

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	48KB (48K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21247snfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

RENESAS

R8C/24 Group, R8C/25 Group SINGLE-CHIP 16-BIT CMOS MCU

1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and are packaged in a 52-pin molded-plastic LQFP or a 64-pin molded-plastic FLGA. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/25 Group has on-chip data flash (1 KB x 2 blocks).

The difference between the R8C/24 Group and R8C/25 Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer products, etc.

1.2 **Performance Overview**

Table 1.1 outlines the Functions and Specifications for R8C/24 Group and Table 1.2 outlines the Functions and Specifications for R8C/25 Group.

	Item		Specification			
CPU	instruction		89 instructions			
	Minimum in time	struction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)			
	Operating	mode	Single-chip			
	Address s	pace	1 Mbyte			
	Memory ca	apacity	Refer to Table 1.3 Product Information for R8C/24 Group			
Peripheral	Ports		I/O ports: 41 pins, Input port: 3 pins			
Functions	LED drive	ports	I/O ports: 8 pins			
	Timers		Timer RA: 8 bits × 1 channel Timer RB: 8 bits × 1 channel (Each timer equipped with 8-bit prescaler) Timer RD: 16 bits × 2 channels (Input capture and output compare circuits)			
	Serial interfaces		Timer RE: With real-time clock and compare match function 2 channels (UART0, UART1) Clock synchronous serial I/O, UART			
	Clock synchronous serial interface		1 channel I ² C bus Interface ⁽¹⁾ Clock synchronous serial I/O with chip select			
	LIN module		Hardware LIN: 1 channel (timer RA, UART0)			
	A/D conve	rter	10-bit A/D converter: 1 circuit, 12 channels			
	Watchdog timer		15 bits x 1 channel (with prescaler) Reset start selectable			
	Interrupts		Internal: 11 sources, External: 5 sources, Software: 4 sources, Priority levels: 7 levels			
	Clock	Clock generation circuits	 3 circuits XIN clock generation circuit (with on-chip feedback resistor) On-chip oscillator (high speed, low speed) High-speed on-chip oscillator has a frequency adjustment function XCIN clock generation circuit (32 kHz) 			
			Real-time clock (timer RE)			
	Oscillation	stop detection function	XIN clock oscillation stop detection function			
		tection circuit	On-chip			
		reset circuit	On-chip			
Electrical Characteristics	Supply vol	tage	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz) VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz)			
		nsumption	Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 2.0 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz) Typ. 0.7 μ A (VCC = 3.0 V, stop mode)			
Flash Memory		ng and erasure voltage	e VCC = 2.7 to 5.5 V			
	,	g and erasure endurance	100 times			
Operating Ambi	ent Temper	ature	-20 to 85°C (N version)			
			-40 to 85°C (D version) ⁽²⁾			
			-20 to 105°C (Y version) ⁽³⁾			
Package			52-pin molded-plastic LQFP			
			64-pin molded-plastic FLGA			

Functions and Specifications for R8C/24 Group Table 1.1

NOTES:

