

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	63
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	P-MQFP-80-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/c161olmhafxqma1

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Edition 2001-01

Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved.

We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein.

Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide.

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

C161K/O

Revision History:		2001-01		V2.0				
Previous \	/ersion:	03.97	(Preliminary)					
		09.96	(Advance Information)					
Page	Subjects	(major chang	ges since last revision)					
All	Converted	d to Infineon la	iyout					
All	C161V rei	C161V removed						
2	Ordering (Ordering Codes and Cross-Reference replaced with Derivative Synopsis						
5 - 8	Open drain functionality described for P2, P3, P6							
8	Bidirectional reset introduced							
19	Figure up	dated						
28, 29	Revised d	lescription of A	Absolute Max. Ratings and Op	erating Conditions				
32 - 56	Specificat	ions for reduc	ed supply voltage introduced					
35	Reduced	power consun	nption					
36 , 37	Clock Ger	neration Mode	s added					
38 , 39	Descriptio	n of External	Clock Drive improved					
41 - 56	Standard	25-MHz timing	g introduced (timing granularity	/ 2 ns)				

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

The CPU has a register context consisting of up to 16 wordwide GPRs at its disposal. These 16 GPRs are physically allocated within the on-chip RAM area. A Context Pointer (CP) register determines the base address of the active register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 1024 words is provided as a storage for temporary data. The system stack is allocated in the on-chip RAM area, and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient C161K/O instruction set which includes the following instruction classes:

- Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Interrupt System

With an interrupt response time within a range from just 5 to 12 CPU clocks (in case of internal program execution), the C161K/O is capable of reacting very fast to the occurrence of non-deterministic events.

The architecture of the C161K/O supports several mechanisms for fast and flexible response to service requests that can be generated from various sources internal or external to the microcontroller. Any of these interrupt requests can be programmed to being serviced by the Interrupt Controller or by the Peripheral Event Controller (PEC).

In contrast to a standard interrupt service where the current program execution is suspended and a branch to the interrupt vector table is performed, just one cycle is 'stolen' from the current CPU activity to perform a PEC service. A PEC service implies a single byte or word data transfer between any two memory locations with an additional increment of either the PEC source or the destination pointer. An individual PEC transfer counter is implicity decremented for each PEC service except when performing in the continuous transfer mode. When this counter reaches zero, a standard interrupt is performed to the corresponding source related vector location. PEC services are very well suited, for example, for supporting the transmission or reception of blocks of data. The C161K/O has 8 PEC channels each of which offers such fast interrupt-driven data transfer capabilities.

A separate control register which contains an interrupt request flag, an interrupt enable flag and an interrupt priority bitfield exists for each of the possible interrupt sources. Via its related register, each source can be programmed to one of sixteen interrupt priority levels. Once having been accepted by the CPU, an interrupt service can only be interrupted by a higher prioritized service request. For the standard interrupt processing, each of the possible interrupt sources has a dedicated vector location.

Fast external interrupt inputs are provided to service external interrupts with high precision requirements. These fast interrupt inputs feature programmable edge detection (rising edge, falling edge or both edges).

Software interrupts are supported by means of the 'TRAP' instruction in combination with an individual trap (interrupt) number.

Table 3 shows all of the possible C161K/O interrupt sources and the corresponding hardware-related interrupt flags, vectors, vector locations and trap (interrupt) numbers.

Note: Interrupt nodes which are not used by associated peripherals, may be used to generate software controlled interrupt requests by setting the respective interrupt request bit (xIR).

