

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Obsolete
Core Processor	Xstormy16
Core Size	16-Bit
Speed	4.2MHz
Connectivity	SIO, UART/USART
Peripherals	LCD, WDT
Number of I/O	20
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 4x12b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 75°C (TA)
Mounting Type	Surface Mount
Package / Case	120-TQFP
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/product-detail/onsemi/c88f83b0au-tc-h

■Instruction Execution Time (min)

• 31.0µs : 32.768kHz crystal used

15.6μs (typ) : Low speed RC oscillation (typ: 64kHz)
 0.25μs : 4.0MHz ceramic filter oscillation
 1.00μs (typ) : High speed RC oscillation (typ: 1MHz)

■Power Supply Voltage

• 2.3V to 5.5V ($Ta = -20 \text{ to } 75^{\circ}\text{C}$) : 32.768kHz crystal used

 \bullet 2.3V to 5.5V (Ta =0 to 60°C) : Low speed RC oscillation (typ: 64kHz)

• 2.4V to 5.5V (Ta =-20 to 75° C) : 4.0MHz ceramic filter oscillation

• 2.3V to 5.5V (Ta =0 to 60°C) : High-speed RC oscillation (typ: 1MHz)

• 2.4V to 5.5V ($Ta = -20 \text{ to } 75^{\circ}\text{C}$) : When LCD ON

■Consumption Current (3.0V):

• 10.5µA (typ)

(Ta=25°C, crystal oscillation 32.768kHz, 1/1 dividing frequency, HALT, LCD: ON)

• 300µA (typ)

(Ta=25°C, crystal oscillation 32.768kHz, CF 4MHz, 1/2 dividing frequency, HALT, LCD: ON)

• 2200µA (typ)

(Ta=25°C, crystal oscillation 32.768kHz, CF 4MHz, 1/2 dividing frequency, continuous operation, LCD: ON)

■Ports

• Normal withstand voltage I/O ports 20 (P0n, P1n, P20 to P23)

• LCD (COM8/SEG0 to COM15/SEG7 pins are multiplexed with COMMON and SEGMENT)

LCD drive bias power supply port 4 (VLCD1 to VLCD4)
Step-up capacitor port 2 (CUP00, CUP01)

16 common mode

Segment output 64 (SEG8 to SEG71)
Common output 16 (COM0 to COM15)

8 common mode

Segment output 72 (SEG0 to SEG71)
Common output 8 (COM0 to COM7)

• Oscillation pins 4 (XT1, XT2, CF1, CF2)

Reset pinTest pin1 (RESB)T(TST)

• LCD port power pins 2 (LCDVSS0, LCDVSS1)

• Power pins 2 (V_{DD}, V_{SS})

■LCD

• LCD power supply : Capacitor step-up type

• Number of dots : 1024 (64 segments × 16 commons) / 576 (72 segments × 8 commons)

Contrast : Adjustable in 16 stepsLCD frame frequency : Selectable from 4 types

■Timers

- Timer 0: 16-bit timer that supports PWM/toggle outputs
 - 1) With 5-bit prescaler
 - 2) 8-bit PWM \times 2/8-bit timer + 8-bit PWM mode selectable
 - 3) Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator
- Timer 1: 16-bit timer with capture registers
 - 1) With 5-bit prescaler
 - 2) May be divided into 2 channels of 8-bit timer
 - 3) Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator
- Timer 3: 16-bit timer that supports PWM/toggle outputs
 - 1) With 8-bit prescaler
 - 2) 8-bit timer × 2ch/8-bit timer + 8-bit PWM mode selectable
 - 3) Clock source selectable from system clock, OSC0, OSC1, and internal RC oscillator
- Timer 4: 16-bit timer that supports toggle outputs
 - 1) Clock source selectable from system clock and prescaler 0
- Timer 5: 16-bit timer that supports toggle outputs
 - 1) Clock source selectable from system clock and prescaler 0
- Base timer
 - 1) Clock may be selected from OSC0 (32.768kHz crystal oscillator) and frequency-divided output of system clock.
 - 2) Interrupts can be generated in 7 timing schemes.

■Watchdog Timer

- 1) Driven by the base timer + internal watchdog timer dedicated counter.
- 2) Interrupt or reset mode selectable

■SIO0: 8-bit synchronous SIO

- 1) LSB first/MSB first mode selectable
- 2) It is possible to communicate with 8 bits or less. (1 to 8 bits specifiable in 1-bit units)
- 3) Built-in 8-bit baudrate generator (transfer clock cycle 4 tCYC to 512 tCYC)
- 4) Automatic continuous data transmission (9 to 32768 bits specifiable in 1-bit units)
- 5) Interval function (interval time: 0 to 64 SIOCLKs specifiable in 1 SIOCLK units)
- 6) Wakeup function

■UART2: Asynchronous SIO

- 1) Full duplex transmission
- 2) Start bit 1, data bit 8 (LSB first), stop bit 1
- 3) Parity bit: None/even parity/odd parity
- 4) Transfer rate: 8 to 4096 tCYC
- 5) Baudrate source clock: systemclock/OSC0/OSC1
- 6) Wakeup function

\blacksquare AD converter: 12bit \times 4 channels

- 1) 12-/8-bit resolution selectable
- 2) Analog input: 4 channels
- 3) Comparator mode
- 4) Automatic reference voltage generation

■Interrupts

- 12 sources, 11 vector addresses
 - 1) Provides three levels of multiplex interrupt control. Any interrupt requests of the level equal to or lower than the current interrupt are not accepted.
 - 2) When interrupt requests to two or more vector addresses occur at the same time, the interrupt of the highest level takes precedence over the other interrupts. For interrupts of the same level, the interrupt into the smallest vector address takes precedence.

