to 5.5 V	2	4	7	Yes
SAB-C161O-LM	20 MHz	4.5 to 5.5 V	2	4	7	Yes
SAF-C161O-L25M	25 MHz	4.5 to 5.5 V	2	4	7	Yes
SAB-C161O-L25M	25 MHz	4.5 to 5.5 V	2	4	7	Yes
SAF-C161O-LM3V	20 MHz	3.0 to 3.6 V	2	4	7	Yes
SAB-C161O-LM3V	20 MHz	3.0 to 3.6 V	2	4	7	Yes

 Table 1
 C161K/O Derivative Synopsis

¹⁾ This Data Sheet is valid for devices starting with and including design step HA.

For simplicity all versions are referred to by the term C161K/O throughout this document.

Ordering Information

The ordering code for Infineon microcontrollers provides an exact reference to the required product. This ordering code identifies:

- the derivative itself, i.e. its function set, the temperature range, and the supply voltage
- the package and the type of delivery.

For the available ordering codes for the C161K/O please refer to the "**Product Catalog Microcontrollers**", which summarizes all available microcontroller variants.

Note: The ordering codes for Mask-ROM versions are defined for each product after verification of the respective ROM code.

Introduction

The C161K/O is a derivative of the Infineon C166 Family of full featured single-chip CMOS microcontrollers. It combines high CPU performance (up to 12.5 million instructions per second) with peripheral functionality and enhanced IO-capabilities. The C161K/O is especially suited for cost sensitive applications.

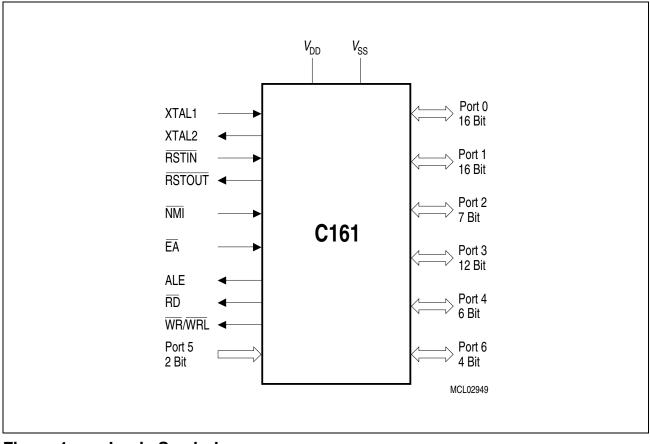


Figure 1 Logic Symbol

Table 2	Pi	n Definit	ions and Functions (cont'd)
Symbol	Pin Num	Input Outp.	Function
RSTIN	65	Ι/Ο	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the C161K/O. An internal pullup resistor permits power-on reset using only a capacitor connected to V_{SS} . A spike filter suppresses input pulses < 10 ns. Input pulses >100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles. In bidirectional reset mode (enabled by setting bit BDRSTEN in register SYSCON) the RSTIN line is internally pulled low for the duration of the internal reset sequence upon any reset (HW, SW, WDT). See note below this table.
			Note: To let the reset configuration of PORT0 settle a reset duration of ca. 1 ms is recommended.
RST OUT	66	0	Internal Reset Indication Output. This pin is set to a low level when the part is executing either a hardware-, a software- or a watchdog timer reset. RSTOUT remains low until the EINIT (end of initialization) instruction is executed.
NMI	67	1	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the C161K/O to go into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally.
P6 .0 P6.1	68 69	10 0 0	Port 6 is a 4-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 6 outputs can be configured as push/ pull or open drain drivers.The Port 6 pins also serve for alternate functions: $\overline{CS0}$ $\overline{CS1}$ Chip Select 0 Output $\overline{CS1}$
P6.2 P6.3	70 71	0	CS2Chip Select 2 OutputCS3Chip Select 3 OutputThese chip select outputs are only available in the C1610.

