

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Not For New Designs
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21246sdfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

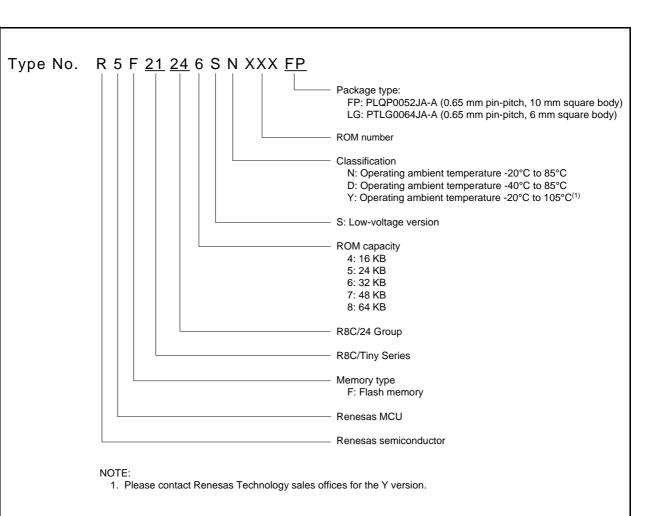
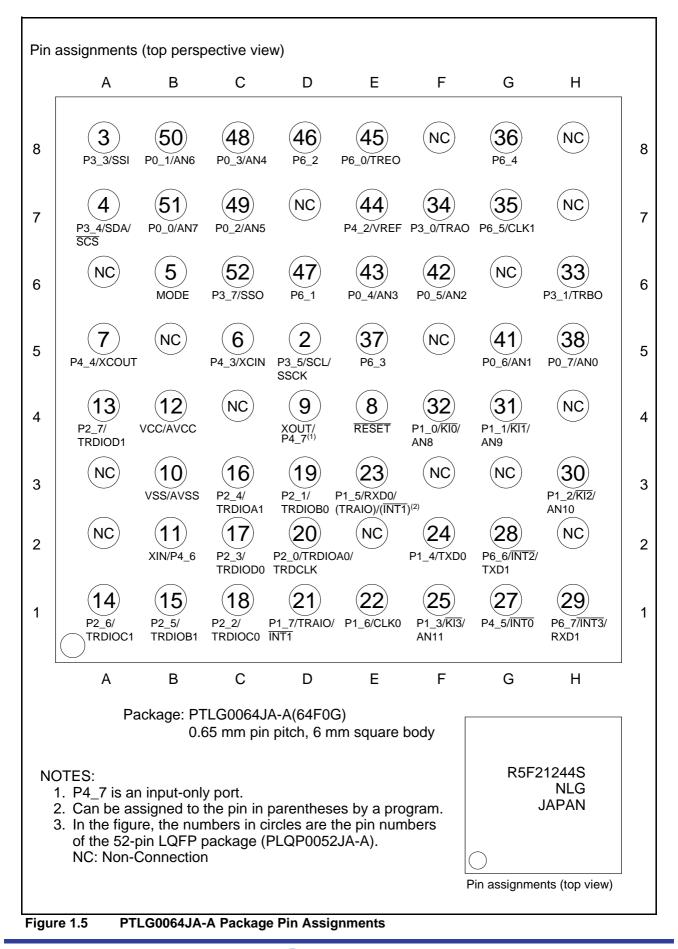



Figure 1.2 Type Number, Memory Size, and Package of R8C/24 Group

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/24 Group

Figure 3.1 is a Memory Map of R8C/24 Group. The R8C/24 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2-Kbyte internal RAM area is allocated addresses 00400h to 00BFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