I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

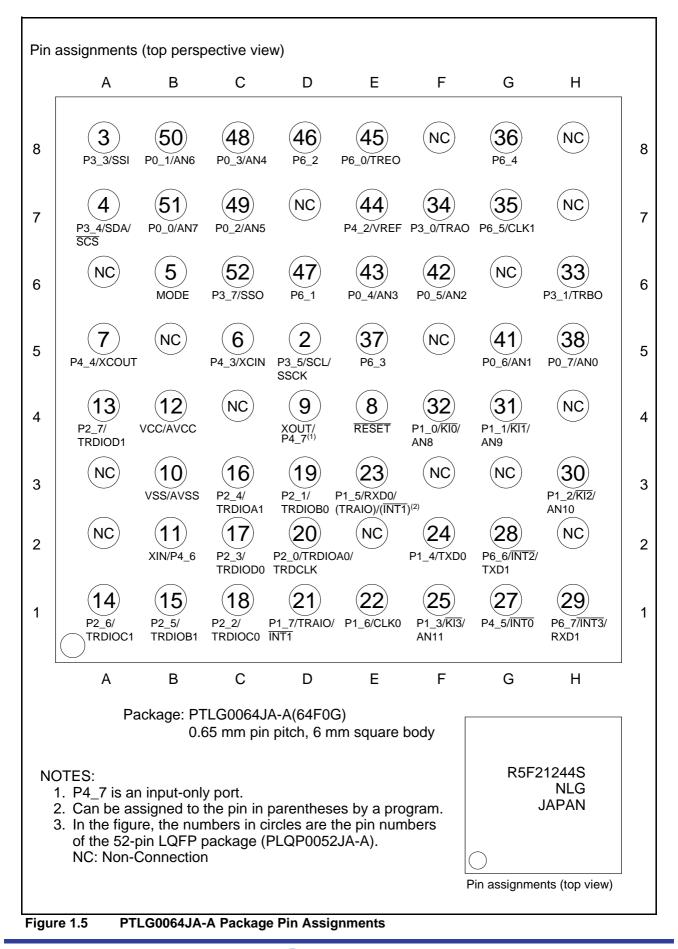

Type No.	ROM C	apacity	RAM	Package Type	Remarks
Type No.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F21254SNFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	N version
R5F21255SNFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Blank product
R5F21256SNFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	
R5F21257SNFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	
R5F21258SNFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	
R5F21254SNLG	16 Kbytes	1 Kbyte x 2	1 Kbyte	PTLG0064JA-A	
R5F21256SNLG	32 Kbytes	1 Kbyte x 2	2 Kbytes	PTLG0064JA-A	
R5F21254SDFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	D version
R5F21255SDFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Blank product
R5F21256SDFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	
R5F21257SDFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	
R5F21258SDFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	
R5F21254SNXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	N version
R5F21255SNXXXFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Factory
R5F21256SNXXXFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	programming
R5F21257SNXXXFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	product ⁽¹⁾
R5F21258SNXXXFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	
R5F21254SNXXXLG	16 Kbytes	1 Kbyte x 2	1 Kbyte	PTLG0064JA-A	
R5F21256SNXXXLG	32 Kbytes	1 Kbyte x 2	2 Kbytes	PTLG0064JA-A	
R5F21254SDXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	D version
R5F21255SDXXXFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Factory
R5F21256SDXXXFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	programming
R5F21257SDXXXFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	product ⁽¹⁾
R5F21258SDXXXFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	1

Table 1.4 Product Information for R8C/25 Group

Current of Feb. 2008

NOTE:

1. The user ROM is programmed before shipment.

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

Cumbal	Parameter	Conditions		Linit		
Symbol		Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾	R8C/24 Group	100 ⁽³⁾	-	-	times
		R8C/25 Group	1,000 ⁽³⁾	-	-	times
-	Byte program time		-	50	400	μs
-	Block erase time		-	0.4	9	s
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μS
-	Interval from erase start/restart until following suspend request		650	-	-	μS
-	Interval from program start/restart until following suspend request		0	-	-	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μS
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		0	-	60	°C
=	Data hold time ⁽⁷⁾	Ambient temperature = 55°C	20	-	-	year

Table 5.4 Flash Memory (Program ROM) Electrical Characteristics

NOTES: 1. Vcc = 2.7 to 5.5 V at Topr = 0 to 60°C, unless otherwise specified.

2. Definition of programming/erasure endurance The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 5. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 6. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.
- 7. The data hold time includes time that the power supply is off or the clock is not supplied.

Symbol	Parameter	Conditions		Stand	ard	Unit
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μS
-	Byte program time (program/erase endurance > 1,000 times)		-	65	_	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μs
-	Interval from erase start/restart until following suspend request		650	-	_	μs
-	Interval from program start/restart until following suspend request		0	_	_	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μs
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

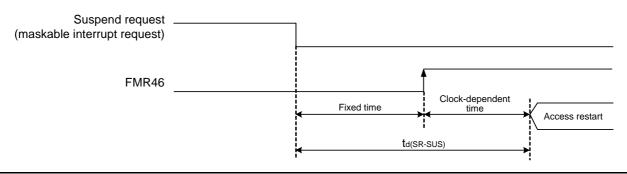


Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet1	Voltage detection level		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40		μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition	Min.	Тур.	Max.	Unit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	-	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	-	-	mV/msec

Table 5.9 Power-on Reset Circuit, Voltage Monitor 0 Reset Electrical Characteristics
--

NOTES:

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if $Vcc \ge 1.0$ V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. $t_{w(por1)}$ indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain $t_{w(por1)}$ for 30 s or more if $-20^{\circ}C \le T_{opr} \le 85^{\circ}C$, maintain $t_{w(por1)}$ for 3,000 s or more if $-40^{\circ}C \le T_{opr} < -20^{\circ}C$.

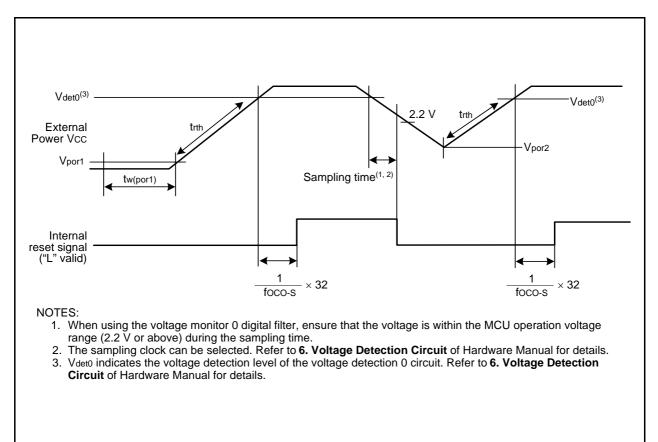
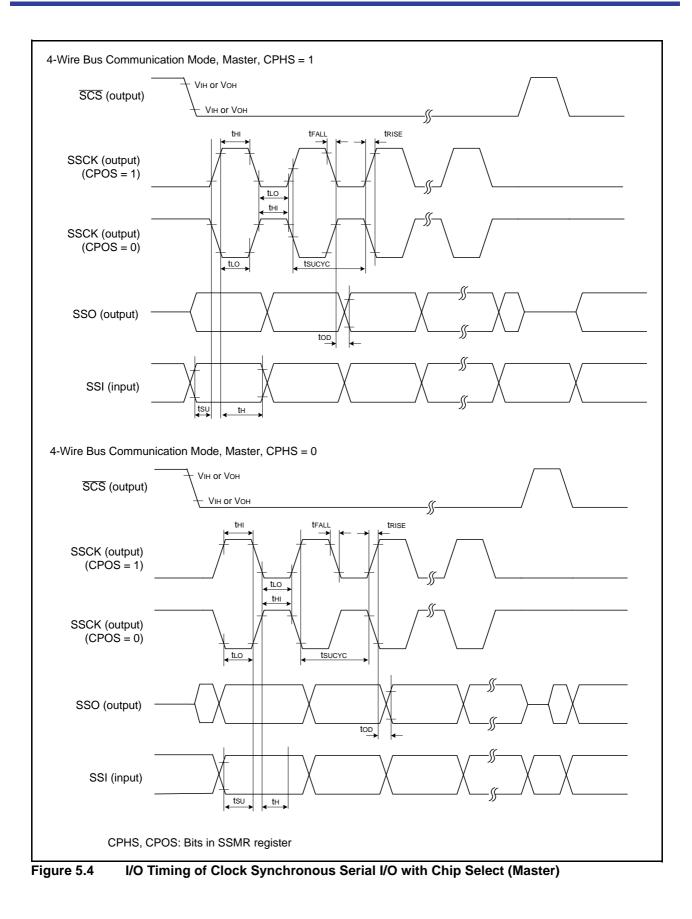
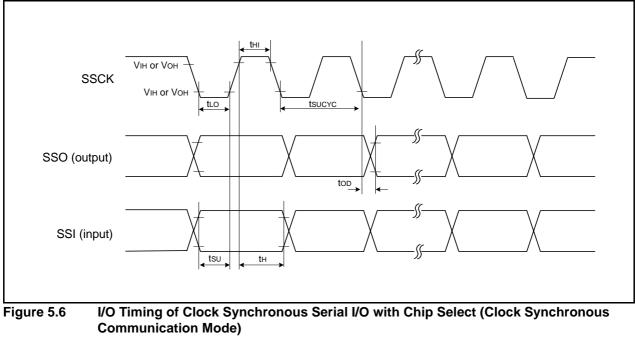




Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Timing Requirements (Unless Otherwise Specified: Vcc = 5 V, Vss = 0 V at Topr = 25°C) [Vcc = 5 V]

Table 5.18 XIN Input, XCIN Input

Symbol	Parameter	Stan	Unit	
	Parameter		Max.	Unit
tc(XIN)	XIN input cycle time	50	-	ns
twh(xin)	XIN input "H" width	25	-	ns
twl(XIN)	XIN input "L" width	25	-	ns
tc(XCIN)	XCIN input cycle time	14	-	μS
tWH(XCIN)	XCIN input "H" width	7	-	μS
twl(xcin)	XCIN input "L" width	7	-	μS

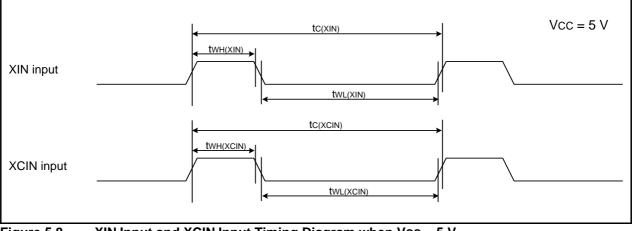


Figure 5.8 XIN Input and XCIN Input Timing Diagram when Vcc = 5 V

Table 5.19 TRAIO Input

Symbol Parar	Parameter		Standard		
	Falanielei	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	100	-	ns	
twh(traio)	TRAIO input "H" width	40	-	ns	
twl(traio)	TRAIO input "L" width	40	-	ns	

Figure 5.9 TRAIO Input Timing Diagram when Vcc = 5 V

Cumhal	Dava		Cond		Si	andard		Unit
Symbol	Para	ameter	neter Condition -		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	ļ	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -5 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	ļ	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		-	-	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IOL = 5 mA	-	_	0.5	V
			Drive capacity LOW	IOL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	Iol = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Ін	Input "H" current		VI = 3 V, Vcc = 3	V	-	_	4.0	μA
lı∟	Input "L" current		VI = 0 V, Vcc = 3	V	-	-	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V, Vcc = 3	V	66	160	500	kΩ
RfXIN	Feedback resistance	XIN			-	3.0	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	18	_	MΩ
Vram	RAM hold voltage		During stop mode	Э	1.8	-	-	V

Table 5.22	Electrical Characteristics	(3) [Vcc = 3 V]
		(•)[•••••••]

NOTE:

1. Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.24 XIN Input, XCIN Input

Symbol	Parameter	Standard		Unit	
Symbol	Falanielei	Min.	Min. Max.		
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μs	
tWH(XCIN)	XCIN input "H" width	-	μs		
tWL(XCIN)	XCIN input "L" width 7 –				

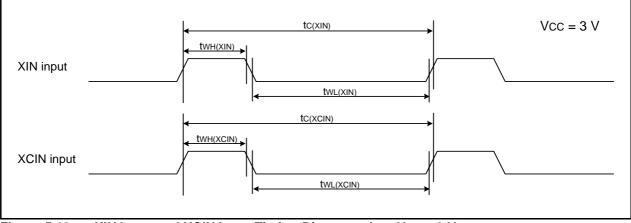


Figure 5.12 XIN Input and XCIN Input Timing Diagram when Vcc = 3 V

Table 5.25 TRAIO Input

Symbol	Parameter	Stan	dard	Unit	
Symbol	Falantelei	Min.	Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	-	ns	
twh(traio)	TRAIO input "H" width	120	-	ns	
twl(traio)	TRAIO input "L" width 120 –				

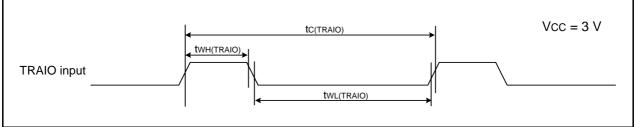


Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.29Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	S	Standar	d	Unit
				Min.	Тур.	Max.	
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open.	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		Low-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	100	230	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	100	230	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	25	_	μA
	Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	22	60	μA	
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	20	55	μA	
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.0	_	μA
		XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	1.8	_	μA	
		Increase during	Without sample & hold	-	0.4	-	mA
		A/D converter operation	With sample & hold	-	0.3	-	mA
	Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.7	3.0	μA	
			VCA27 = VCA25 = VCA25 = 0XIN clock off, Topr = 85°CHigh-speed on-chip oscillator offLow-speed on-chip oscillator offCM10 = 1Peripheral clock offVCA27 = VCA26 = VCA25 = 0		1.1		μA

Timing requirements (Unless Otherwise Specified: Vcc = 2.2 V, Vss = 0 V at Topr = 25°C) [Vcc = 2.2 V]

Table 5.30 XIN Input, XCIN Input

Symbol	Parameter	Standard		Unit	
Symbol	Falanletei	Min.	Min. Max.		
tc(XIN)	XIN input cycle time	200	-	ns	
twh(xin)	XIN input "H" width	90	-	ns	
twl(XIN)	XIN input "L" width	90	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μs	
tWH(XCIN)	XCIN input "H" width	7	-	μs	
tWL(XCIN)	XCIN input "L" width 7 –				

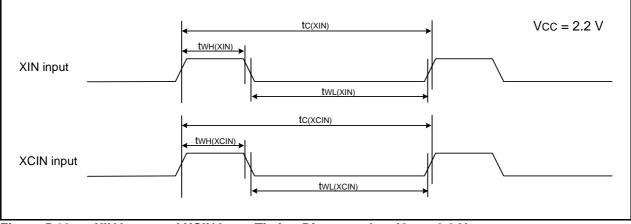
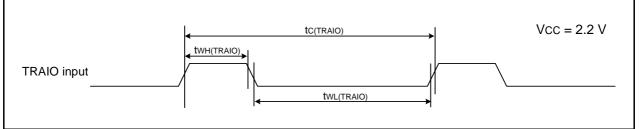



Figure 5.16 XIN Input and XCIN Input Timing Diagram when Vcc = 2.2 V

Table 5.31 TRAIO Input

Symbol	Parameter	Stan	dard	Unit
Symbol	Falameter	Min.	Max.	Unit
tc(TRAIO)	TRAIO input cycle time	500	-	ns
twh(traio)	TRAIO input "H" width	200	-	ns
twl(traio)	TRAIO input "L" width 200 –			

Symbol	Parameter	Standard		Unit	
Symbol	Parameter	Min.	Min. Max.		
tc(CK)	CLKi input cycle time	800	-	ns	
tw(ckh)	CLKi input "H" width	400	-	ns	
tw(CKL)	CLKi input "L" width	400	-	ns	
td(C-Q)	TXDi output delay time	-	200	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	150	-	ns	
th(C-D)	RXDi input hold time 90 -				

i = 0 or 1

Table 5.33 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Stan	Standard	
Symbol	Falanielei	Min.	Max.	Unit
tw(INH)	INTO input "H" width	1000(1)	-	ns
tw(INL)	INTO input "L" width 1000 ⁽²⁾ -			