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C161K/O instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

 $2C_{H}$

 $2D_{H}$

2E_H

 $2F_{H}$

00'00B0_H

00'00B4_H

00'00B8_H

00'00BC_H

Table 3 C161K/O	Interrupt No	odes			
Source of Interrupt or PEC Service Request	Request Flag	Enable Flag	Interrupt Vector	Vector Location	Trap Number
External Interrupt 1	CC9IR	CC9IE	CC9INT	00'0064 _H	19 _H
External Interrupt 2	CC10IR	CC10IE	CC10INT	00'0068 _H	1A _H
External Interrupt 3	CC11IR	CC11IE	CC11INT	00'006C _H	1B _H
External Interrupt 4	CC12IR	CC12IE	CC12INT	00'0070 _H	1C _H
External Interrupt 5	CC13IR	CC13IE	CC13INT	00'0074 _H	1D _H
External Interrupt 6	CC14IR	CC14IE	CC14INT	00'0078 _H	1E _H
External Interrupt 7	CC15IR	CC15IE	CC15INT	00'007C _H	1F _H
GPT1 Timer 2	T2IR	T2IE	T2INT	00'0088 _H	22 _H
GPT1 Timer 3	T3IR	T3IE	T3INT	00'008C _H	23 _H
GPT1 Timer 4	T4IR	T4IE	T4INT	00'0090 _H	24 _H
GPT2 Timer 5	T5IR	T5IE	T5INT	00'0094 _H	25 _H
GPT2 Timer 6	T6IR	T6IE	T6INT	00'0098 _H	26 _H
GPT2 CAPREL Reg.	CRIR	CRIE	CRINT	00'009C _H	27 _H
ASC0 Transmit	S0TIR	S0TIE	SOTINT	00'00A8 _H	2A _H
ASC0 Transmit Buffer	S0TBIR	SOTBIE	SOTBINT	00'011C _H	47 _H
ASC0 Receive	S0RIR	SORIE	SORINT	00'00AC _H	2B _H

S0EIR

SCTIR

SCRIR

SCEIR

C161K/O Interrupt Nodes Table 3

Note: The shaded interrupt nodes are only available in the C1610, not in the C161K.

S0EIE

SCTIE

SCRIE

SCEIE

SOEINT

SCTINT

SCRINT

SCEINT

SSC Transmit

SSC Receive

SSC Error

ASC0 Error

General Purpose Timer (GPT) Unit

The GPT unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the CPU clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 16 TCL.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components, or may be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 kBaud and half-duplex synchronous communication at up to 3.1 MBaud (@ 25 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 MBaud (@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception, and error handling three separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Instruction Set Summary

 Table 5 lists the instructions of the C161K/O in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 5Instruction Set Summary

Table 5Instruction Set Summary (cont'd)							
Mnemonic	Description	Bytes					
MOV(B)	Move word (byte) data	2/4					
MOVBS	Move byte operand to word operand with sign extension	2/4					
MOVBZ	Move byte operand to word operand. with zero extension	2/4					
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4					
JMPS	Jump absolute to a code segment	4					
J(N)B	Jump relative if direct bit is (not) set	4					
JBC	Jump relative and clear bit if direct bit is set	4					
JNBS	Jump relative and set bit if direct bit is not set	4					
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4					
CALLS	Call absolute subroutine in any code segment	4					
PCALL	Push direct word register onto system stack and call absolute subroutine	4					
TRAP	Call interrupt service routine via immediate trap number	2					
PUSH, POP	Push/pop direct word register onto/from system stack	2					
SCXT	Push direct word register onto system stack and update register with word operand	4					
RET	Return from intra-segment subroutine	2					
RETS	Return from inter-segment subroutine	2					
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2					
RETI	Return from interrupt service subroutine	2					
SRST	Software Reset	4					
IDLE	Enter Idle Mode	4					
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4					
SRVWDT	Service Watchdog Timer	4					
DISWDT	Disable Watchdog Timer	4					
EINIT	Signify End-of-Initialization on RSTOUT-pin	4					
ATOMIC	Begin ATOMIC sequence	2					
EXTR	Begin EXTended Register sequence	2					
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4					
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4					
NOP	Null operation	2					