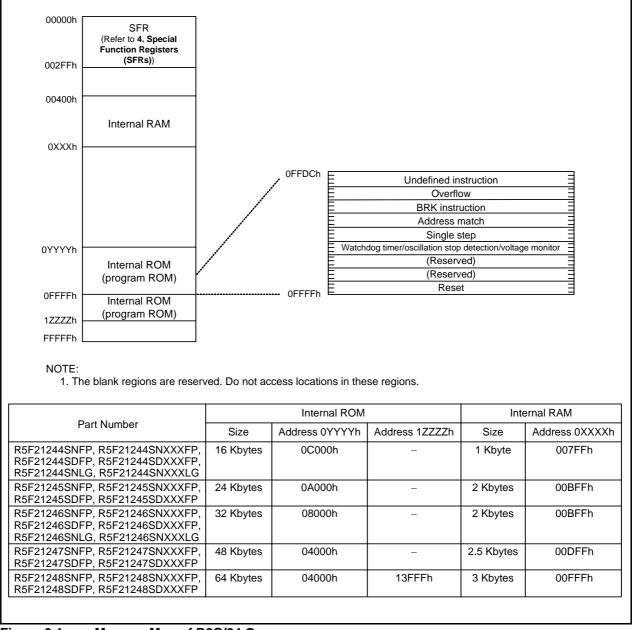


Figure 3.1 Memory Map of R8C/24 Group

3.2 R8C/25 Group

Figure 3.2 is a Memory Map of R8C/25 Group. The R8C/25 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 2-Kbyte internal RAM is allocated addresses 00400h to 00BFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

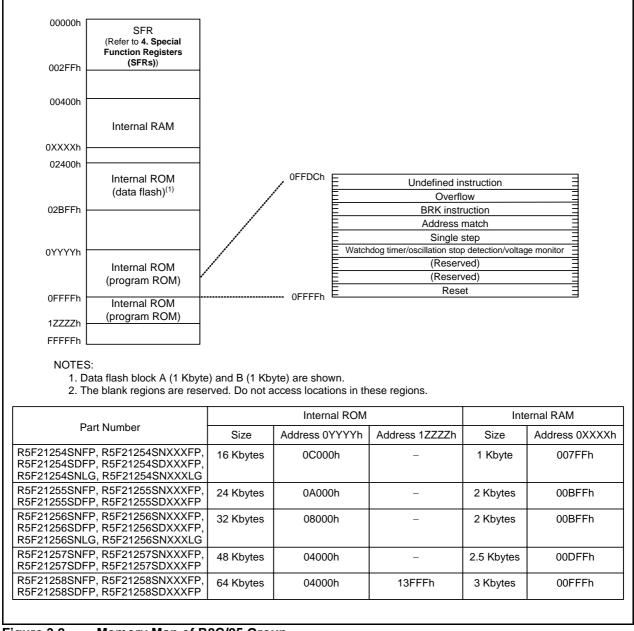


Figure 3.2 Memory Map of R8C/25 Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h	1		00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	1		00h
0016h	1		00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h 10000000b ⁽⁶⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping
002Ah	<u> </u>		·····ə
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 1 ⁽²⁾	VCA2	00h ⁽³⁾
003211		V UNZ	0010000b ⁽⁴⁾

SFR Information (1)⁽¹⁾ Table 4.1

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾ 00100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁵⁾	VW1C	00001000b
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h	Voltage Monitor 0 Circuit Control Register ⁽²⁾	VW0C	0000X000b ⁽³⁾ 0100X001b ⁽⁴⁾
0039h			
003Ah			

003Eh 003Fh

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions. 1.

Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect this register. The LVD0ON bit in the OFS register is set to 1 and hardware reset. Power-on reset, voltage monitor 0 reset or the LVD0ON bit in the OFS register is set to 0, and hardware reset.

1. 2. 3. 4.

Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect b2 and b3. The CSPROINI bit in the OFS register is set to 0. 5.

6.