No.	Vector Address	Interrupt Source
1	08000H	WATCHDOGTIMER
2	08004H	BASETIMER
3	08008H	TIMER0
4	08018H	SIO0
5	0801CH	TIMER1
6	08020H	UART2
7	08024H	TIMER3
8	08028H	TIMER4
9	0802CH	TIMER5
10	08030H	ADC
11	0803CH	P00 to P05 SEG71 to SEG64

- The priority level can be specified by three levels.
- Of interrupts of the same level, the one with the smallest vector address takes precedence.

■Subroutine Stack Levels

• Max- whole RAM area (Stack is set in RAM)

■Oscillation Circuits

• OSC1: For system clock

ceramic oscillation with external CGC, CDC or RC oscillation (external RCR1)

• OSC0: For low-speed system clock, base timer count, for LCD display 32kHz crystal oscillation with external CGX, CDX or RC oscillation (external RCR0)

- Internal oscillation circuit: Internal RC
- * Depends on control resister for each oscillator operation and stop.

 Initial setting External oscillation stop, internal RC oscillation operation

■Standby Function

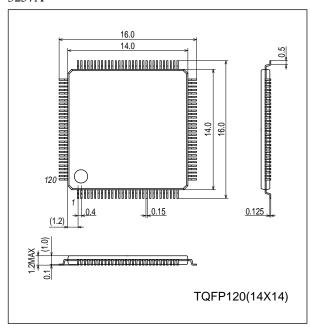
- HALT mode: Halts instruction execution while allowing the peripheral circuits to continue operation.
 - 1) Oscillation is not halted automatically.
 - 2) Released by a system reset or occurrence of an interrupt.
- HOLD mode: Suspends instruction execution and the operation of the peripheral circuits.
 - 1) OSC1, internal RC and X'tal oscillators automatically stop operation.
 - 2) There are the following methods of resetting the HOLD.
 - (1) Setting the reset pin to the low level
 - (2) Having an interrupt source established in the SIO0
 - (3) Having an interrupt source established in the UART2
 - (4) Having an interrupt source established in the P00 to P05
 - (5) Having an interrupt source established in the SEG71 to SEG64
- X'tal HOLD mode: Suspends instruction execution and the operation of the peripheral circuits except using OSC0.
 - 1) The OSC1 and internal RC oscillators automatically stop operation.
 - 2) The state of OSC0 oscillation established when the X'tal HOLD mode is entered is retained.
 - 3) There are the following methods of resetting the X'tal HOLD mode.
 - (1) Setting the reset pin to the low level
 - (2) Having an interrupt source established in the base timer circuit
 - (3) Having an interrupt source established in the timers 0, 1, 3, 4, 5
 - (4) Having an interrupt source established in the SIO0
 - (5) Having an interrupt source established in the UART2
 - (6) Having an interrupt source established in the P00 to P05
 - (7) Having an interrupt source established in the SEG71 to SEG64

■On-chip debugger

- Supports software debugging with the IC mounted on the target board.
- Supports tracing, realtime monitoring, and breakpoint setting.
- Single-wire communication

■Package Form

• TQFP120(14×14): Lead-free type

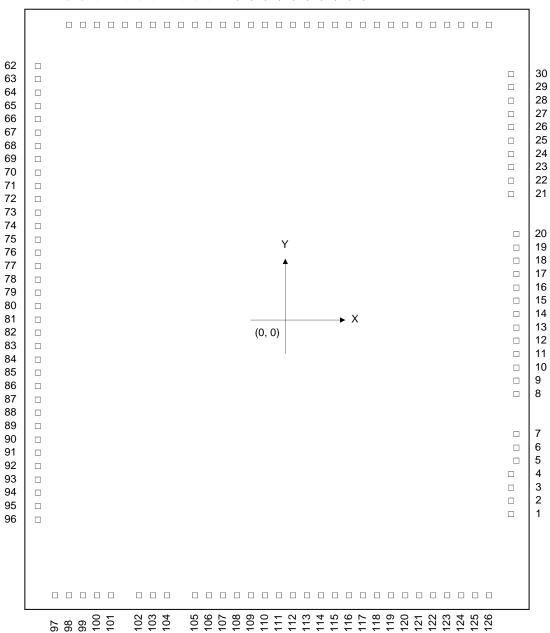

■Development Tools

• On-chip debugger : EOCUIF1 + LC88F83B0A

• Programming boards :