Table 6	C161K/O Registers, Ordered by Name (cont'd)
---------	---

Name Physical Address		-			Description	Reset Value
DP0H	b	F102 _H	Е	81 _H	P0H Direction Control Register	00 _H
DP0L	b	F100 _H	Ε	80 _H	P0L Direction Control Register	00 _H
DP1H	b	F106 _H	Ε	83 _H	P1H Direction Control Register	00 _H
DP1L	b	F104 _H	Ε	82 _H	P1L Direction Control Register	00 _H
DP2	b	FFC2 _H		E1 _H	Port 2 Direction Control Register	0000 _H
DP3	b	FFC6 _H		E3 _H	Port 3 Direction Control Register	0000 _H
DP4	b	FFCA _H		E5 _H	Port 4 Direction Control Register	00 _H
DP6	b	FFCE _H		E7 _H	Port 6 Direction Control Register	00 _H
DPP0		FE00 _H		00 _H	CPU Data Page Pointer 0 Reg. (10 bits)	0000 _H
DPP1		FE02 _H		01 _H	CPU Data Page Pointer 1 Reg. (10 bits)	0001 _H
DPP2		FE04 _H		02 _H	CPU Data Page Pointer 2 Reg. (10 bits)	0002 _H
DPP3		FE06 _H		03 _H	CPU Data Page Pointer 3 Reg. (10 bits)	0003 _H
EXICON	b	F1C0 _H	Ε	E0 _H	External Interrupt Control Register	0000 _H
IDCHIP		F07C _H	Ε	3E _H	Identifier	05XX _H
IDMANUF		F07E _H	Ε	3F _H	Identifier	1820 _H
IDMEM		F07A _H	Ε	3D _H	Identifier	0000 _H
IDMEM2		F076 _H	Ε	3B _H	Identifier	0000 _H
IDPROG		F078 _H	Ε	3C _H	Identifier	0000 _H
MDC	b	FF0E _H		87 _H	CPU Multiply Divide Control Register	0000 _H
MDH		FE0C _H		06 _H	CPU Multiply Divide Reg. – High Word	0000 _H
MDL		FE0E _H		07 _H	CPU Multiply Divide Reg. – Low Word	0000 _H
ODP2	b	F1C2 _H	Ε	E1 _H	Port 2 Open Drain Control Register	0000 _H
ODP3	b	F1C6 _H	Ε	E3 _H	Port 3 Open Drain Control Register	0000 _H
ODP6	b	F1CE _H	Ε	E7 _H	Port 6 Open Drain Control Register	00 _H
ONES	b	FF1E _H		8F _H	Constant Value 1's Register (read only)	FFFF _H
P0H	b	FF02 _H		81 _H	Port 0 High Reg. (Upper half of PORT0)	00 _H
P0L	b	FF00 _H		80 _H	Port 0 Low Reg. (Lower half of PORT0)	00 _H
P1H	b	FF06 _H		83 _H	Port 1 High Reg. (Upper half of PORT1)	00 _H
P1L	b	FF04 _H		82 _H	Port 1 Low Reg.(Lower half of PORT1)	00 _H
P2	b	FFC0 _H		E0 _H	Port 2 Register	0000 _H

Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation of the C161K/O. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Lim	it Values	Unit	Notes	
		min.	max.			
Standard digital supply voltage	V _{DD}	4.5	5.5	V	Active mode, $f_{CPUmax} = 25 \text{ MHz}$	
(5 V versions)		2.5 ¹⁾	5.5	V	Power Down mode	
Reduced digital supply voltage	V _{DD}	3.0	3.6	V	Active mode, $f_{CPUmax} = 20 \text{ MHz}$	
(3 V versions)		2.5 ¹⁾	3.6	V	Power Down mode	
Digital ground voltage	V _{SS}		0	V	Reference voltage	
Overload current	I _{OV}	-	±5	mA	Per pin ²⁾³⁾	
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	3)	
External Load Capacitance	CL	-	100	pF	-	
Ambient temperature	T _A	0	70	°C	SAB-C161K/O	
		-40	85	°C	SAF-C161K/O	
		-40	125	°C	SAK-C161K/O	

Table 8Operating Condition Parameters

¹⁾ Output voltages and output currents will be reduced when V_{DD} leaves the range defined for active mode.

²⁾ Overload conditions occur if the standard operatings conditions are exceeded, i.e. the voltage on any pin exceeds the specified range (i.e. V_{OV} > V_{DD} + 0.5 V or V_{OV} < V_{SS} - 0.5 V). The absolute sum of input overload currents on all pins may not exceed **50 mA**. The supply voltage must remain within the specified limits. Proper operation is not guaranteed if overload conditions occur on functional pins such as XTAL1, RD, WR, etc.

³⁾ Not 100% tested, guaranteed by design and characterization.