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

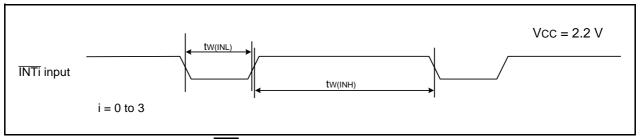
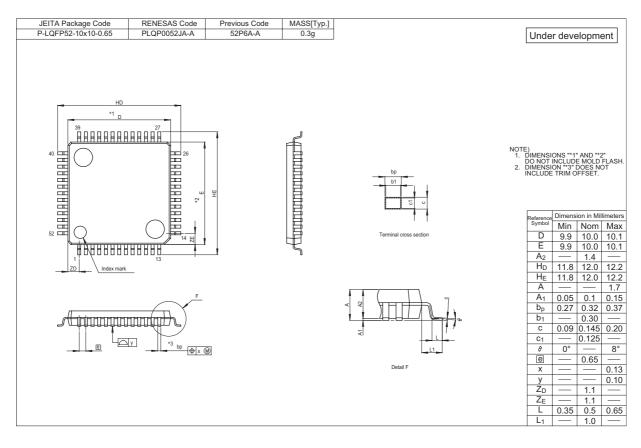
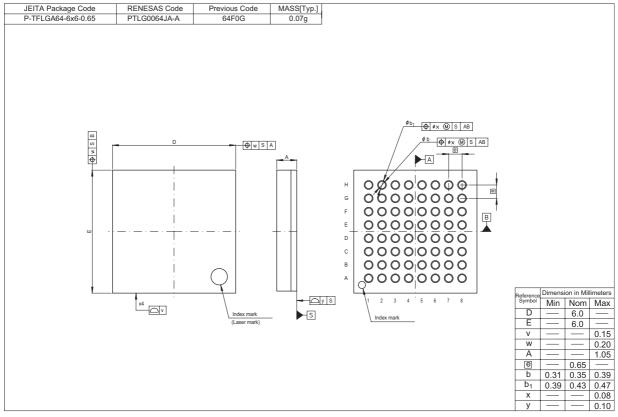




Figure 5.19 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

REVISION HISTORY

R8C/24 Group, R8C/25 Group Datasheet

	D /		Description
Rev.	Date	Page	Summary
0.01	Sep 17, 2004	-	First Edition issued
0.02	Dec 10, 2004	All pages	Part Number revised. R8C/26 \rightarrow R8C/24, R8C/27 \rightarrow R8C/25
		2, 3	Table 1.1 R8C/24 Group Performance, Table 1.2 R8C/25 GroupPerformance- Serial Interface: I ² C Bus Interface and Chip-select clock synchronous
			 (SSU) added. - LIN Module added. - Interrupt: Internal factors revised; 10 → 11 - Note on Operating Ambient Temperature added.
		4	Figure 1.1 Block Diagram - LIN Module added. - Chip-select clock synchronous (SSU) is added to I ² C Bus Interface.
		5, 6	Table 1.3 Product Information of R8C/24 Group, Table 1.4 Product Information of R8C/25 Group Date and Development state revised.
		7	Figure 1.4 Pin Assignment P3_5/SCL \rightarrow P3_5/SCL/SSCK, P3_3 \rightarrow P3_3/SSI, P3_4/SDA \rightarrow P3_4/SDA/SCS, P3_7 \rightarrow P3_7/SSO, VSS/AVSS \rightarrow VSS, XIN/P4_6 \rightarrow P4_6/XIN, VCC/AVSS \rightarrow VCC 12pin P1_7/TRAIO/INT1 to 22pin P1_0/KI0/AN8 \rightarrow 20pin P1_7/TRAIO/INT1 to 30pin P1_0/KI0/AN8
		8	Table 1.5 Pin Description - Analog Power Supply Input eliminated. - SSU added.
		9	Table 1.6 Pin Name Information by Pin Number added.
		15	Table 4.1 SFR Information (1) - 0031h: Voltage Detection Register 1 \rightarrow Voltage Detection <u>A</u> Register 1 - 0032h: Voltage Detection Register 1 \rightarrow Voltage Detection <u>A</u> Register 2 01000001b \rightarrow 00100001b (Note 4) - 0036h: " ⁽³⁾ , 0100001b ⁽⁴⁾ " eliminated. - 0038h: Voltage Monitor 0 Control Register ⁽²⁾ , VW0C, 00001000b ⁽³⁾ , 01000001b ⁽⁴⁾ added.
		16	 Table 4.2 SFR Information (2) 0048h: Timer RD0 Interrupt Control Register, RD0IC, XXXXX000b added. 0049h: Timer RD Interrupt Control Register, RDIC Timer RD1 Interrupt Control Register, RD1IC 004Fh: IIC Interrupt Control Register, IIC → IIC/SSU Interrupt Control Register, IIC2IC
		19	Table 4.5 SFR Information (3) - 0106h: LIN Control Register, LINCR, 00h added. -0107h: LIN Status Register, LINST, 00h added.

REVISION HISTORY

R8C/24 Group, R8C/25 Group Datasheet

Rev.	Date		Description
Rev.	Dale	Page	Summary
0.30	Sep 01, 2005	7	Figure 1.4 Pin Assignment • Pin name revised; $VSS \rightarrow VSS/AVSS$, $VCC \rightarrow VCC/AVCC$, $P1_5/RXD0/(TRAIO)/(\overline{INT1}) \rightarrow P1_5/RXD0/(TRAIO)/(\overline{INT1})^{(2)}$, $P6_6/\overline{INT2}/(TXD1) \rightarrow P6_6/\overline{INT2}/TXD1$, $P6_7/\overline{INT3}/(RXD1) \rightarrow P6_7/\overline{INT3}/RXD1$, $P6_5 \rightarrow P6_5/CLK1$ • NOTE2 added
		8	 Table 1.5 Pin Description Analog Power Supply Input: line added INT Interrupt Input: "INT0 Timer RD input pins. INT1 Timer RA input pins." added Serial Interface: "CLK1" added "I²C Bus Interface (IIC)" → "I²C Bus Interface" "SSU" → "Clock Synchronous Serial I/O with Chip Select"
		9	Table 1.6 Pin Name Information by Pin Number revised • Pin Number 10: "VSS" \rightarrow "VSS/AVSS" • Pin Number 12: "VCC" \rightarrow "VCC/AVCC" • Pin Number 27: "INT0" added • Pin Number 28: "(TXD1)" \rightarrow "TXD1" • Pin Number 29: "(RXD1)" \rightarrow "RXD1" • Pin Number 35: "CLK1" added
		15	Tabel 4.1 SFR Information(1) revised: • 0012h: X0h → 00h • 0013h: XXXXX00b → 00h • 0016h: X0h → 00h • 0036h: Voltage Monitor 1 Control Register ⁽²⁾ → Voltage Monitor 1 Control Register ⁽⁵⁾ • 0038h: 00001000b ⁽³⁾ , 01000001b ⁽⁴⁾ → 0000X000b ⁽³⁾ , 0100X001b ⁽⁴⁾ • NOTES2, 5: "the voltage monitor 1 reset" added • NOTE3: "voltage monitor 1 reset" → "voltage monitor 0 reset"
		16	Tabel 4.2 SFR Information(2) revised: • 0048h: RD0IC \rightarrow TRD0IC • 0049h: RD1IC \rightarrow TRD1IC • 004Ah: REIC \rightarrow TREIC • 004Fh: SSU/IIC Interrupt Control Register, IIC2AIC \rightarrow SSU/IIC Interrupt Control Register ⁽²⁾ , SSUAIC/IIC2AIC • 0056h: RAIC \rightarrow TRAIC • 0058h: RBIC \rightarrow TRBIC • NOTE2 added
		17	Tabel 4.3 SFR Information(3) revised: • 00BCh: 00h \rightarrow 00h/0000X000b
		18	 Tabel 4.4 SFR Information(4) revised: 00D6h: 00000XXXb → 00h 00F5h: UART1 Function Select Register, U1SR, XXh added