The C161K/O also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 4 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location	Trap Number	Trap Priority
Reset Functions: – Hardware Reset – Software Reset – W-dog Timer Overflow	-	RESET RESET RESET	00'0000 _H 00'0000 _H 00'0000 _H	00 _H 00 _H 00 _H	
Class A Hardware Traps: – Non-Maskable Interrupt – Stack Overflow – Stack Underflow	NMI STKOF STKUF	NMITRAP STOTRAP STUTRAP	00'0008 _H 00'0010 _H 00'0018 _H	02 _H 04 _H 06 _H	
 Class B Hardware Traps: Undefined Opcode Protected Instruction Fault Illegal Word Operand Access 	UNDOPC PRTFLT ILLOPA	BTRAP BTRAP BTRAP	00'0028 _H 00'0028 _H 00'0028 _H	0A _H 0A _H 0A _H	1
 Illegal Instruction Access Illegal External Bus Access 	ILLINA ILLBUS	BTRAP BTRAP	00'0028 _H 00'0028 _H	0A _H 0A _H	1
Reserved	_	_	[2C _H – 3C _H]	[0B _H – 0F _H]	-
Software Traps TRAP Instruction 	-	-	Any [00'0000 _H 00'01FC _H] in steps of 4 _H	Any [00 _H – 7F _H]	Current CPU Priority

Table 4Hardware Trap Summary

The capture trigger (timer T5 to CAPREL) may also be generated upon transitions of GPT1 timer T3's inputs T3IN and/or T3EUD. This is especially advantageous when T3 operates in Incremental Interface Mode.

Note: Block GPT2 is only available in the C1610, not in the C161K.

Serial Channels

Serial communication with other microcontrollers, processors, terminals or external peripheral components is provided by two serial interfaces with different functionality, an Asynchronous/Synchronous Serial Channel (**ASC0**) and a High-Speed Synchronous Serial Channel (**SSC**).

The ASC0 is upward compatible with the serial ports of the Infineon 8-bit microcontroller families and supports full-duplex asynchronous communication at up to 781 kBaud and half-duplex synchronous communication at up to 3.1 MBaud (@ 25 MHz CPU clock).

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling 4 separate interrupt vectors are provided. In asynchronous mode, 8- or 9-bit data frames are transmitted or received, preceded by a start bit and terminated by one or two stop bits. For multiprocessor communication, a mechanism to distinguish address from data bytes has been included (8-bit data plus wake up bit mode).

In synchronous mode, the ASC0 transmits or receives bytes (8 bits) synchronously to a shift clock which is generated by the ASC0. The ASC0 always shifts the LSB first. A loop back option is available for testing purposes.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. A parity bit can automatically be generated on transmission or be checked on reception. Framing error detection allows to recognize data frames with missing stop bits. An overrun error will be generated, if the last character received has not been read out of the receive buffer register at the time the reception of a new character is complete.

The SSC supports full-duplex synchronous communication at up to 6.25 MBaud (@ 25 MHz CPU clock). It may be configured so it interfaces with serially linked peripheral components. A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception, and error handling three separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit and receive error supervise the correct handling of the data buffer. Phase and baudrate error detect incorrect serial data.

Table 5 Inst	ruction Set Summary (cont'd)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes MMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

Special Function Registers Overview

The following table lists all SFRs which are implemented in the C161K/O in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Note: The shaded registers are only available in the C161O, not in the C161K.

Name		Physical Address	8-Bit Addr.	Description	Reset Value
ADDRSEL1		FE18 _H	0C _H	Address Select Register 1	0000 _H
ADDRSEL2)	FE1A _H	0D _H	Address Select Register 2	0000 _H
ADDRSEL3	6	FE1C _H	0E _H	Address Select Register 3	0000 _H
ADDRSEL4	ļ	FE1E _H	0F _H	Address Select Register 4	0000 _H
BUSCON0	b	FF0C _H	86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H	8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H	8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H	8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H	8D _H	Bus Configuration Register 4	0000 _H
CAPREL		FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC10IC	b	FF8C _H	C6 _H	EX2IN Interrupt Control Register	0000 _H
CC11IC	b	FF8E _H	C7 _H	EX3IN Interrupt Control Register	0000 _H
CC12IC	b	FF90 _H	C8 _H	EX4IN Interrupt Control Register	0000 _H
CC13IC	b	FF92 _H	C9 _H	EX5IN Interrupt Control Register	0000 _H
CC14IC	b	FF94 _H	CA _H	EX6IN Interrupt Control Register	0000 _H
CC15IC	b	FF96 _H	CB _H	EX7IN Interrupt Control Register	0000 _H
CC9IC	b	FF8A _H	C5 _H	EX1IN Interrupt Control Register	0000 _H
СР		FE10 _H	08 _H	CPU Context Pointer Register	FC00 _H
CRIC	b	FF6A _H	B5 _H	GPT2 CAPREL Interrupt Ctrl. Reg.	0000 _H
CSP		FE08 _H	04 _H	CPU Code Seg. Pointer Reg. (read only)	0000 _H