Parameter Interpretation

The parameters listed in the following partly represent the characteristics of the C161K/ O and partly its demands on the system. To aid in interpreting the parameters right, when evaluating them for a design, they are marked in column "Symbol":

CC (Controller Characteristics):

The logic of the C161K/O will provide signals with the respective timing characteristics.

SR (System Requirement):

The external system must provide signals with the respective timing characteristics to the C161K/O.

DC Characteristics (Standard Supply Voltage Range)

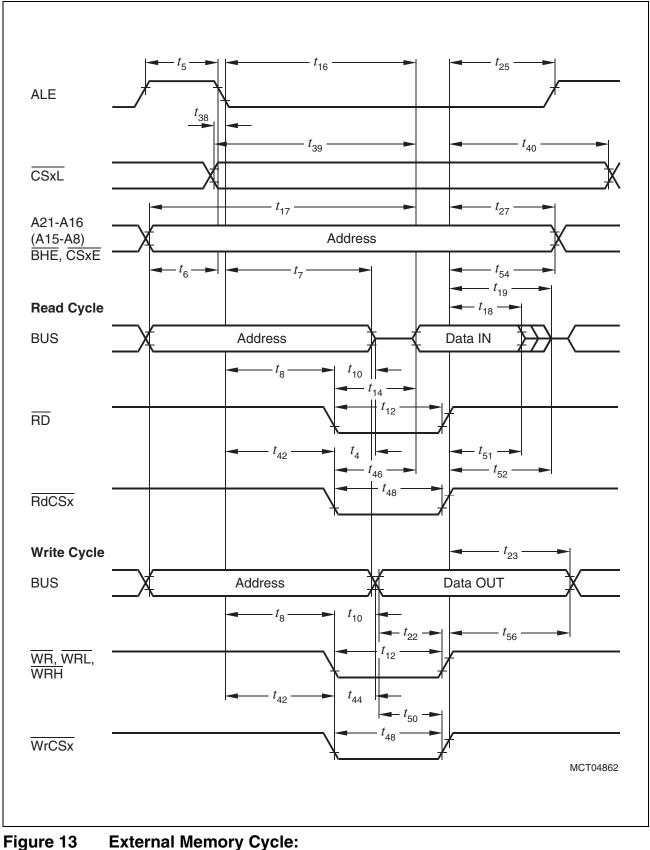
(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit	Values	Unit	Test Condition	
		min.	max.			
Input low voltage (TTL, all except XTAL1)	V _{IL} SR	-0.5	0.2 V _{DD} - 0.1	V	_	
Input low voltage XTAL1	V_{IL2} SR	-0.5	0.3 V _{DD}	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V _{IH} SR	0.2 V _{DD} + 0.9	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1} SR	0.6 V _{DD}	V _{DD} + 0.5	V	_	
Input high voltage XTAL1	V _{IH2} SR	0.7 V _{DD}	V _{DD} + 0.5	V	_	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL} CC	_	0.45	V	I _{OL} = 2.4 mA	
Output low voltage (all other outputs)	V _{OL1} CC	_	0.45	V	<i>I</i> _{OL} = 1.6 mA	
Output high voltage ³⁾	V _{OH} CC	2.4	_	V	I _{OH} = -2.4 mA	
(PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)		0.9 V _{DD}	_	V	I _{OH} = -0.5 mA	
Output high voltage ³⁾	V _{OH1} CC	2.4	_	V	I _{OH} = -1.6 mA	
(all other outputs)		0.9 V _{DD}	_	V	I _{OH} = -0.5 mA	
Input leakage current (Port 5)	I _{OZ1} CC	-	±200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2} CC	-	±500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{C}}$	
RSTIN inactive current ⁴⁾	I _{RSTH} ⁵⁾	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$	

DC Characteristics (Standard Supply Voltage Range) (cont'd)