Address	Register	Symbol	After reset
0140h	Timer RD Control Register 0	TRDCR0	00h
0141h	Timer RD I/O Control Register A0	TRDIORA0	10001000b
0142h	Timer RD I/O Control Register C0	TRDIORC0	10001000b
0143h	Timer RD Status Register 0	TRDSR0	11100000b
0144h	Timer RD Interrupt Enable Register 0	TRDIER0	11100000b
0145h	Timer RD PWM Mode Output Level Control Register 0	TRDPOCR0	11111000b
0146h	Timer RD Counter 0	TRD0	00h
0147h			00h
0148h	Timer RD General Register A0	TRDGRA0	FFh
0149h			FFh
014Ah	Timer RD General Register B0	TRDGRB0	FFh
014Bh			FFh
014Ch	Timer RD General Register C0	TRDGRC0	FFh
014Dh			FFh
014Eh	Timer RD General Register D0	TRDGRD0	FFh
014Fh			FFh
0150h	Timer RD Control Register 1	TRDCR1	00h
0151h	Timer RD I/O Control Register A1	TRDIORA1	10001000b
0152h	Timer RD I/O Control Register C1	TRDIORC1	10001000b
0153h	Timer RD Status Register 1	TRDSR1	1100000b
0154h	Timer RD Interrupt Enable Register 1	TRDIER1	11100000b
0155h	Timer RD PWM Mode Output Level Control Register 1	TRDPOCR1	11111000b
0156h	Timer RD Counter 1	TRD1	00h
0157h	Time DD Connect Desister M	TDDODA	00h FFh
0158h	Timer RD General Register A1	TRDGRA1	
0159h 015Ah	Timer DD Ceneral Degister D4	TRDGRB1	FFh FFh
015An 015Bh	Timer RD General Register B1	IRDGRBI	FFh
015Ch	Timer RD General Register C1	TRDGRC1	FFh
015Dh		INDGRUI	FFh
015Eh	Timer RD General Register D1	TRDGRD1	FFh
015Fh		INDONDI	FFh
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			<u> </u>
0174h			
0175h			
0176h			
0177h		+	
0178h 0179h			
0179h 017Ah			
017An 017Bh			
017Bh 017Ch			
017Ch			
017Dh 017Eh		+	
017En		+	
01/111			

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Symbol		Deremeter	Conditions		Standard		Linit
Symbol	1	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.2		5.5	V
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	-	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	_	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	_	-80	mA
IOH(peak)	Peak output "H"	Except P2_0 to P2_7		-	-	-10	mA
	current	P2_0 to P2_7		-	-	-40	mA
IOH(avg)	Average output	Except P2_0 to P2_7		-	-	-5	mA
	"H" current	P2_0 to P2_7		-	-	-20	mA
IOL(sum)	Peak sum output "L" current	Sum of all pins IOL(peak)		-	_	160	mA
IOL(sum)	Average sum output "L" current	Sum of all pins IOL(avg)		-	_	80	mA
IOL(peak)	Peak output "L"	Except P2_0 to P2_7		-	-	10	mA
	current	P2_0 to P2_7		-	-	40	mA
IOL(avg)	Average output	Except P2_0 to P2_7		-	-	5	mA
	"L" current	P2_0 to P2_7		-	-	20	mA
f(XIN)	XIN clock input os	cillation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0		10	MHz
			$2.2~\text{V} \leq \text{Vcc} < 2.7~\text{V}$	0		5	MHz
f(XCIN)	XCIN clock input o	scillation frequency	$2.2~V \leq Vcc \leq 5.5~V$	0	-	70	kHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7~V \leq Vcc < 3.0~V$	0	-	10	MHz
			$2.2~V \leq Vcc < 2.7~V$	0	_	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	_	125	_	kHz
			$\begin{tabular}{l} FRA01 = 1 \\ High-speed on-chip \\ oscillator clock selected \\ 3.0 \ V \le Vcc \le 5.5 \ V \end{tabular}$	_	_	20	MHz
			FRA01 = 1 High-speed on-chip oscillator clock selected $2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_	_	10	MHz
			$\begin{tabular}{l} FRA01 = 1 \\ High-speed on-chip \\ oscillator clock selected \\ 2.2 V \le Vcc \le 5.5 V \end{tabular}$	_	_	5	MHz

Recommended Operating Conditions Table 5.2

NOTES:

1. Vcc = 2.2 to 5.5 V at $T_{opr} = -20$ to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms.

Cumbal	Parameter	Conditions		Linit		
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/24 Group	100 ⁽³⁾	-	-	times
		R8C/25 Group	1,000 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		-	0.4	9	s
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	-	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
=	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

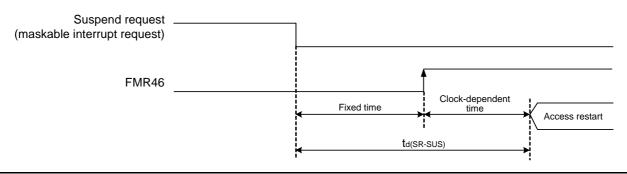


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter Condition			Unit		
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40		μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Falanelei	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter	Condition		Standard		Unit
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.9 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics
--

NOTES:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if $Vcc \ge 1.0$ V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

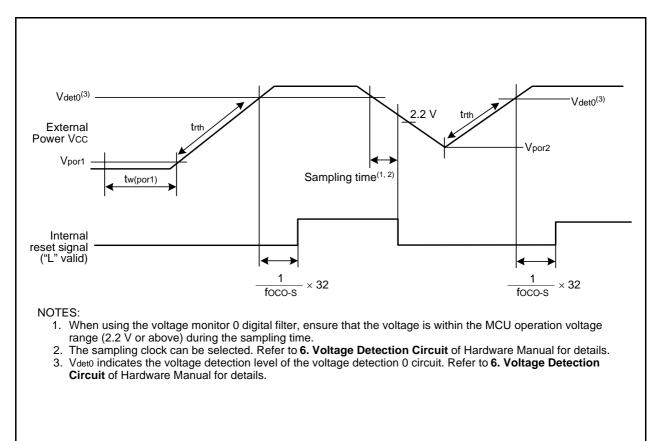
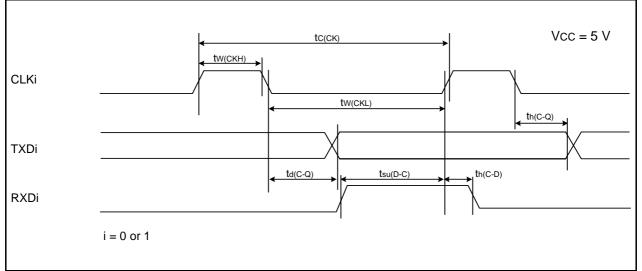



Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Symbol	Parameter		Standard	
	Faianelei	Min.	Max.	Unit
tc(CK)	CLKi input cycle time	200	-	ns
tw(CKH)	CLKi input "H" width	100	-	ns
tW(CKL)	CLKi input "L" width	100	-	ns
td(C-Q)	TXDi output delay time	-	50	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	50	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

Table 5.21 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Standard		Unit
Symbol	Falameter	Min.	Max.	Unit
tw(INH)	INTO input "H" width	250 ⁽¹⁾	-	ns
tw(INL)	INTO input "L" width	250(2)	-	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

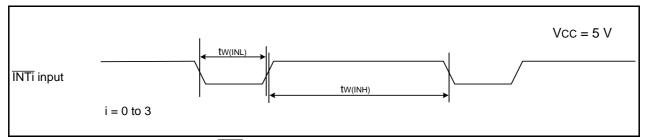


Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Table 5.23Electrical Characteristics (4) [Vcc = 3 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	5	Standar	d	Unit
	Parameter			Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	-	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		High-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5	9	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		Low-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	130	300	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	30	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	23	55	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.8	_	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	2.0	_	μA
		Increase during	Without sample & hold	-	0.9	-	mA
		A/D converter operation	With sample & hold	-	0.5	-	mA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.7	3.0	μA
			VOLUT = VOLUT = VOLUT = 0XIN clock off, $T_{opr} = 85^{\circ}$ CHigh-speed on-chip oscillator offLow-speed on-chip oscillator offCM10 = 1Peripheral clock offVCA27 = VCA26 = VCA25 = 0	_	1.1		μA

RENESAS

Symbol	Parameter		Condition		S	tandard		Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	_	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	-	Vcc	V
VoL Output "L" voltage	Output "L" voltage	Except P2_0 to P2_7, XOUT	Iol = 1 mA		-	-	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IoL = 2 mA	_	_	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	lo∟ = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.05	0.3	_	V
		RESET			0.05	0.15	-	V
Ін	Input "H" current		VI = 2.2 V		-	_	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	-	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V		100	200	600	kΩ
Rfxin	Feedback resistance	XIN			-	5	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	35	-	MΩ
Vram	RAM hold voltage		During stop mode	e	1.8	-	-	V

Table 5.28	Electrical Characteristics (5) [Vcc = 2.2 V]

NOTE:

1. Vcc = 2.2 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Symbol	Parameter		Standard		
	Parameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	800	-	ns	
tw(CKH)	CLKi input "H" width	400	-	ns	
tw(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.33 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tw(INH)	INTO input "H" width	1000(1)	-	ns	
tw(INL)	INTO input "L" width	1000 ⁽²⁾	_	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

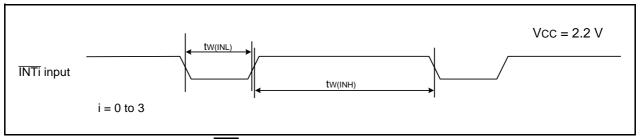
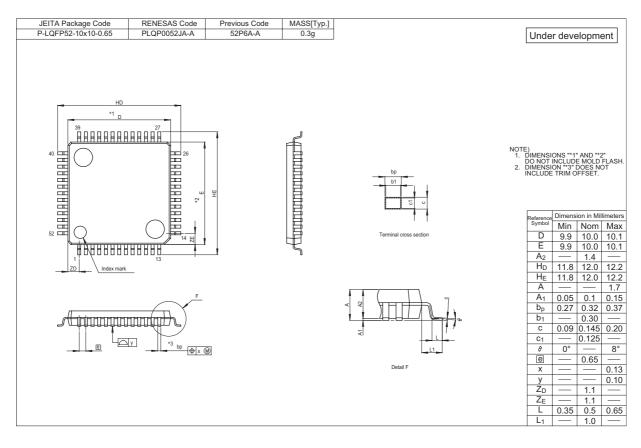
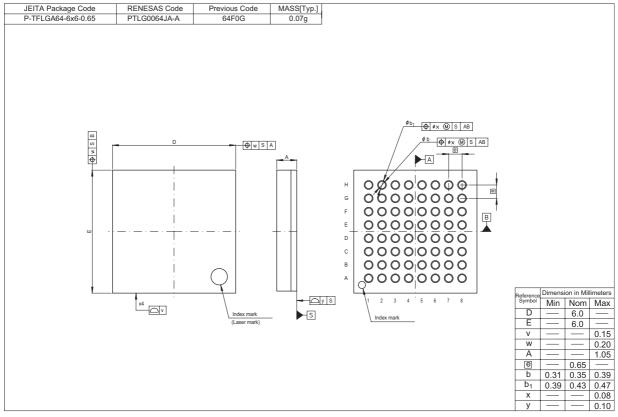




Figure 5.19 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

RENESAS

REVISION HISTORY

R8C/24 Group, R8C/25 Group Datasheet

	D. /		Description
Rev.	Date	Page	Summary
0.01	Sep 17, 2004	-	First Edition issued
0.02	Dec 10, 2004	All pages	Part Number revised. $R8C/26 \rightarrow R8C/24$, $R8C/27 \rightarrow R8C/25$
		2, 3	Table 1.1 R8C/24 Group Performance, Table 1.2 R8C/25 GroupPerformance- Serial Interface: I ² C Bus Interface and Chip-select clock synchronous
			 (SSU) added. - LIN Module added. - Interrupt: Internal factors revised; 10 → 11 - Note on Operating Ambient Temperature added.
		4	Figure 1.1 Block Diagram - LIN Module added. - Chip-select clock synchronous (SSU) is added to I ² C Bus Interface.
		5, 6	Table 1.3 Product Information of R8C/24 Group, Table 1.4 ProductInformation of R8C/25 GroupDate and Development state revised.
		7	Figure 1.4 Pin Assignment P3_5/SCL \rightarrow P3_5/SCL/SSCK, P3_3 \rightarrow P3_3/SSI, P3_4/SDA \rightarrow P3_4/SDA/SCS, P3_7 \rightarrow P3_7/SSO, VSS/AVSS \rightarrow VSS, XIN/P4_6 \rightarrow P4_6/XIN, VCC/AVSS \rightarrow VCC 12pin P1_7/TRAIO/INT1 to 22pin P1_0/KI0/AN8 \rightarrow 20pin P1_7/TRAIO/INT1 to 30pin P1_0/KI0/AN8
		8	Table 1.5 Pin Description - Analog Power Supply Input eliminated. - SSU added.
		9	Table 1.6 Pin Name Information by Pin Number added.
		15	Table 4.1 SFR Information (1) - 0031h: Voltage Detection Register 1 \rightarrow Voltage Detection <u>A</u> Register 1 - 0032h: Voltage Detection Register 1 \rightarrow Voltage Detection <u>A</u> Register 2 01000001b \rightarrow 00100001b (Note 4) - 0036h: "(3), 01000001b (⁴)" eliminated. - 0038h: Voltage Monitor 0 Control Register ⁽²⁾ , VW0C, 00001000b ⁽³⁾ , 01000001b ⁽⁴⁾ added.
		16	 Table 4.2 SFR Information (2) 0048h: Timer RD0 Interrupt Control Register, RD0IC, XXXXX000b added. 0049h: Timer RD Interrupt Control Register, RDIC Timer RD1 Interrupt Control Register, RD1IC 004Fh: IIC Interrupt Control Register, IIC → IIC/SSU Interrupt Control Register, IIC2IC
		19	Table 4.5 SFR Information (3) - 0106h: LIN Control Register, LINCR, 00h added. -0107h: LIN Status Register, LINST, 00h added.

REVISION HISTORY

R8C/24 Group, R8C/25 Group Datasheet

Devi	Dete		Description
Rev.	Date	Page	Summary
0.30	Sep 01, 2005	19	 Tabel 4.5 SFR Information(5) revised: 0118h : Timer RE Second Data Register/Counter Register → Timer RE Second Data Register/Counter Data Register
		20 21	Tabel 4.6 SFR Information(6) revised:• 0145hPOCR0 \rightarrow TRDPOCR0• 0146h, 0147hTRDCNT0 \rightarrow TRD0• 0148h, 0149hGRA0 \rightarrow TRDGRA0• 014Ah, 014BhGRB0 \rightarrow TRDGRB0• 014Ch, 014DhGRC0 \rightarrow TRDGRD0• 014Eh, 014FhGRD0 \rightarrow TRDGRD0• 0155hPOCR1 \rightarrow TRDPOCR1• 0156h, 0157hTRDCNT1 \rightarrow TRDGRA1• 0158h, 0159hGRA1 \rightarrow TRDGRB1• 015Ch, 015DhGRC1 \rightarrow TRDGRD1• 015Eh, 015FhGRD1 \rightarrow TRDGRD1• 0185h:0100101b \rightarrow 1000000Xb• 01B7h:XX00001b \rightarrow 0000001b• FFFFh:(Note 2) added
		22 to 44	5. Electrical Characteristics added
0.40	Jan 24, 2006	all pages	 "Preliminary" deleted Symbol name "TRDMDR" → "TRDMR", "SSUAIC" → "SSUIC", and "IIC2AIC" → "IICIC" revised Pin name "TCLK" → "TRDCLK" revised
		2	Table 1.1 Functions and Specifications for R8C/24 Group revised
		3	Table 1.2 Functions and Specifications for R8C/25 Group revised
		4	Figure 1.1 Block Diagram; "Peripheral Functions" added, "System Clock Generation" → "System Clock Generator" revised
		5	Table 1.3 Product Information for R8C/24 Group revised
		6	Table 1.4 Product Information for R8C/25 Group revised
		7	Figure 1.4 Pin Assignments (Top View) "TCLK" \rightarrow "TRDCLK" revised
		8	Table 1.5 Pin Functions "TCLK" \rightarrow "TRDCLK" revised
		9	Table 1.6 Pin Name Information by Pin Number; "TCLK" → "TRDCLK" revised
		10	Figure 2.1 CPU Registers; "Reserved Area" → "Reserved Bit" revised
		12	2.8.10 Reserved Area; "Reserved Area" → "Reserved bit" revised
		13	Figure 3.1 Memory Map of R8C/24 Group; "Program area" \rightarrow "program ROM" revised
		14	3.2 R8C/25 Group, Figure 3.2 Memory Map of R8C/25 Group; "Data area" \rightarrow "data flash", "Program area" \rightarrow "program ROM" revised