Package Dimensions

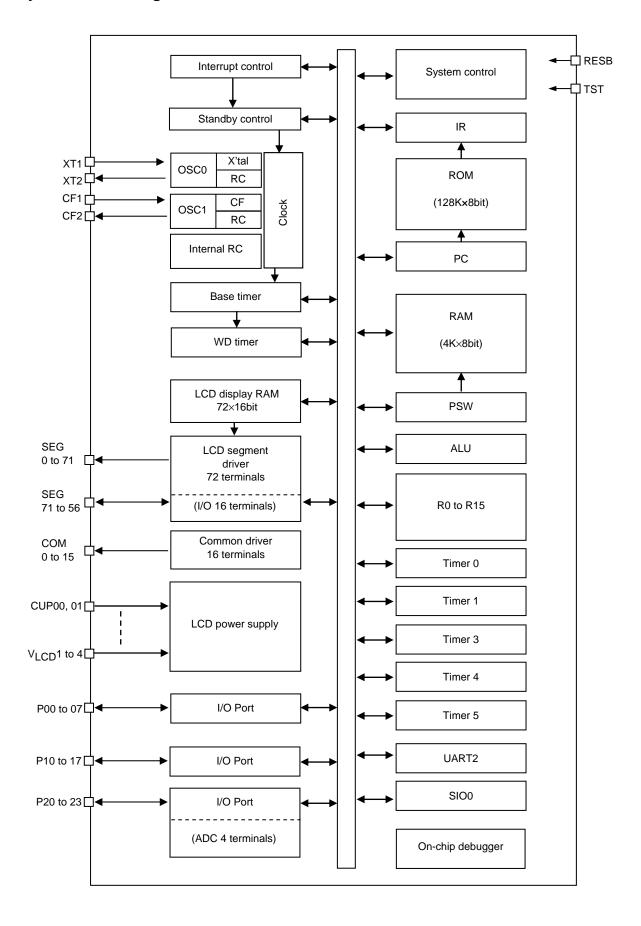
unit : mm (typ) 3257A


Pad Assignment

• Chip size $(X \times Y)$: 3.40mm \times 3.19mm

Pad size : 59μmPad pitch : 80μm

• Chip thickness : $280\mu m \pm 20\mu m$


Note: Pin numbers assigned to a package differ from pad numbers assigned to a chip. Numbers in the above figure show the pad numbers of the chip.

Pad Coordinates Table

Pad No.	Pin Name	Coord	inates	Pad No.	Pin Name	Coord	linates
Fau No.	Fill Name	X μm	Υμm	rau No.	Fill Name	X μm	Yμm
1	P20	1567.4	-1308	48	SEG29	-192	1462.4
2	P21	1567.4	-1228	49	SEG28	-272	1462.4
3	P22	1567.4	-1147	50	SEG27	-352	1462.4
4	P23	1567.4	-1067	51	SEG26	-432	1462.4
5	SEG71	1606.99	-951.8	52	SEG25	-512	1462.4
6	SEG70	1606.99	-863.6	53	SEG24	-592	1462.4
7	SEG69	1606.99	-775.4	54	SEG23	-672	1462.4
8	SEG68	1606.99	-606.8	55	SEG22	-752	1462.4
9	SEG67	1606.99	-518.6	56	SEG21	-832	1462.4
10	SEG66	1606.99	-430.4	57	SEG20	-912	1462.4
11	SEG65	1606.99	-342.2	58	SEG19	-992	1462.4
12	SEG64	1606.99	-254	59	SEG18	-1072	1462.4
13	SEG63	1606.99	-165.8	60	SEG17	-1152	1462.4
14	SEG62	1606.99	-77.6	61	SEG16	-1232	1462.4
15	SEG61	1606.99	10.6	62	SEG15	-1567.4	1335
16	SEG60	1606.99	98.8	63	SEG14	-1567.4	1255
17	SEG59	1606.99	187	64	SEG13	-1567.4	1175
18	SEG58	1606.99	275.2	65	SEG12	-1567.4	1095
19	SEG57	1606.99	363.4	66	SEG11	-1567.4	1015
20	SEG56	1606.99	451.6	67	SEG10	-1567.4	935
21	SEG55	1567.4	573	68	SEG9	-1567.4	855
22	SEG54	1567.4	653	69	SEG8	-1567.4	775
23	SEG53	1567.4	733	70	-	-	-
24	SEG52	1567.4	813	71	COM15/SEG7	-1567.4	615
25	SEG51	1567.4	893	72	-	-	-
26	SEG50	1567.4	973	73	COM14/SEG6	-1567.4	455
27	SEG49	1567.4	1053	74	-	-	-
28	SEG48	1567.4	1133	75	COM13/SEG5	-1567.4	295
29	SEG47	1567.4	1213	76	_	-	_
30	SEG46	1567.4	1293	77	COM12/SEG4	-1567.4	135
31	LCDV _{SS} 1	1190	1462.4	78	-	-	-
32	SEG45	1088	1462.4	79	COM11/SEG3	-1567.4	-25
33	SEG44	1008	1462.4	80	-	-	_
34	SEG43	928	1462.4	81	COM10/SEG2	-1567.4	-185
35	SEG42	848	1462.4	82	-	-	-
36	SEG41	768	1462.4	83	COM9/SEG1	-1567.4	-345
37	SEG40	688	1462.4	84	-	-	-
38	SEG39	608	1462.4	85	COM8/SEG0	-1567.4	-505
39	SEG38	528	1462.4	86	COM7	-1567.4	-585
40	SEG37	448	1462.4	87	COM6	-1567.4	-665
41	SEG36	368	1462.4	88	COM5	-1567.4	-745
42	SEG35	288	1462.4	89	COM4	-1567.4	-825
43	SEG34	208	1462.4	90	COM3	-1567.4	-905
44	SEG33	128	1462.4	91	COM2	-1567.4	-985
45	SEG32	48	1462.4	92	COM1	-1567.4	-1065
46	SEG32	-32	1462.4	93	COM0	-1567.4	-1005
47	SEG30	-112	1462.4	93	LCDV _{SS} 0	-1567.4	-1143

Continued on next page.

System Block Diagram

Pin Description

Pir	n Name	I/O	Description						
V_{DD}		-	+ power supply pin						
V _{SS}		-	- power supply pin						
V _{LCD} 1 t	to 4	_	LCD bias power port (capacitor connection port)						
LCDV _{SS}		_	LCD power supply pin						
CUP00,			Switching his for generating LCD driving voltage						
COP00,	U1	_	Switching pin for generating LCD driving voltage Connect capacitor between both ports.						
OSC0	XT1	1	Oscillator circuit for system clock (low speed)						
0000	XII	·	32.768kHz crystal oscillator and capacitor for oscillation connection						
	XT2	0	XT1: Resistor connection for RC oscillation (RC model)						
			, , ,						
OSC1	CF1	I	Oscillator circuit for system clock (high speed)						
			Ceramic oscillator and capacitor for oscillator connection						
	CF2	0	CF1: Resistance connection for RC oscillator (RC model)						
PORT 0)	I/O	8-bit I/O port						
P00 to P	207		I/O specifiable in 1-bit units						
			Shared pins						
			P00 to P05 : Interrupt function						
			P06: Timer 0 PWML output						
DODT 4		I/O	P07: Timer 0 PWMH output						
PORT 1 P10 to P		1/0	8-bit I/O port I/O positionle in 1 bit units						
F 10 10 F	- 17		I/O specifiable in 1-bit unitsShared pins						
			P10: SIO0 data output						
			P11: SIO0 data input/Bus I/O						
			P12: SIO0 Clock I/O						
			P13: Timer 3 PWML output						
			P14: Timer 3 PWMH output						
			P16: UART 2 receive						
			P17: UART 2 send						
PORT 2	!	I/O	4-bit I/O port						
P20 to P	P23		• I/O specifiable in 1-bit units						
			P20 to P23: AD converter input ports (AN0 to AN3)						
			Shared pins						
			P20: Timer 4 output						
			P21: Timer 5 output						
COM0 to	o COM7	0	LCD common output port						
COM8/S	SEG0 to	0	LCD common output port/segment output port						
COM15/	/SEG7		common output/segment output is switched according to the register.						
SEG8 to	SEG55	0	LCD segment output port						
SEG56 t	to SEG71	I/O	LCD segment output port						
			SEG71 to SEG56: General purpose Nch OD output/General purpose input						
			SEG71 to SEG56 can switch LCD output, a general-purpose Nch OD output, and a general-purpose input						
			(every 4 bits).						
			SEG71 to SEG64: Interrupt function (every 4 bits)						
			Selecting sampling frequency for chattering removal (every 4 bits)						
			Level/edge selection (every 4 bits)						
			Hi/Low level or rise/fall selection (every 1 bit) • SEG71 to SEG70: Timer 3 external input						
RESB		1	Input terminal for system initialization						
NLOD		'	It operates reset by the "LOW" input.						
			with pull-up resistor						
TST		I/O	• TEST pin						
101		1,0	On-chip debugger communication terminal						
			Used with pull-down or VSS						
			*Connect 100kΩ between this pin and V _{SS} when on-chip debugger is used.						
		I	Connect 100ksz between triis pin and vSS when on-chip debugger is used.						

Application circuit

X'tal	Crystal oscillator
C _{GX}	Trimmer capacitor
C _{DX}	Capacitance for X'tal
R _{CR0}	Resistor for low-speed oscillation *4: RC oscillation specification
C _{CR0}	Capacitor for low-speed oscillation *4: RC oscillation specification (**1)
(**1)	0.1μF capacitor is recommended when using XT1/XT2 as a system clock.
CF	Ceramic oscillator
c _{GC}	Capacitance for CF
C _{DC}	Capacitance for CF
R _{CR1}	Resistor for high-speed oscillation *5: RC oscillation specification
C _{CR1}	Capacitor for high-speed oscillation *5: RC oscillation specification
C1 to C5	Capacitor
C _{DEN}	Electrolytic capacitor
C _{RES}	Capacitance for RESB
R _{TST}	Resister when on-chip debugger is used

Absolute Maximum Ratings at Ta = 25°C, $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

					55	55			
	Danamatan	O. mak al	Dia /Damania	O distanta			Speci	fication	
	Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
	iximum supply	V _{DD} max	V _{DD}	V _{DD}		-0.3		+6.5	
	D supply tage	V _{LCD} max	V _{LCD} ² to V _{LCD} ⁴	V _{DD}		-0.3		+6.5	
	D maximum oply voltage	LCD max	SEG0 to SEG71 COM0 to COM15	V _{DD} , V _{LCD} 4		-0.3		+6.5	V
Inp	out voltage	V _I (1)	RESB, XT1, CF1			-0.3		V _{DD} +0.3	
	out/output tage	V _{IO} (1)	PORT 0, 1, 2 SEG71 to SEG56			-0.3		V _{DD} +0.3	
	Peak output current	IOPH(1)	PORT0, 2	CMOS output selected Current at each pin		-5			
urrent		IOPH(2)	PORT1	CMOS output selected Current at each pin		-14			
High level output current	Mean output current (Note 1-1)	IOMH(1)	PORT0, 2	CMOS output selected Current at each pin		-3			
level o		IOMH(2)	PORT1	CMOS output selected Current at each pin		-9			
High	Total output current	ΣΙΟΑΗ(1)	PORT0, 2	Total of all pins		22.5			
		ΣΙΟΑΗ(2)	PORT1	Total of all pins		25			
		ΣΙΟΑΗ(3)	PORT 0, 1, 2	Total of all pins		47.5			A
	Peak output	IOPL(1)	PORT0, 2	Current at each pin				13	mA
	current	IOPL(2)	PORT1	Current at each pin				17	
rent	Mean output	IOML(1)	PORT0, 2	Current at each pin				7.5	
put cur	current (Note 1-1)	IOML(2)	PORT1	Current at each pin				10.5	
Low level output current	Total output current	ΣIOAL(1)	PORT0, 2	Total of all pins				35	
Low le		ΣIOAL(2)	PORT1	Total of all pins				60	
		ΣIOAL(3)	PORT 0, 1, 2	Total of all pins				80	
	owable power sipation	Pd max	TQFP120(14×14)	Ta=-20 to +75°C				250	mW
Ор	erating ambient	Topg				-20		75	
Sto	prage ambient	Tstg				-65		125	°C

Note 1-1: The mean output current is a mean value measured over 100ms.

Note: We assume that the measurements for the allowable operating ranges and electrical characteristics described in this document are performed with the chip mounted in a package.

Although this product is shipped in chip form, the characteristic values listed in this document are measured with this IC mounted on a Our designated package at operating ambient temperature range of -20°C to +70°C. The specifications of this product in package form or in chip forms are basically identical, however, the characteristics of the product in chip form may vary depending on the board on which the product is mounted, the bonding pressure, and the type of mold resin used.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Allowable Operating Conditions at Ta = -20 °C to +75 °C, $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

D	O. make al	Pin	O a malistica and			Ratin	gs	
Parameter	Symbol	/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Operating	V _{DD} (1)	V_{DD}	0.238μs≤tCYC≤100μs		2.6		5.5	
supply voltage			0.476μs≤tCYC≤100μs		2.4		5.5	
(Note2-1)			0.909μs≤tCYC≤100μs		2.3		5.5	
LCD drive voltage	V _{LCD} (1)	V _{LCD} ² to V _{LCD} ⁴					5.5	
Memory sustaining supply voltage	VHD	V _{DD}	RAM and register contents sustained in HOLD mode.		2.0		5.5	V
High level input voltage	V _{IH} (1)	Port 0, 1	Output disabled		0.30V _{DD} +0.70		V_{DD}	
	V _{IH} (2)	RESB			0.75V _{DD}		V_{DD}	
Low level input voltage	V _{IL} (1)	Port 0, 1	Output disabled		V _{SS}		0.10V _{DD} +0.40	
	V _{IL} (2)	RESB			VSS		0.25V _{DD}	
Oscillating	FOSC0	XT1, XT2	Crystal oscillation	2.3 to 5.5		32.768		
frequency range			Low speed RC oscillation (Note2-2)	2.3 to 5.5	30		80	
(Note2-3)	FOSC1	CF1, CF2	Ceramic oscillation	2.4 to 5.5	400		4200	kHz
			High-speed RC oscillation	2.4 to 5.5	400	·	4200	
		(!	(Note2-2)	2.3 to 5.5	400		1100	
	FINTRC		Internal RC oscillation			1000		

Note2-1: V_{DD} must be held greater than or equal to 2.7V in the flash ROM onboard programming mode.

Note2-2: Ta=0°C to 60°C

Note2-3: The parts value of oscillation circuit is shown in table 1 and table 2.

Electrical Characteristics at $Ta = -20^{\circ}C$ to $+75^{\circ}C$, $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

Darameter	Cumbal	Din/Romarks	Conditions			Specifica	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
High level input current	I _{IH} (1)	PORT 0, 1, 2	Output disabled Pull-up resister OFF VIN=VDD (including OFF state leak current of the output Tr.)	2.7 to 5.5			1	
	I _{IH} (2)	RESB	V _{IN} =V _{DD}	2.7 to 5.5			1	
Low level input current	I _{IL} (1)	PORT 0, 1, 2	Output disabled Pull-up resister OFF VIN=VSS (including OFF state leak current of the output Tr.)	2.7 to 5.5	-1			μА
	I _{IL} (2)	PORT 0, 1, 2	Output disabled Pull-up resister ON	4.5 to 5.5	-117		-25	
	I _{IL} (3)			2.7 to 3.0	-31		-5.8	
	I _{IL} (4)	RESB	VIN=VSS	4.5 to 5.5	-10.2		-3.7	
	I _{IL} (5)		(including OFF state leak current of the output Tr.)	2.7 to 3.0	-6.3		-2.4	
High level output current	I _{OH} (1)	CMOS output mode	V _{OH} (1)=V _{DD} -1.0V	4.5 to 5.5			-3.7	
	I _{OH} (2)	PORT0, 2		2.7 to 3.0			-1.6	
	I _{OH} (3)	CMOS output mode PORT1		4.5 to 5.5			-10	
	I _{OH} (4)			2.7 to 3.0			-4.5	
Low level output	I _{OL} (1)	PORT0, 2	PORTO, 2 V _{OL} (1)=V _{SS} +1.0V	4.5 to 5.5	10			A
current	I _{OL} (2)			2.7 to 3.0	4.4			mA
	I _{OL} (3)	PORT1		4.5 to 5.5	14.5			
	I _{OL} (4)			2.7 to 3.0	6.5			
	I _{OL} (5)	SEG71 to SEG56		4.5 to 5.5	0.5			
	I _{OL} (6)			2.7 to 3.0	0.5			
Common output	I _{OH} (5)	COM0 to COM15	V _{OH} (2)=V _{LCD} 4-0.05V	0.7 to 5.5			-25	
current	I _{OL} (7)		V _{OL} (2)=V _{SS} +0.05V	2.7 to 5.5	25			μΑ
Segment output	I _{OH} (6)	SEG0 to SEG71	V _{OH} (2)=V _{LCD} 4-0.05V	2.7 to 5.5			-10	
current	I _{OL} (8)		V _{OL} (2)=V _{SS} +0.05V		10			
Hysterisis voltage	VHYS(1)	PORT 0, 1, 2 RESB		2.7 to 5.5		0.1V _{DD}		>
Pin capacitance	СР	All pins	For pins other than that under test: V _{IN} =V _{SS} f=1MHz Ta=25°C	2.7 to 5.5		10		pF

Serial I/O Characteristics at Ta = -20 °C to +75 °C, $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