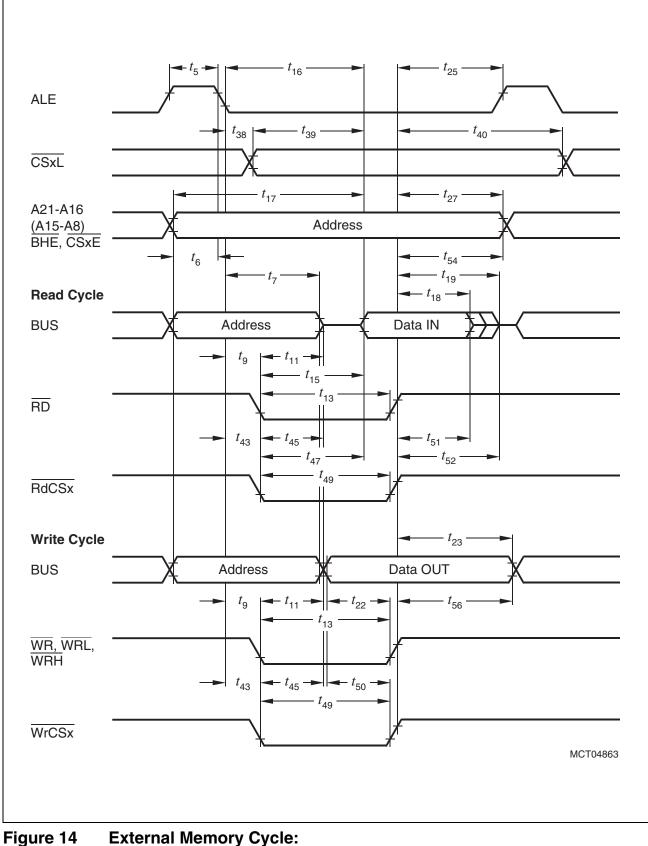
(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit Values		Unit	Test Condition
		min.	max.		
RSTIN active current ⁴⁾	I _{RSTL} ⁶⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$
RD/WR inact. current ⁷⁾	I _{RWH} ⁵⁾	-	-40	μA	V_{OUT} = 2.4 V
RD/WR active current ⁷⁾	I _{RWL} ⁶⁾	-500	-	μA	$V_{OUT} = V_{OLmax}$
ALE inactive current ⁷⁾	$I_{ALEL}^{5)}$	_	40	μA	$V_{OUT} = V_{OLmax}$
ALE active current ⁷⁾	I _{ALEH} ⁶⁾	500	-	μA	V_{OUT} = 2.4 V
Port 6 inactive current ⁷⁾	I _{P6H} ⁵⁾	-	-40	μA	V_{OUT} = 2.4 V
Port 6 active current ⁷⁾	I _{P6L} ⁶⁾	-500	-	μA	$V_{OUT} = V_{OL1max}$
PORT0 configuration current ⁷⁾	I _{P0H} ⁵⁾	—	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{POL}^{6)}$	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁸⁾ (digital inputs/outputs)	C _{IO} CC	-	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$


¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.


- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Adapt-mode.
- ⁸⁾ Not 100% tested, guaranteed by design and characterization.

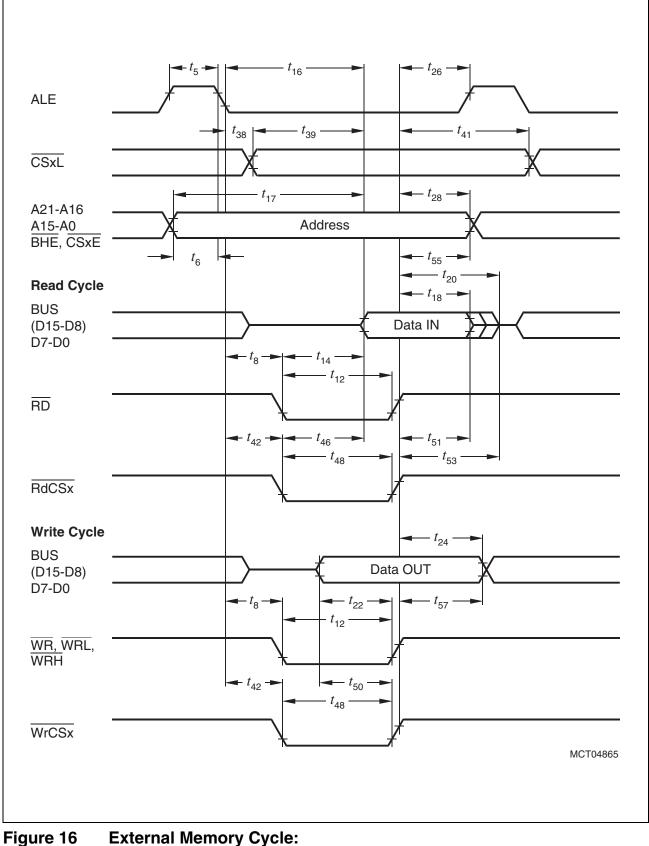
gure 13 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE

re 14 External Memory Cycle: Multiplexed Bus, No Read/Write Delay, Normal ALE

Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

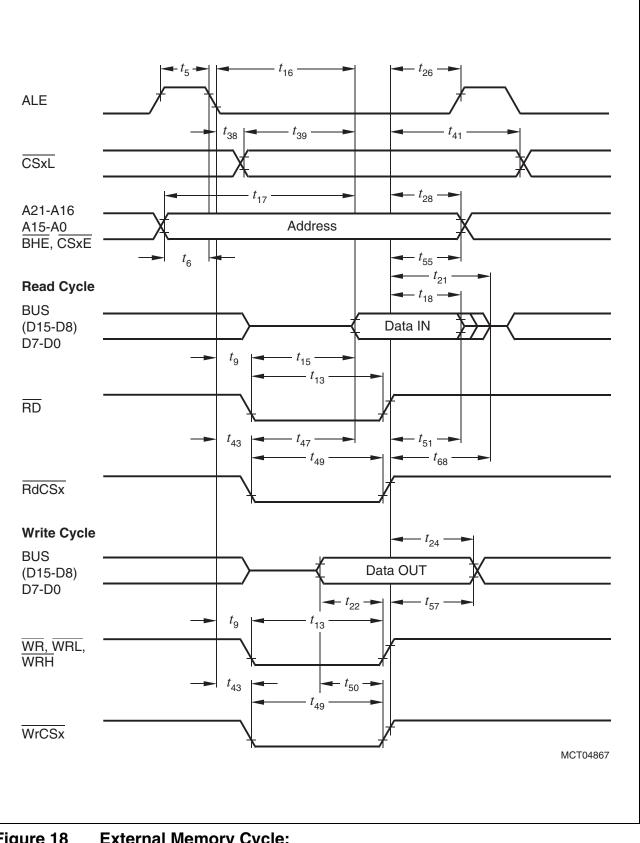
(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (100 ns at 20 MHz CPU clock without waitstates)


Parameter	Symbol		Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	_	$30 + t_{\rm F}$	_	2TCL - 20 + $2t_A + t_F$ 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	t ₆₈	SR	_	5 + <i>t</i> _F	-	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	t ₅₅	CC	-16 + <i>t</i> _F	-	-16 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₇	CC	9 + <i>t</i> _F	_	TCL - 16 + <i>t</i> _F	_	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.


³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Demultiplexed Bus, With Read/Write Delay, Normal ALE

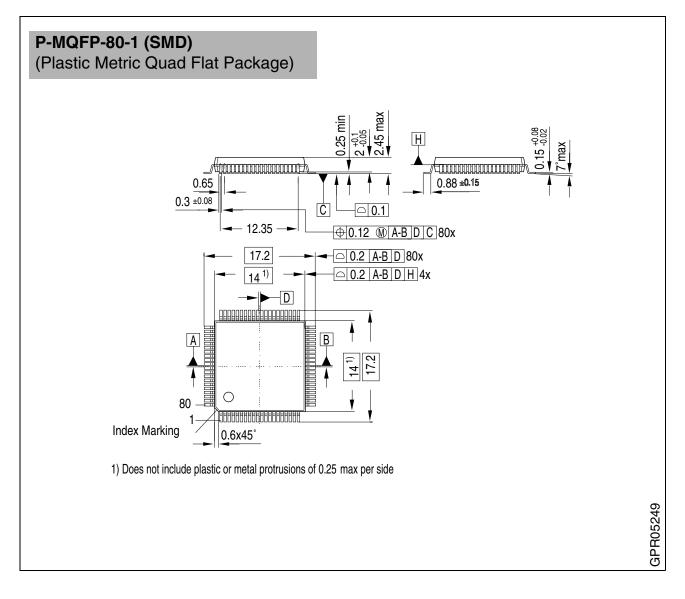


Figure 18 External Memory Cycle: Demultiplexed Bus, No Read/Write Delay, Normal ALE

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm