

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166
Core Size	16-Bit
Speed	25MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	63
Program Memory Size	-
Program Memory Type	ROMIess
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	80-QFP
Supplier Device Package	P-MQFP-80-1
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-c161o-l25m-ha

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

C161K/O

Revision History:		2001-01		V2.0		
Previous \	/ersion:	03.97	(Preliminary)			
		09.96	(Advance Information)			
Page	Subjects (major changes since last revision)					
All	Converted to Infineon layout					
All	C161V rei	moved				
2	Ordering Codes and Cross-Reference replaced with Derivative Synopsis					
5 - 8	Open drain functionality described for P2, P3, P6					
8	Bidirectior	nal reset introd	duced			
19	Figure up	dated				
28, 29	Revised d	lescription of A	Absolute Max. Ratings and Op	erating Conditions		
32 - 56	Specificat	ions for reduc	ed supply voltage introduced			
35	Reduced	power consun	nption			
36 , 37	Clock Generation Modes added					
38 , 39	Description of External Clock Drive improved					
41 - 56	Standard	25-MHz timing	g introduced (timing granularity	/ 2 ns)		

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com

Pin Configuration MQFP Package

(top view)

Figure 2

Note: The **marked** signals are **only available in the C1610**. Please also refer to the detailed description below (shaded lines).

Table 2	Pin Definitions and Functions	(cont'd)
		(COIIL U)

Symbol	Pin Num	Input Outp.	Function						
RD	25	0	External Memory Read Strobe. \overline{RD} is activated for every external instruction or data read access.						
WR/ WRL	26	0	External Memory Write Strobe. In $\overline{\text{WR}}$ -mode this pin is activated for every external data write access. In $\overline{\text{WRL}}$ -mode this pin is activated for low byte data write accesses on a 16- bit bus, and for every data write access on an 8-bit bus. See WBCEG in register SYSCON for mode selection						
ALE	27	0	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.						
ĒĀ	28	1	External Access Enable pin. A low level at this pin during and after Reset forces the C161K/O to begin instruction execution out of external memory. A high level forces execution out of the internal program memory. "ROMIess" versions must have this pin tied to '0'.						
PORT0 POL.0-7 POH.0-7	29-36 39-46	IO	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed bus modes and as the data (D) bus in demultiplexed bus modes.Demultiplexed bus modes:Demultiplexed bus modes:Data Path Width:8-bitP0H.0 - P0H.7:I/OData Path Width:8-bit16-bitP0H.0 - P0H.7:I/OData Path Width:8-bit16-bitP0H.0 - P0H.7:I/OData Path Width:8-bit000 <td< td=""></td<>						
PORT1 P1L.0-7 P1H.0-7	47-54 55-62	10	PORT1 consists of the two 8-bit bidirectional I/O ports P1L and P1H. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high-impedance state. PORT1 is used as the 16- bit address bus (A) in demultiplexed bus modes and also after switching from a demultiplexed bus mode to a multiplexed bus mode.						

Table 2	Piı	n Definit	ions and Functions (cont'd)
Symbol	Pin Num	Input Outp.	Function
P2		IO	Port 2 is a 7-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bits. For a pin configured as input, the output driver is put into high- impedance state. Port 2 outputs can be configured as push/ pull or open drain drivers. The following Port 2 pins serve for alternate functions:
P2.9 P2.10 P2.11 P2.12	72 73 74 75	 	EX1INFast External Interrupt 1 InputEX2INFast External Interrupt 2 InputEX3INFast External Interrupt 3 InputEX4INFast External Interrupt 4 Input
	76 77 78	 	 EX5IN Fast External Interrupt 5 Input EX6IN Fast External Interrupt 6 Input EX7IN Fast External Interrupt 7 Input These external interrupts are only available in the C1610.
P5 P5.14 P5.15	79 80	 	Port 5 is a 2-bit input-only port with Schmitt-Trigger char. Thepins of Port 5 also serve as timer inputs:T4EUDGPT1 Timer T4 External Up/Down Control InputT2EUDGPT1 Timer T2 External Up/Down Control Input
V _{DD}	4, 22, 37, 64	_	Digital Supply Voltage: + 5 V or + 3 V during normal operation and idle mode. ≥ 2.5 V during power down mode.
V _{SS}	1, 21, 38, 63	-	Digital Ground.