 Table 6
 C161K/O Registers, Ordered by Name

Table 6C161K/O Registers, Ordered by Name (cont'd)

Name		Physical Address	8-Bit Addr.	Description	Reset Value
SSCEIC	b	FF76 _H	BB _H	SSC Error Interrupt Control Register	0000 _H
SSCRB		F0B2 _H E	59 _H	SSC Receive Buffer	XXXX _H
SSCRIC	b	FF74 _H	BA _H	SSC Receive Interrupt Control Register	0000 _H
SSCTB		F0B0 _H E	58 _H	SSC Transmit Buffer	0000 _H
SSCTIC	b	FF72 _H	B9 _H	SSC Transmit Interrupt Control Register	0000 _H
STKOV		FE14 _H	0A _H	CPU Stack Overflow Pointer Register	FA00 _H
STKUN		FE16 _H	0B _H	CPU Stack Underflow Pointer Register	FC00 _H
SYSCON	b	FF12 _H	89 _H	CPU System Configuration Register	¹⁾ 0XX0 _H
T2		FE40 _H	20 _H	GPT1 Timer 2 Register	0000 _H
T2CON	b	FF40 _H	A0 _H	GPT1 Timer 2 Control Register	0000 _H
T2IC	b	FF60 _H	B0 _H	GPT1 Timer 2 Interrupt Control Register	0000 _H
Т3		FE42 _H	21 _H	GPT1 Timer 3 Register	0000 _H
T3CON	b	FF42 _H	A1 _H	GPT1 Timer 3 Control Register	0000 _H
T3IC	b	FF62 _H	B1 _H	GPT1 Timer 3 Interrupt Control Register	0000 _H
Т4		FE44 _H	22 _H	GPT1 Timer 4 Register	0000 _H
T4CON	b	FF44 _H	A2 _H	GPT1 Timer 4 Control Register	0000 _H
T4IC	b	FF64 _H	B2 _H	GPT1 Timer 4 Interrupt Control Register	0000 _H
Т5		FE46 _H	23 _H	GPT2 Timer 5 Register	0000 _H
T5CON	b	FF46 _H	A3 _H	GPT2 Timer 5 Control Register	0000 _H
T5IC	b	FF66 _H	B3 _H	GPT2 Timer 5 Interrupt Control Register	0000 _H
Т6		FE48 _H	24 _H	GPT2 Timer 6 Register	0000 _H
T6CON	b	FF48 _H	A4 _H	GPT2 Timer 6 Control Register	0000 _H
T6IC	b	FF68 _H	B4 _H	GPT2 Timer 6 Interrupt Control Register	0000 _H
TFR	b	FFAC _H	D6 _H	Trap Flag Register	0000 _H
WDT		FEAE _H	57 _H	Watchdog Timer Register (read only)	0000 _H
WDTCON	b	FFAE _H	D7 _H	Watchdog Timer Control Register	²⁾ 00XX _H
ZEROS	b	FF1C _H	8E _H	Constant Value 0's Register (read only)	0000 _H

¹⁾ The system configuration is selected during reset.

 $^{2)}\,$ The reset value depends on the indicated reset source.

DC Characteristics (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)¹⁾

Parameter	Symbol	Limit	Values	Unit	Test Condition
		min.	max.		
RSTIN active current ⁴⁾	I _{RSTL} ⁶⁾	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$
RD/WR inact. current ⁷⁾	I _{RWH} ⁵⁾	_	-40	μA	V_{OUT} = 2.4 V
RD/WR active current ⁷⁾	I _{RWL} ⁶⁾	-500	-	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE inactive current ⁷⁾	$I_{ALEL}^{(5)}$	_	40	μA	$V_{\rm OUT} = V_{\rm OLmax}$
ALE active current ⁷⁾	I _{ALEH} ⁶⁾	500	-	μA	V_{OUT} = 2.4 V
Port 6 inactive current ⁷⁾	I _{P6H} ⁵⁾	-	-40	μA	V_{OUT} = 2.4 V
Port 6 active current ⁷⁾	<i>I</i> _{P6L} ⁶⁾	-500	-	μA	$V_{\rm OUT} = V_{\rm OL1max}$
PORT0 configuration current ⁷⁾	I _{P0H} ⁵⁾	-	-10	μA	$V_{\rm IN} = V_{\rm IHmin}$
	$I_{P0L}^{6)}$	-100	-	μA	$V_{\rm IN} = V_{\rm ILmax}$
XTAL1 input current	I _{IL} CC	-	±20	μA	$0 V < V_{IN} < V_{DD}$
Pin capacitance ⁸⁾ (digital inputs/outputs)	C _{IO} CC	_	10	pF	f = 1 MHz $T_A = 25 \text{ °C}$

¹⁾ Keeping signal levels within the levels specified in this table, ensures operation without overload conditions. For signal levels outside these specifications also refer to the specification of the overload current I_{OV} .

²⁾ Valid in bidirectional reset mode only.

³⁾ This specification is not valid for outputs which are switched to open drain mode. In this case the respective output will float and the voltage results from the external circuitry.

- ⁴⁾ These parameters describe the $\overline{\text{RSTIN}}$ pullup, which equals a resistance of ca. 50 to 250 k Ω .
- ⁵⁾ The maximum current may be drawn while the respective signal line remains inactive.
- ⁶⁾ The minimum current must be drawn in order to drive the respective signal line active.
- ⁷⁾ This specification is valid during Reset and during Adapt-mode.
- ⁸⁾ Not 100% tested, guaranteed by design and characterization.

DC Characteristics (Reduced Supply Voltage Range) (Operating Conditions apply)¹⁾

Parameter		bol	Limit Values		Unit	Test Condition	
			min.	max.			
Input low voltage (TTL, all except XTAL1)	V _{IL}	SR	-0.5	0.8	V	-	
Input low voltage XTAL1	V_{IL2}	SR	-0.5	0.3 V _{DD}	V	-	
Input high voltage (TTL, all except RSTIN and XTAL1)	V_{IH}	SR	1.8	V _{DD} + 0.5	V	_	
Input high voltage RSTIN (when operated as input)	V _{IH1}	SR	0.6 V _{DD}	V _{DD} + 0.5	V	-	
Input high voltage XTAL1	V _{IH2}	SR	0.7 V _{DD}	V _{DD} + 0.5	V	-	
Output low voltage (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT, RSTIN ²⁾)	V _{OL}	CC	-	0.45	V	I _{OL} = 1.6 mA	
Output low voltage (all other outputs)	V _{OL1}	CC	_	0.45	V	<i>I</i> _{OL} = 1.0 mA	
Output high voltage ³⁾ (PORT0, PORT1, Port 4, ALE, RD, WR, BHE, RSTOUT)	V _{OH}	CC	0.9 V _{DD}	_	V	I _{OH} = -0.5 mA	
Output high voltage ³⁾ (all other outputs)	V _{OH1}	CC	0.9 V _{DD}	-	V	I _{OH} = -0.25 mA	
Input leakage current (Port 5)	I _{OZ1}	CC	_	±200	nA	$0 V < V_{IN} < V_{DD}$	
Input leakage current (all other)	I _{OZ2}	CC	_	±500	nA	$0.45 \text{ V} < V_{\text{IN}} < V_{\text{DD}}$	
RSTIN inactive current ⁴⁾	I _{RSTI}	_5) ⊣	_	-10	μA	$V_{\rm IN} = V_{\rm IH1}$	
RSTIN active current ⁴⁾	I _{RSTI}	6)	-100	-	μA	$V_{\rm IN} = V_{\rm IL}$	
RD/WR inact. current ⁷⁾	I _{RWH}	5) I	_	-10	μA	V _{OUT} = 2.4 V	
RD/WR active current ⁷⁾	I _{RWL}	6)	-500	_	μA	$V_{OUT} = V_{OLmax}$	
ALE inactive current ⁷⁾	I _{ALEL}	5)	_	20	μA	$V_{OUT} = V_{OLmax}$	
ALE active current ⁷⁾	IALEH	6) 1	500	_	μA	V _{OUT} = 2.4 V	
Port 6 inactive current ⁷⁾	I _{P6H} ⁵	5)	_	-10	μA	V_{OUT} = 2.4 V	
Port 6 active current ⁷⁾	I_{P6L}^{6}	i)	-500	-	μA	$V_{\rm OUT} = V_{\rm OL1max}$	