1. SIO0 Serial I/O Characteristics (Wake-up function is not in use) (Note 4-1-1)

	-		0 1 1	D: /D	O Fit			Specif	ication	
	Pa	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(1)	SCK0(P12)	See Fig. 6.		4			
		Low level pulse width	tSCKL(1)				2			
		High level pulse width	tSCKH(1)				2			
	Input clock		tSCKHA(1)		Automatic communication mode See Fig. 6.	2.3 to 5.5	6			tCYC
			tSCKHBSY(1a)		Automatic communication mode See Fig. 6.		23			
ㅎ			tSCKHBSY(1b)		Excluding Automatic communication mode See Fig. 6.		4			
Serial clock		Frequency	tSCK(2)	SCK0(P12)	CMOS output selected See Fig. 6.		4			
Se		Low level pulse width	tSCKL(2)					1/2		10014
		High level pulse width	tSCKH(2)					1/2		tSCK
	Output clock		tSCKHA(2)		Automatic communication mode CMOS output selected See Fig. 6.	2.3 to 5.5	6			
			tSCKHBSY(2a)		Automatic communication mode CMOS output selected See Fig. 6.		4		23	tCYC
			tSCKHBSY(2b)		Excluding automatic communication mode See Fig. 6.		4			
Serial input	Da	ta setup time	tsDI(1)	SI0(P11), SB0(P11)	Must be specified with respect to rising edge of SIOCLK. See Fig. 6.	2.3 to 5.5	0.03			
Seria	Da	ta hold time	thDI(1)			2.3 10 3.3	0.03			
utput	Input clock	Output delay time	tdD0(1)	SO0(P10), SB0(P11)	(Note4-1-2)				1tCYC +0.05	μs
Serial output	Output clock		tdDO(2)		(Note4-1-2)	2.3 to 5.5			1tCYC +0.05	

Note 4-1-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-1-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig.6.

2. SIO1 Serial I/O Characteristics (Wake-up function is not in use) (Note 4-2-1)

	_		Courado a l	Dia /Damania	O a malisia ma			Speci	fication	
	Pa	arameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
		Frequency	tSCK(3)	SCK0(P12)	See Fig. 6.		2			
Serial clock	clock	Low level pulse width	tSCKL(3)			0.04- 5.5	1			+0.70
Serial	Input	High level pulse width	tSCKH(3)			2.3 to 5.5	1			tCYC
			tSCKHBSY(3)				2			
input	Data setup time Data hold time		tsDI(2)	SI0(P11), SB0(P11)		2.3 to 5.5	0.03			
Serial input			thDI(2)				0.03			μs
Serial output	Input clock	Output delay time	tdD0(3)	SO0(P10), SB0(P11)	(Note4-2-2)	2.3 to 5.5			1tCYC +0.05	·

Note 4-2-1: These specifications are theoretical values. Add margin depending on its use.

Note 4-2-2: Must be specified with respect to falling edge of SIOCLK. Must be specified as the time to the beginning of output state change in open drain output mode. See Fig.6.

UART2 Operating Conditions at Ta = -20 to +75°C, $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

			. 22		~ ~	~ .	•	
Danamatan	Complete al	Dia/Danasalas	O			Specific	ation	
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Transfer rate	UBR2	URX2(P16), UTX2(P17)		2.3 to 5.5	8		4096	tCYC

Pulse Input Conditions at Ta = -20 to +75°C, $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

Devenue	Comme la al	mbol Pin/Remarks	Conditions		Specification				
Parameter	Symbol			V _{DD} [V]	min	typ	max	unit	
High/low level pulse width	tPIL(1)	RESB	Resetting is enabled.	2.3 to 5.5	50			μs	

AD Converter Characteristics at $V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

<12-bits AD Converter Mode/Ta= -10°C to +75°C>

Doromotor	Cumbal	Pin/Remarks	Conditions			Specifi	cation	
Parameter Symbol	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(SEG71)		2.9 to 5.5		12		bit
Absolute accuracy	ET	to	(Note7-1)	2.9 to 5.5			±16	LSB
Conversion time	TCAD	AN3(SEG68)	See Conversion time calculation formulas. (Note7-2)	2.9 to 5.5	90		130	μs
Analog input voltage range	VAIN			2.9 to 5.5	V _{SS}		V_{DD}	٧
Analog ports input	IAINH		VAIN=V _{DD}	2.9 to 5.5			1	
current	IAINL		VAIN=V _{SS}	2.9 to 5.5	-1			μА

<8-bits AD Converter Mode/Ta= -10° C to $+75^{\circ}$ C >

Parameter	Cumbal	Pin/Remarks	Conditions			Specification		
Parameter	Symbol	Pin/Remarks	Conditions	V _{DD} [V]	min	typ	max	unit
Resolution	N	AN0(SEG71)		2.9 to 5.5		8		bit
Absolute accuracy	ET	to	(Note7-1)	2.9 to 5.5			±1.5	LSB
Conversion time	TCAD	AN3(SEG68)	See Conversion time calculation formulas. (Note7-2)	2.9 to 5.5	55		75	μs
Analog input voltage range	VAIN			2.9 to 5.5	V _{SS}		V _{DD}	٧
Analog ports input	IAINH		VAIN=V _{DD}	2.9 to 5.5			1	
current	IAINL		VAIN=V _{SS}	2.9 to 5.5	-1			μΑ

<Conversion Time Calculation Formulas>

12-bits AD Converter Mode: TCAD (Conversion time) = $((52/(Division \ ratio))+2) \times tCYC$ 8-bits AD Converter Mode: TCAD (Conversion time) = $((32/(Division \ ratio))+2) \times tCYC$

< Recommended Operating Conditions>

External	External Operating Supply		Cycle Time	AD Division Ratio	AD Conversion Time (TCAD)[μs]		
Oscillator FmCF[MHz]	Voltage Range V _{DD} [V]	Ratio (SYSDIV)	tCYC [ns]	(ADDIV)	12-bit AD	8-bit AD	
05.4	0.04- 4.0	1/1	250	1/8	104.5	64.5	
CF-4	2.9 to 4.0	1/2	500	1/4	105.0	65.0	

- Note 7-1: The quantization error (±1/2LSB) must be excluded from the absolute accuracy. The absolute accuracy must be measured in the microcontroller's state in which no I/O operations occur at the pins adjacent to the analog input channel.
- Note 7-2: The conversion time refers to the period from the time an instruction for starting a conversion process till the time the conversion results register(s) are loaded with a complete digital conversion value corresponding to the analog input value.