Note: The following behavioral differences must be observed when the bidirectional reset is active:

- Bit BDRSTEN in register SYSCON cannot be changed after EINIT and is cleared automatically after a reset.
- The reset indication flags always indicate a long hardware reset.
- The PORT0 configuration is treated like on a hardware reset. Especially the bootstrap loader may be activated when POL.4 is low.
- Pin RSTIN may only be connected to external reset devices with an open drain output driver.
- A short hardware reset is extended to the duration of the internal reset sequence.

External Bus Controller

All of the external memory accesses are performed by a particular on-chip External Bus Controller (EBC). It can be programmed either to Single Chip Mode when no external memory is required, or to one of four different external memory access modes, which are as follows:

- 16-/18-/20-/22-bit Addresses, 16-bit Data, Demultiplexed
- 16-/18-/20-/22-bit Addresses, 16-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Multiplexed
- 16-/18-/20-/22-bit Addresses, 8-bit Data, Demultiplexed

In the demultiplexed bus modes, addresses are output on PORT1 and data is input/ output on PORT0 or P0L, respectively. In the multiplexed bus modes both addresses and data use PORT0 for input/output.

Important timing characteristics of the external bus interface (Memory Cycle Time, Memory Tri-State Time, Length of ALE and Read Write Delay) have been made programmable to allow the user the adaption of a wide range of different types of memories and external peripherals.

In addition, up to 4 independent address windows may be defined (via register pairs ADDRSELx / BUSCONx) which control the access to different resources with different bus characteristics. These address windows are arranged hierarchically where BUSCON4 overrides BUSCON3 and BUSCON2 overrides BUSCON1. All accesses to locations not covered by these 4 address windows are controlled by BUSCON0.

Up to 2 or 4 external \overline{CS} signals (1 or 3 windows plus default, depending on the device) can be generated in order to save external glue logic. The C161K/O offers the possibility to switch the \overline{CS} outputs to an unlatched mode. In this mode the internal filter logic is switched off and the \overline{CS} signals are directly generated from the address. The unlatched \overline{CS} mode is enabled by setting CSCFG (SYSCON.6).

For applications which require less than 4 MBytes of external memory space, this address space can be restricted to 1 MByte, 256 KByte, or to 64 KByte. In this case Port 4 outputs four, two, or no address lines at all. It outputs all 6 address lines, if an address space of 4 MBytes is used.

Figure 5 Block Diagram of GPT1

With its maximum resolution of 8 TCL, the **GPT2 module** provides precise event control and time measurement. It includes two timers (T5, T6) and a capture/reload register (CAPREL). Both timers can be clocked with an input clock which is derived from the CPU clock. The count direction (up/down) for each timer is programmable by software. Concatenation of the timers is supported via the output toggle latch (T6OTL) of timer T6, which changes its state on each timer overflow/underflow.

The state of this latch may be used to clock timer T5. The overflows/underflows of timer T6 can cause a reload from the CAPREL register. The CAPREL register may capture the contents of timer T5 based on an external signal transition on the corresponding port pin (CAPIN), and timer T5 may optionally be cleared after the capture procedure. This allows the C161K/O to measure absolute time differences or to perform pulse multiplication without software overhead.

Instruction Set Summary

 Table 5 lists the instructions of the C161K/O in a condensed way.

The various addressing modes that can be used with a specific instruction, the operation of the instructions, parameters for conditional execution of instructions, and the opcodes for each instruction can be found in the "C166 Family Instruction Set Manual".

This document also provides a detailed description of each instruction.

Mnemonic	Description	Bytes
ADD(B)	Add word (byte) operands	2/4
ADDC(B)	Add word (byte) operands with Carry	2/4
SUB(B)	Subtract word (byte) operands	2/4
SUBC(B)	Subtract word (byte) operands with Carry	2/4
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2
CPL(B)	Complement direct word (byte) GPR	2
NEG(B)	Negate direct word (byte) GPR	2
AND(B)	Bitwise AND, (word/byte operands)	2/4
OR(B)	Bitwise OR, (word/byte operands)	2/4
XOR(B)	Bitwise XOR, (word/byte operands)	2/4
BCLR	Clear direct bit	2
BSET	Set direct bit	2
BMOV(N)	Move (negated) direct bit to direct bit	4
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4
BCMP	Compare direct bit to direct bit	4
BFLDH/L	Bitwise modify masked high/low byte of bit-addressable direct word memory with immediate data	4
CMP(B)	Compare word (byte) operands	2/4
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2
SHL / SHR	Shift left/right direct word GPR	2
ROL / ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2

Table 5Instruction Set Summary

Table 5 Inst	ruction Set Summary (cont'd)	
Mnemonic	Description	Bytes
MOV(B)	Move word (byte) data	2/4
MOVBS	Move byte operand to word operand with sign extension	2/4
MOVBZ	Move byte operand to word operand. with zero extension	2/4
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
J(N)B	Jump relative if direct bit is (not) set	4
JBC	Jump relative and clear bit if direct bit is set	4
JNBS	Jump relative and set bit if direct bit is not set	4
CALLA, CALLI, CALLR	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH, POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET	Return from intra-segment subroutine	2
RETS	Return from inter-segment subroutine	2
RETP	Return from intra-segment subroutine and pop direct word register from system stack	2
RETI	Return from interrupt service subroutine	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes MMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT	Disable Watchdog Timer	4
EINIT	Signify End-of-Initialization on RSTOUT-pin	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4
NOP	Null operation	2

Special Function Registers Overview

The following table lists all SFRs which are implemented in the C161K/O in alphabetical order.

Bit-addressable SFRs are marked with the letter "**b**" in column "Name". SFRs within the **Extended SFR-Space** (ESFRs) are marked with the letter "**E**" in column "Physical Address". Registers within on-chip X-peripherals are marked with the letter "**X**" in column "Physical Address".

An SFR can be specified via its individual mnemonic name. Depending on the selected addressing mode, an SFR can be accessed via its physical address (using the Data Page Pointers), or via its short 8-bit address (without using the Data Page Pointers).

Note: The shaded registers are only available in the C161O, not in the C161K.

Name		Physical Address	8-Bit Addr.	Description	Reset Value
ADDRSEL1		FE18 _H	0C _H	Address Select Register 1	0000 _H
ADDRSEL2)	FE1A _H	0D _H	Address Select Register 2	0000 _H
ADDRSEL3	6	FE1C _H	0E _H	Address Select Register 3	0000 _H
ADDRSEL4	ļ	FE1E _H	0F _H	Address Select Register 4	0000 _H
BUSCON0	b	FF0C _H	86 _H	Bus Configuration Register 0	0XX0 _H
BUSCON1	b	FF14 _H	8A _H	Bus Configuration Register 1	0000 _H
BUSCON2	b	FF16 _H	8B _H	Bus Configuration Register 2	0000 _H
BUSCON3	b	FF18 _H	8C _H	Bus Configuration Register 3	0000 _H
BUSCON4	b	FF1A _H	8D _H	Bus Configuration Register 4	0000 _H
CAPREL		FE4A _H	25 _H	GPT2 Capture/Reload Register	0000 _H
CC10IC	b	FF8C _H	C6 _H	EX2IN Interrupt Control Register	0000 _H
CC11IC	b	FF8E _H	C7 _H	EX3IN Interrupt Control Register	0000 _H
CC12IC	b	FF90 _H	C8 _H	EX4IN Interrupt Control Register	0000 _H
CC13IC	b	FF92 _H	C9 _H	EX5IN Interrupt Control Register	0000 _H
CC14IC	b	FF94 _H	CA _H	EX6IN Interrupt Control Register	0000 _H
CC15IC	b	FF96 _H	CB _H	EX7IN Interrupt Control Register	0000 _H
CC9IC	b	FF8A _H	C5 _H	EX1IN Interrupt Control Register	0000 _H
СР		FE10 _H	08 _H	CPU Context Pointer Register	FC00 _H
CRIC	b	FF6A _H	B5 _H	GPT2 CAPREL Interrupt Ctrl. Reg.	0000 _H
CSP		FE08 _H	04 _H	CPU Code Seg. Pointer Reg. (read only)	0000 _H

 Table 6
 C161K/O Registers, Ordered by Name

Table 6C161K/O Registers, Ordered by Name (cont'd)

Name		Physical Address	8-Bit Addr.	Description	Reset Value
P3	b	FFC4 _H	E2 _H	Port 3 Register	0000 _H
P4	b	FFC8 _H	E4 _H	Port 4 Register (8 bits)	00 _H
P5	b	FFA2 _H	D1 _H	Port 5 Register (read only)	XXXX _H
P6	b	FFCC _H	E6 _H	Port 6 Register (8 bits)	00 _H
PECC0		FEC0 _H	60 _H	PEC Channel 0 Control Register	0000 _H
PECC1		FEC2 _H	61 _H	PEC Channel 1 Control Register	0000 _H
PECC2		FEC4 _H	62 _H	PEC Channel 2 Control Register	0000 _H
PECC3		FEC6 _H	63 _H	PEC Channel 3 Control Register	0000 _H
PECC4		FEC8 _H	64 _H	PEC Channel 4 Control Register	0000 _H
PECC5		FECA _H	65 _H	PEC Channel 5 Control Register	0000 _H
PECC6		FECC _H	66 _H	PEC Channel 6 Control Register	0000 _H
PECC7		FECE _H	67 _H	PEC Channel 7 Control Register	0000 _H
PSW	b	FF10 _H	88 _H	CPU Program Status Word	0000 _H
RP0H	b	F108 _H E	84 _H	System Startup Config. Reg. (Rd. only)	XX _H
S0BG		FEB4 _H	5A _H	Serial Channel 0 Baud Rate Generator Reload Register	0000 _H
SOCON	b	FFB0 _H	D8 _H	Serial Channel 0 Control Register	0000 _H
SOEIC	b	FF70 _H	B8 _H	Serial Channel 0 Error Interrupt Ctrl. Reg	0000 _H
SORBUF		FEB2 _H	59 _H	Serial Channel 0 Receive Buffer Reg. (read only)	XXH
SORIC	b	FF6E _H	B7 _H	Serial Channel 0 Receive Interrupt Control Register	0000 _H
SOTBIC	b	F19C _H E	CEH	Serial Channel 0 Transmit Buffer Interrupt Control Register	0000 _H
S0TBUF		FEB0 _H	58 _H	Serial Channel 0 Transmit Buffer Register (write only)	00 _H
SOTIC	b	FF6C _H	B6 _H	Serial Channel 0 Transmit Interrupt Control Register	0000 _H
SP		FE12 _H	09 _H	CPU System Stack Pointer Register	FC00 _H
SSCBR		F0B4 _H E	5A _H	SSC Baudrate Register	0000 _H
SSCCON	b	FFB2 _H	D9 _H	SSC Control Register	0000 _H

Absolute Maximum Ratings

	1	-				
Parameter	Symbol Limit Values		Values	Unit	Notes	
		min.	max.			
Storage temperature	T _{ST}	-65	150	°C	-	
Junction temperature	TJ	-40	150	°C	under bias	
Voltage on V_{DD} pins with respect to ground (V_{SS})	V _{DD}	-0.5	6.5	V	-	
Voltage on any pin with respect to ground (V_{SS})	V _{IN}	-0.5	V _{DD} + 0.5	V	-	
Input current on any pin during overload condition	_	-10	10	mA	-	
Absolute sum of all input currents during overload condition	-	-	100	mA	_	
Power dissipation	P _{DISS}	_	1.5	W	-	

Table 7 Absolute Maximum Rating Parameters

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. During absolute maximum rating overload conditions ($V_{IN} > V_{DD}$ or $V_{IN} < V_{SS}$) the voltage on V_{DD} pins with respect to ground (V_{SS}) must not exceed the values defined by the absolute maximum ratings.

	CIUINO CIUCK	deneration modes		
CLKCFG (P0H.7-5)	CPU Frequency $f_{\text{CPU}} = f_{\text{OSC}} \times \mathbf{F}$	External Clock Input Range	Notes	
0 X X	$f_{\rm OSC} imes 1$	1 to 25 MHz	Direct drive ¹⁾	
1 X X	f _{OSC} / 2	2 to 50 MHz	CPU clock via prescaler	

Table 9	C161K/O	Clock	Generation	Modes
---------	---------	-------	------------	-------

¹⁾ The maximum frequency depends on the duty cycle of the external clock signal.

Prescaler Operation

When prescaler operation is configured (CLKCFG = $1XX_B$) the CPU clock is derived from the internal oscillator (input clock signal) by a 2:1 prescaler.

The frequency of f_{CPU} is half the frequency of f_{OSC} and the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the period of the input clock f_{OSC} .

The timings listed in the AC Characteristics that refer to TCLs therefore can be calculated using the period of f_{OSC} for any TCL.

Direct Drive

When direct drive is configured (CLKCFG = $0XX_B$) the CPU clock is directly driven from the internal oscillator with the input clock signal.

The frequency of f_{CPU} directly follows the frequency of f_{OSC} so the high and low time of f_{CPU} (i.e. the duration of an individual TCL) is defined by the duty cycle of the input clock f_{OSC} .

The timings listed below that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances. This minimum value can be calculated via the following formula:

 $TCL_{min} = 1/f_{OSC} \times DC_{min}$ (DC = duty cycle)

For two consecutive TCLs the deviation caused by the duty cycle of f_{OSC} is compensated so the duration of 2TCL is always $1/f_{OSC}$. The minimum value TCL_{min} therefore has to be used only once for timings that require an odd number of TCLs (1, 3, ...). Timings that require an even number of TCLs (2, 4, ...) may use the formula 2TCL = $1/f_{OSC}$.

Figure 9 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal, the oscillator frequency is limited to a range of 4 MHz to 40 MHz.

It is strongly recommended to measure the oscillation allowance (or margin) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is guaranteed by design only (not 100% tested).

Memory Cycle Variables

The timing tables below use three variables which are derived from the BUSCONx registers and represent the special characteristics of the programmed memory cycle. The following table describes, how these variables are to be computed.

Table 12 Memory Cycle Variables

Description	Symbol	Values
ALE Extension	t _A	TCL × <alectl></alectl>
Memory Cycle Time Waitstates	t _C	2TCL × (15 - <mctc>)</mctc>
Memory Tristate Time	t _F	2TCL × (1 - <mttc>)</mttc>

Note: Please respect the maximum operating frequency of the respective derivative.

AC Characteristics

Multiplexed Bus (Standard Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (120 ns at 25 MHz CPU clock without waitstates)

Parameter	Symbol		Max. CF = 25	PU Clock MHz	Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> 5	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
Address setup to ALE	t ₆	CC	$4 + t_A$	-	TCL - 16 + <i>t</i> _A	-	ns
Address hold after ALE	<i>t</i> ₇	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	t ₈	CC	$10 + t_{A}$	_	TCL - 10 + <i>t</i> _A	-	ns
ALE falling edge to RD, WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	_	$-10 + t_{A}$	-	ns
Address float after RD, WR (with RW-delay)	<i>t</i> ₁₀	CC	_	6	-	6	ns
Address float after RD, WR (no RW-delay)	<i>t</i> ₁₁	CC	_	26	-	TCL + 6	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$30 + t_{\rm C}$	_	2TCL - 10 + <i>t</i> _C	-	ns

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A$ + t_C + t_F (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Syr	mbol Max. CPU Clock = 20 MHz		Variable C 1 / 2TCL = 1	Unit		
			min.	max.	min.	max.	
Data float after RD	t ₁₉	SR	_	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	ns
Data valid to \overline{WR}	t ₂₂	CC	$24 + t_{\rm C}$	-	2TCL - 26 + <i>t</i> _C	-	ns
Data hold after WR	t ₂₃	CC	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
ALE rising edge after \overline{RD} , WR	t ₂₅	CC	$36 + t_{F}$	-	2TCL - 14 + <i>t</i> _F	-	ns
Address hold after RD, WR	t ₂₇	CC	36 + <i>t</i> _F	_	2TCL - 14 + <i>t</i> _F	-	ns
ALE falling edge to $\overline{CS}^{1)}$	t ₃₈	CC	-8 - <i>t</i> _A	10 - <i>t</i> _A	-8 - <i>t</i> _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ¹⁾	t ₃₉	SR	_	$47 + t_{C} + 2t_{A}$	-	3TCL - 28 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{(1)}$	<i>t</i> ₄₀	CC	57 + t _F	-	3TCL - 18 + <i>t</i> _F	_	ns
ALE fall. edge to RdCS, WrCS (with RW delay)	t ₄₂	CC	$19 + t_{A}$	_	TCL - 6 + <i>t</i> _A	-	ns
ALE fall. edge to RdCS, WrCS (no RW delay)	t ₄₃	CC	$-6 + t_{A}$	-	-6 + <i>t</i> _A	-	ns
Address float after RdCS, WrCS (with RW delay)	<i>t</i> ₄₄	CC	_	0	-	0	ns
Address float after RdCS, WrCS (no RW delay)	t ₄₅	CC	_	25	-	TCL	ns
RdCS to Valid Data In (with RW delay)	t ₄₆	SR	_	$20 + t_{\rm C}$	-	2TCL - 30 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW delay)	t ₄₇	SR	_	$45 + t_{\rm C}$	-	3TCL - 30 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW delay)	t ₄₈	CC	$38 + t_{\rm C}$	_	2TCL - 12 + <i>t</i> _C	_	ns
RdCS, WrCS Low Time (no RW delay)	t ₄₉	CC	$63 + t_{\rm C}$	_	3TCL - 12 + <i>t</i> _C	_	ns

Multiplexed Bus (Reduced Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 6 TCL + $2t_A + t_C + t_F$ (150 ns at 20 MHz CPU clock without waitstates)

Parameter	Symbol	Max. CPU Clock = 20 MHz		Variable C 1 / 2TCL = 1	Unit	
		min.	max.	min.	max.	
Data valid to WrCS	<i>t</i> ₅₀ CC	$28 + t_{\rm C}$	_	2TCL - 22 + <i>t</i> _C	-	ns
Data hold after RdCS	<i>t</i> ₅₁ SR	0	-	0	_	ns
Data float after RdCS	<i>t</i> ₅₂ SR	_	30 + <i>t</i> _F	-	2TCL - 20 + <i>t</i> _F	ns
Address hold after RdCS, WrCS	<i>t</i> ₅₄ CC	$30 + t_{F}$	_	2TCL - 20 + <i>t</i> _F	-	ns
Data hold after WrCS	<i>t</i> ₅₆ CC	30 + <i>t</i> _F	_	2TCL - 20 + <i>t</i> _F	-	ns

¹⁾ These parameters refer to the latched chip select signals (CSxL). The early chip select signals (CSxE) are specified together with the address and signal BHE (see figures below).

gure 13 External Memory Cycle: Multiplexed Bus, With Read/Write Delay, Extended ALE

Demultiplexed Bus (Standard Supply Voltage Range) (cont'd)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (80 ns at 25 MHz CPU clock without waitstates)

Parameter	Syr	nbol	Max. CPU Clock = 25 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
Data valid to \overline{WR}	t ₂₂	CC	$20 + t_{\rm C}$	_	2TCL - 20	_	ns
					$+ t_{\rm C}$		
Data hold after \overline{WR}	t ₂₄	CC	10 + <i>t</i> _F	-	TCL - 10 + <i>t</i> _E	_	ns
ALE rising edge after RD, WR	t ₂₆	CC	-10 + <i>t</i> _F	-	-10 + <i>t</i> _F	_	ns
Address hold after WR ²⁾	t ₂₈	CC	$0 + t_{F}$	-	$0 + t_{F}$	-	ns
ALE falling edge to $\overline{CS}^{3)}$	t ₃₈	CC	-4 - t _A	10 - <i>t</i> _A	-4 - t _A	10 - <i>t</i> _A	ns
CS low to Valid Data In ³⁾	t ₃₉	SR	_	$40 + t_{C} + 2t_{A}$	-	3TCL - 20 + <i>t</i> _C + 2 <i>t</i> _A	ns
$\overline{\text{CS}}$ hold after $\overline{\text{RD}}$, $\overline{\text{WR}}^{3)}$	t ₄₁	CC	6 + <i>t</i> _F	_	TCL - 14 + <i>t</i> _F	_	ns
ALE falling edge to RdCS, WrCS (with RW- delay)	t ₄₂	CC	16 + <i>t</i> _A	-	TCL - 4 + <i>t</i> _A	-	ns
ALE falling edge to RdCS, WrCS (no RW- delay)	t ₄₃	CC	$-4 + t_{A}$	-	-4 + t _A	-	ns
RdCS to Valid Data In (with RW-delay)	t ₄₆	SR	_	16 + <i>t</i> _C	-	2TCL - 24 + <i>t</i> _C	ns
RdCS to Valid Data In (no RW-delay)	t ₄₇	SR	_	$36 + t_{\rm C}$	-	3TCL - 24 + <i>t</i> _C	ns
RdCS, WrCS Low Time (with RW-delay)	t ₄₈	CC	$30 + t_{\rm C}$	-	2TCL - 10 + <i>t</i> _C	-	ns
RdCS, WrCS Low Time (no RW-delay)	t ₄₉	CC	$50 + t_{\rm C}$	-	3TCL - 10 + <i>t</i> _C	_	ns
Data valid to WrCS	t ₅₀	CC	$26 + t_{\rm C}$	-	2TCL - 14 + <i>t</i> _C	_	ns
Data hold after RdCS	<i>t</i> ₅₁	SR	0	-	0	-	ns

AC Characteristics

Demultiplexed Bus (Reduced Supply Voltage Range)

(Operating Conditions apply)

ALE cycle time = 4 TCL + $2t_A$ + t_C + t_F (100 ns at 20 MHz CPU clock without waitstates)

Parameter	Syr	nbol	Max. CPU Clock = 20 MHz		Variable (1 / 2TCL =	Unit	
			min.	max.	min.	max.	
ALE high time	<i>t</i> 5	CC	$11 + t_A$	-	TCL - 14 + <i>t</i> _A	_	ns
Address setup to ALE	t ₆	CC	$5 + t_{A}$	-	TCL - 20 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (with RW-delay)	t ₈	CC	15 + <i>t</i> _A	-	TCL - 10 + <i>t</i> _A	_	ns
ALE falling edge to \overline{RD} , WR (no RW-delay)	t ₉	CC	$-10 + t_{A}$	-	-10 + <i>t</i> _A	_	ns
RD, WR low time (with RW-delay)	t ₁₂	CC	$34 + t_{\rm C}$	-	2TCL - 16 + <i>t</i> _C	_	ns
RD, WR low time (no RW-delay)	t ₁₃	CC	$59 + t_{\rm C}$	-	3TCL - 16 + <i>t</i> _C	-	ns
RD to valid data in (with RW-delay)	t ₁₄	SR	_	$22 + t_{\rm C}$	_	2TCL - 28 + <i>t</i> _C	ns
RD to valid data in (no RW-delay)	t ₁₅	SR	_	$47 + t_{\rm C}$	_	3TCL - 28 + <i>t</i> _C	ns
ALE low to valid data in	^t 16	SR	_	$45 + t_A + t_C$	-	3TCL - 30 + <i>t</i> _A + <i>t</i> _C	ns
Address to valid data in	t ₁₇	SR	_	$57 + 2t_A + t_C$	_	$4TCL - 43 + 2t_A + t_C$	ns
Data hold after RD rising edge	t ₁₈	SR	0	-	0	-	ns
Data float after RD rising edge (with RW-delay ¹⁾)	t ₂₀	SR	_	$36 + 2t_{A} + t_{F}^{1)}$	-	2TCL - 14 + $22t_A$ + $t_F^{(1)}$	ns
Data float after RD rising edge (no RW-delay ¹⁾)	t ₂₁	SR	_	$15 + 2t_{A} + t_{F}^{1)}$	-	TCL - 10 + $22t_A$ + $t_F^{(1)}$	ns

Infineon goes for Business Excellence

"Business excellence means intelligent approaches and clearly defined processes, which are both constantly under review and ultimately lead to good operating results.

Better operating results and business excellence mean less idleness and wastefulness for all of us, more professional success, more accurate information, a better overview and, thereby, less frustration and more satisfaction."

Dr. Ulrich Schumacher

http://www.infineon.com