	CIUINO CIUCK	deneration modes			
CLKCFG (P0H.7-5)	CPU Frequency $f_{CPU} = f_{OSC} \times F$	External Clock Input Range	Notes		
0 X X	$f_{\rm OSC} imes 1$	1 to 25 MHz	Direct drive ¹⁾		
1 X X	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler		

Table 9	C161K/O	Clock	Generation	Modes
---------	---------	-------	------------	-------

¹⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = $1XX_B$) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Direct Drive

When direct drive is configured (CLKCFG = $0XX_B$) the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

Figure 9 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter		nbol	Max. CF = 20	PU Clock MHz	Variable C 1 / 2TCL = 1	Unit	
			min.	max.	min.	max.	
Data float after RD	t ₁₉	SR	_	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to \overline{WR}	t ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₃	CC	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , WR	t ₂₅	CC	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{\text{CS}}^{1)}$	t ₃₈	CC	-8 - <i>t</i> _A	10 - <i>t</i> _A	-8 - <i>t</i> _A	10 - <i>t</i> _A	ns
$\overline{\text{CS}}$ low to Valid Data In ¹⁾	t ₃₉	SR	_	$47 + t_{C} + 2t_{A}$	_	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{1)}$	<i>t</i> ₄₀	CC	57 + t _F	-	3TCL - 18 + <i>t</i> _F	-	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	$19 + t_{A}$	-	TCL - 6 + <i>t</i> _A	_	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	$-6 + t_{A}$	-	-6 + <i>t</i> _A	-	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄	CC	_	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	25	-	TCL	ns
RdCS to Valid Data In (with RW delay)	t ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇	SR	_	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$38 + t_{\rm C}$	_	2TCL - 12 + <i>t</i> _C	_	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	$63 + t_{\rm C}$	_	3TCL - 12 + <i>t</i> _C	_	ns

Multiplexed Bus, No Read/Write Delay, Normal ALE

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. Cl = 25	PU Clock MHz	Variable C 1 / 2TCL = 1	Unit	
			min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃ SI	R	_	20 + <i>t</i> _F	_	2TCL - 20 + 2 <i>t</i> _A + <i>t</i> _F 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	t ₆₈ SI	R	_	0 + <i>t</i> _F	_	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	t ₅₅ C	С	-6 + <i>t</i> _F	-	-6 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₇ C	С	$6 + t_{F}$	-	TCL - 14 + <i>t</i> _F	-	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Demultiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A + t_C + t_F$ (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable CPU Clock 1 / 2TCL = 1 to 20 MHz		Unit	
			min.	max.	min.	max.	
Data float after RdCS (with RW-delay) ¹⁾	t ₅₃	SR	_	30 + <i>t</i> _F	_	2TCL - 20 + 2 <i>t</i> _A + <i>t</i> _F 1)	ns
Data float after RdCS (no RW-delay) ¹⁾	t ₆₈	SR	_	5 + <i>t</i> _F	_	TCL - 20 + $2t_A + t_F$ 1)	ns
Address hold after RdCS, WrCS	t ₅₅	CC	-16 + <i>t</i> _F	-	-16 + <i>t</i> _F	-	ns
Data hold after WrCS	t ₅₇	CC	9 + $t_{\sf F}$	-	TCL - 16 + <i>t</i> _F	-	ns

¹⁾ RW-delay and t_A refer to the next following bus cycle (including an access to an on-chip X-Peripheral).

²⁾ Read data are latched with the same clock edge that triggers the address change and the rising RD edge. Therefore address changes before the end of RD have no impact on read cycles.

³⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

Demultiplexed Bus, With Read/Write Delay, Normal ALE

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Dimensions in mm