The conversion time is 2 times the normal-time conversion time when:

- The first AD conversion is performed in the 12-bit AD conversion mode after a system reset.
- The first AD conversion is performed after the AD conversion mode is switched from 8-bit to 12-bit conversion mode.

$\textbf{Consumption Current Characteristics} \ \ \text{at Ta} = -20 \ \text{to} \ +75^{\circ}\text{C}, \ V_{SS} = LCDV_{SS}0 = LCDV_{SS}1 = 0V$

Parameter	Symbol	Pin/	Conditions				Specific	cation					
Farameter	Symbol	Remarks	Conditions		V _{DD} [V]	min	typ	max	unit				
Consumption current during				LCD Display	2.4 to 5.5		70	150					
normal operation	IDDOP(2)			ON	2.4 to 3.6		50	80					
(Note 8-1)	IDDOP(3)		• FOSC1=0Hz (Oscillation stop) • 1/1frequency division ratio.	LCD Display	2.3 to 5.5	70	120						
	IDDOP(4) [No panel load]	OFF	2.3 to 3.6		40	70							
	IDDOP(5)		Ceramic oscillation mode • FOSC1=4MHz • System clock: FOSC1		2.4 to5.5		3000	4100					
	IDDOP(6)		Internal RC oscillation stopped FOSC0=0Hz (Oscillation stop) 1/2 frequency division ratio.		2.4 to 3.6		2200	2900					
	IDDOP(7)		Internal RC oscillation mode • System clock: Internal RC • Internal RC oscillates		2.3 to 5.5		1900	3000					
	IDDOP(8)		FOSC0=0Hz (Oscillation stop) FOSC1=0Hz (Oscillation stop) 1/1 frequency division ratio		2.3 to3.6		1200	2000	μΑ				
	IDDOP(9)		High-speed RC oscillation mode *Ta=0 to 60°C • FOSC1=1MHz RCR1=470kΩ		2.3 to 5.5		1700	2300					
	IDDOP(10)	System clock: FOSC1 Internal RC oscillation stopped FOSC0=0Hz (Oscillation stop) 1/1 frequency division ratio.			2.3 to 3.6		1200	1700					
	IDDOP(11)		Low-speed RC oscillation mode *Ta=0 to 60°C • FOSC0=64kHz RCR0=910kΩ		2.3 to 5.5		110	170					
	IDDOP(12)		System clock: FOSC0 Internal RC oscillation stopped FOSC1=0Hz (Oscillation stop) 1/1 frequency division ratio.		2.3 to 3.6		70	110					

Note 8-1: The consumption current value includes none of the currents that flow into the output Tr and internal pull-up resistors.

Continued on next page.

Characteristics of a Sample OSC1 System Clock Oscillation Circuit

Given below are the characteristics of a sample OSC1 system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 1 Characteristics of a Sample OSC1 System Clock Oscillator Circuit with a Ceramic Oscillator

Nominal Vendor		Oscillator Circuit Constant		Operating Oscillation Voltage Stabilization Time		Domarka				
Frequency	Name	Name	C1	C2	Rf1	Rd1	Range	typ	max	Remarks
			[pF]	[pF]	$[\Omega]$	$[\Omega]$	[V]	[ms]	[ms]	
4.4041411-	4.194MHz MURATA CSTCR4M00G53-R0 CSTLS4M00G53-B0	CSTCR4M00G53-R0	(15)	(15)	OPEN	0	2.4 to 5.5	0.1	0.5	1.1
4.194MHZ MURATA		(15)	(15)	OPEN	0	2.4 to 5.5	0.1	0.5	Internal C1,C2	
4 COOM I - MUDATA	CSTCR4M00G53-R0	(15)	(15)	OPEN	0	2.4 to 5.5	0.1	0.5	Internal C4 C2	
4.000MHz		MURATA CSTLS4M00G53-B0	(15)	(15)	OPEN	0	2.4 to 5.5	0.1	0.5	Internal C1,C2

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the following reference timing points: (See Figure 4)

- VDD goes above the operating voltage lower limit.
- An instruction for starting the OSC1 clock oscillator circuit is executed.
- Oscillation starts after the microcontroller exits the X'tal HOLD mode with the ENOSC1 bit (OCR0 register, bit 1) set to 1.

Characteristics of a Sample OSC0 System Clock Oscillator Circuit

Given below are the characteristics of a sample OSC0 system clock oscillation circuit that are measured using a Our designated oscillation characteristics evaluation board and external components with circuit constant values with which the oscillator vendor confirmed normal and stable oscillation.

Table 2 Characteristics of a Sample OSC0 System Clock Oscillator Circuit with a CF Oscillator

Nominal Vendor I	Vandar Nama	Vendor Name Oscillator Name	Circuit Constant				Operating Voltage	Oscillation Stabilization Time		Damada
	vendor Name		C3 [pF]	C4 [pF]	Rf2 [Ω]	Rd2 [Ω]	Range [V]	typ [s]	max [s]	Remarks
32.768kHz	EPSON TOYOCOM	MC-306	18	18	OPEN	390k	2.3 to 5.5	1.3	3.0	Applicable CL value=12.5pF SMD-type

The oscillation stabilization time refers to the time interval that is required for the oscillation to get stabilized after the instruction for starting the OSC0 clock oscillation circuit is executed. (See Figure 4)

Note: The components that are involved in oscillation should be placed as close to the IC and to one another as possible because they are vulnerable to the influences of the circuit pattern.

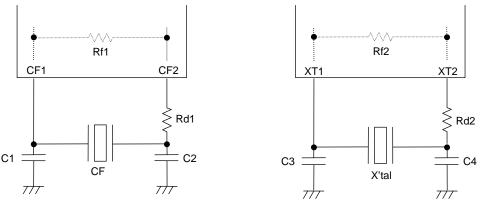


Figure 1 CF Oscillator Circuit

Figure 2 XT Oscillator Circuit

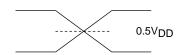
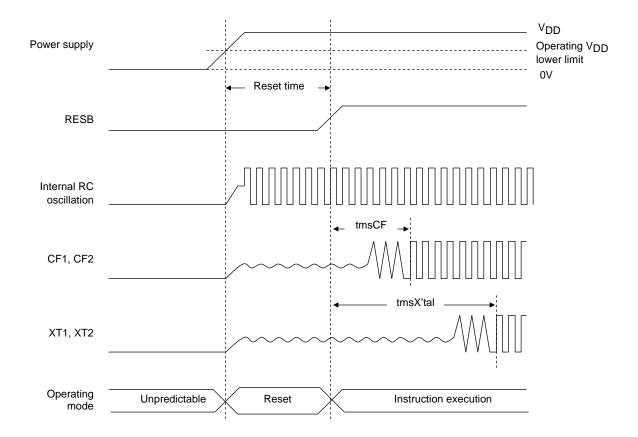
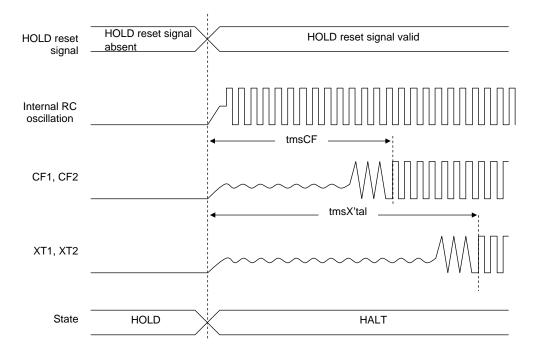
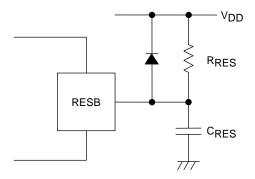
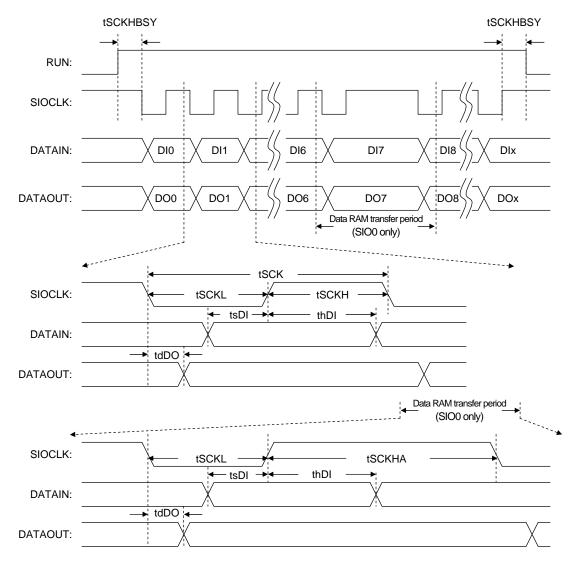




Figure 3 AC Timing Measurement Point



Reset Time and Oscillation Stabilization Time

HOLD Reset Signal and Oscillation Stabilization Time


Figure 4 Oscillation Stabilization Time

Note:

Select C_{RES} and R_{RES} values to assure that at least 50 μ s reset time is provided after the V_{DD} becomes higher than the minimum operating voltage.

Figure 5 Reset Circuit

*: Remarks: DIx and DOx are the final communication bits. X = 0 to 32768

Figure 6 Serial I/O Waveforms

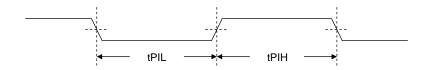
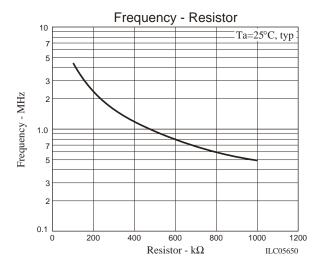



Figure 7 Pulse Input Timing Signal Waveform

Note: The oscillation frequency changes with the board pattern and used parts when OSC1 and OSC0 are used as the RC oscillation. It also greatly depends on the product shape (chip and plastic package) and the board capacitance, and it is recommended to evaluate the resistor value with an actual product. Use the following characteristics as only for a reference.

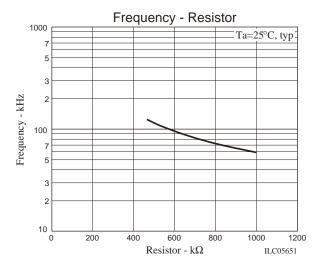


Figure 8 Characteristics of Resistor v.s. Frequency of OSC1

Figure 9 Characteristics of Resistor v.s. Frequency of OSC0

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa