

Welcome to **E-XFL.COM**

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded - Microcontrollers</u>"

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	16KB (16K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	1K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21254sdfp-x6

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.2 **Performance Overview**

Table 1.1 outlines the Functions and Specifications for R8C/24 Group and Table 1.2 outlines the Functions and Specifications for R8C/25 Group.

Functions and Specifications for R8C/24 Group Table 1.1

	Itom	<u> </u>	Specification					
CPU	Item	fundamental	89 instructions					
CPU	instructions		69 Instructions					
	Minimum ins time	struction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)					
	Operating i	mode	Single-chip					
	Address sp		1 Mbyte					
	Memory ca	pacity	Refer to Table 1.3 Product Information for R8C/24 Grou I/O ports: 41 pins, Input port: 3 pins					
Peripheral	Ports	· · ·	I/O ports: 41 pins, Input port: 3 pins					
Functions	LED drive	I/O ports: 8 pins						
	Timers		Timer RA: 8 bits x 1 channel Timer RB: 8 bits x 1 channel (Each timer equipped with 8-bit prescaler) Timer RD: 16 bits x 2 channels (Input capture and output compare circuits) Timer RE: With real-time clock and compare match function					
	Serial inter	faces	2 channels (UART0, UART1) Clock synchronous serial I/O, UART					
	Clock synchronous serial interface		1 channel I ² C bus Interface ⁽¹⁾ Clock synchronous serial I/O with chip select					
	LIN module		Hardware LIN: 1 channel (timer RA, UART0)					
	A/D converter		10-bit A/D converter: 1 circuit, 12 channels					
	Watchdog timer		15 bits x 1 channel (with prescaler) Reset start selectable					
	Interrupts		Internal: 11 sources, External: 5 sources, Software: 4 sources, Priority levels: 7 levels					
	Clock	Clock generation circuits	3 circuits • XIN clock generation circuit (with on-chip feedback resistor) • On-chip oscillator (high speed, low speed) High-speed on-chip oscillator has a frequency adjustment function • XCIN clock generation circuit (32 kHz)					
			Real-time clock (timer RE)					
		top detection function	XIN clock oscillation stop detection function					
		tection circuit	On-chip					
		eset circuit	On-chip					
Electrical Characteristics	Supply volt	age	VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz) VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz)					
	Current cor	nsumption						
Flash Memory		g and erasure voltage	VCC = 2.7 to 5.5 V					
		and erasure endurance	100 times					
Operating Amb	ient Tempera	ature	-20 to 85°C (N version)					
			-40 to 85°C (D version) ⁽²⁾					
			-20 to 105°C (Y version)(3)					
Package			52-pin molded-plastic LQFP					
			64-pin molded-plastic FLGA					

- I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

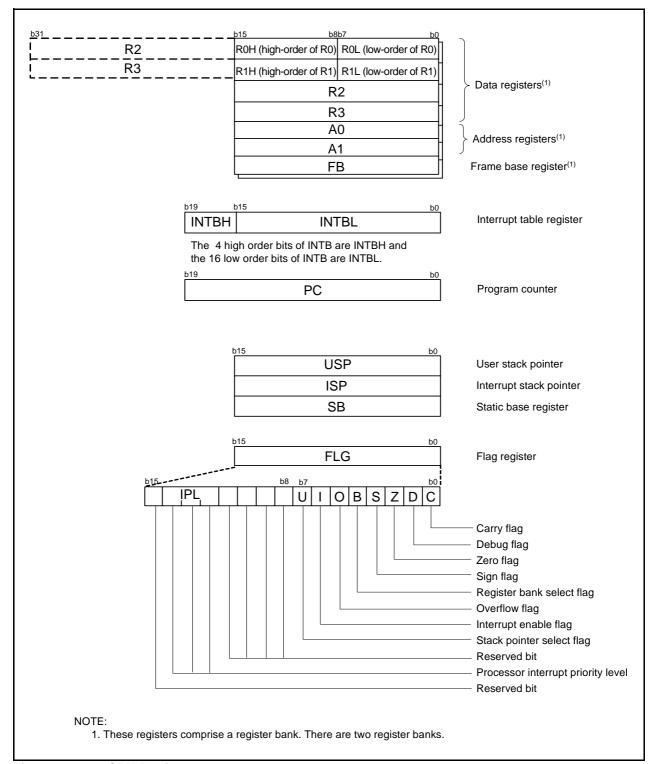


Figure 2.1 CPU Registers

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 **Zero Flag (Z)**

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

SFR Information (4)⁽¹⁾ Table 4.4

Address	Register	Symbol	After reset
00C0h	A/D Register	AD	XXh
00C1h			XXh
00C2h			
00C3h			
00C4h			
00C5h			
00C6h			
00C7h			
00C8h			
00C9h			
00CAh			
00CBh			
00CCh			
00CDh			
00CEh			
00CEII			
00D0h			
00D1h			
00D2h			
00D3h			
00D4h	A/D Control Register 2	ADCON2	00h
00D5h			
00D6h	A/D Control Register 0	ADCON0	00h
00D7h	A/D Control Register 1	ADCON1	00h
00D8h			
00D9h			
00DAh			
00DBh			
00DCh			
00DDh			
00DEh			
00DFh			
00E0h	Port P0 Register	P0	XXh
00E1h	Port P1 Register	P1	XXh
00E1h	Port P0 Direction Register	PD0	00h
00E3h	Port P1 Direction Register	PD1	00h
	Port P1 Direction Register		
00E4h	Port P2 Register	P2	XXh
00E5h	Port P3 Register	P3	XXh
00E6h	Port P2 Direction Register	PD2	00h
00E7h	Port P3 Direction Register	PD3	00h
00E8h	Port P4 Register	P4	XXh
00E9h			
00EAh	Port P4 Direction Register	PD4	00h
00EBh			
00ECh	Port P6 Register	P6	XXh
00EDh			
00EEh	Port P6 Direction Register	PD6	00h
00EFh	Ĭ		
00F0h			
00F1h			
00F2h			
00F3h			
00F4h	Port P2 Drive Capacity Control Register	P2DRR	00h
00F5h	UART1 Function Select Register	U1SR	XXh
00F6h	O/ II T T UNDUOTI OCIOOL PLOGISTEI	0101	77711
00F7h			
	Port Made Degister	DMD	004
00F8h	Port Mode Register	PMR	00h
00F9h	External Input Enable Register	INTEN	00h
00FAh	INT Input Filter Select Register	INTF	00h
00FBh	Key Input Enable Register	KIEN	00h
00FCh	Pull-Up Control Register 0	PUR0	00h
00FDh	Pull-Up Control Register 1	PUR1	XX00XX00b
00FEh			
00FFh			

X: Undefined
NOTE:

1. The blank regions are reserved. Do not access locations in these regions.

Table 5.3	A/D Converter	Characteristics
-----------	---------------	-----------------

Symbol	Parameter	Conditions		Unit			
Syllibol	'	raiaillelei	Conditions	Min.	Тур.	Max.	Offic
_	Resolution		Vref = AVCC	-	-	10	Bit
_	Absolute	10-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	-	-	±3	LSB
	accuracy	8-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	-	=	±2	LSB
		10-bit mode	φAD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±5	LSB
		8-bit mode	φAD = 10 MHz, Vref = AVCC = 3.3 V	-	-	±2	LSB
		10-bit mode	φAD = 5 MHz, Vref = AVCC = 2.2 V	=	=	±5	LSB
		8-bit mode	φAD = 5 MHz, Vref = AVCC = 2.2 V	-	-	±2	LSB
Rladder	Resistor ladder		Vref = AVCC	10	-	40	kΩ
tconv	Conversion time	10-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	3.3	-	_	μS
		8-bit mode	φAD = 10 MHz, Vref = AVCC = 5.0 V	2.8	-	-	μS
Vref	Reference voltag	e		2.2	-	AVcc	V
VIA	Analog input volta	age ⁽²⁾		0	-	AVcc	V
-	A/D operating	Without sample and hold	Vref = AVCC = 2.7 to 5.5 V	0.25	-	10	MHz
	clock frequency	With sample and hold	Vref = AVCC = 2.7 to 5.5 V	1	-	10	MHz
		Without sample and hold	Vref = AVCC = 2.2 to 5.5 V	0.25	-	5	MHz
		With sample and hold	Vref = AVCC = 2.2 to 5.5 V	1	_	5	MHz

- 1. AVcc = 2.2 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. When the analog input voltage is over the reference voltage, the A/D conversion result will be 3FFh in 10-bit mode and FFh in 8-bit mode.

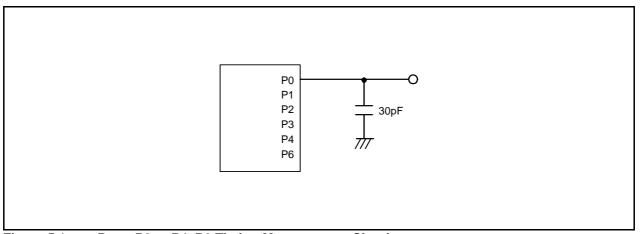


Figure 5.1 Ports P0 to P4, P6 Timing Measurement Circuit

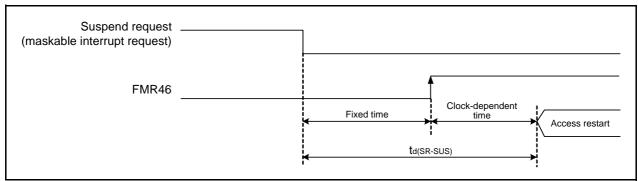


Figure 5.2 Time delay until Suspend

Table 5.6 **Voltage Detection 0 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Syllibol	Falametei	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
=	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	_	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	=	300	μS
Vccmin	MCU operating voltage minimum value		2.2	=	-	V

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 **Voltage Detection 1 Circuit Electrical Characteristics**

Symbol Parameter	Dorometer	Condition		Unit		
	Condition	Min.	Тур.	Max.	Unit	
Vdet1	Voltage detection level		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40	-	μS
=	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	=	0.6	-	μА
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		=	=	100	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and $T_{opr} = -20$ to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version).
- Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.8 **Voltage Detection 2 Circuit Electrical Characteristics**

Symbol	Parameter	Condition		Unit		
Symbol	Falametei	Condition	Min.	Тур.	d Max. 3.9 100	Offic
Vdet2	Voltage detection level		3.3	3.6	3.9	V
_	Voltage monitor 2 interrupt request generation time ⁽²⁾		_	40	_	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	-	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

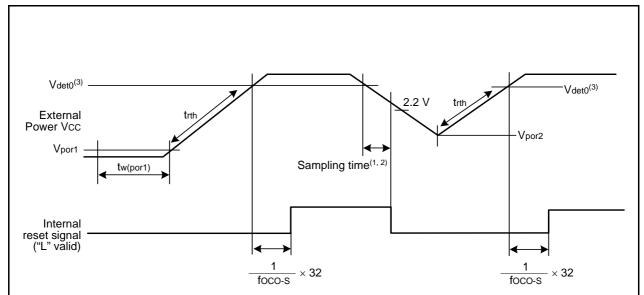

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes V_{det2} .
- 3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Table 5.9	Power-on Reset Circuit.	Voltage Monitor 0 Reset Electrical Characteristics ⁽³⁾

Symbol	Parameter	Condition	Standard		Unit	
			Min.	Тур.	Max.	
Vpor1	Power-on reset valid voltage ⁽⁴⁾		-	-	0.1	V
Vpor2	Power-on reset or voltage monitor 0 reset valid voltage		0	_	Vdet0	V
trth	External power Vcc rise gradient ⁽²⁾		20	_	_	mV/msec

- 1. The measurement condition is Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.
- 2. This condition (external power Vcc rise gradient) does not apply if Vcc ≥ 1.0 V.
- 3. To use the power-on reset function, enable voltage monitor 0 reset by setting the LVD0ON bit in the OFS register to 0, the VW0C0 and VW0C6 bits in the VW0C register to 1 respectively, and the VCA25 bit in the VCA2 register to 1.
- 4. tw(por1) indicates the duration the external power Vcc must be held below the effective voltage (Vpor1) to enable a power on reset. When turning on the power for the first time, maintain tw(por1) for 30 s or more if -20°C ≤ Topr ≤ 85°C, maintain tw(por1) for 3,000 s or more if -40°C ≤ Topr < -20°C.</p>

- 1. When using the voltage monitor 0 digital filter, ensure that the voltage is within the MCU operation voltage range (2.2 V or above) during the sampling time.
- 2. The sampling clock can be selected. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.
- 3. Vdeto indicates the voltage detection level of the voltage detection 0 circuit. Refer to 6. Voltage Detection Circuit of Hardware Manual for details.

Figure 5.3 Power-on Reset Circuit Electrical Characteristics

Table 5.10 High-speed On-Chip Oscillator Circuit Electrical Characteristics

Cumbal	Parameter	Condition		Standard		Unit
Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
fOCO40M	High-speed on-chip oscillator frequency	Vcc = 4.75 to 5.25 V	39.2	40	40.8	MHz
	temperature • supply voltage dependence	$0^{\circ}C \leq T_{opr} \leq 60^{\circ}C^{(2)}$				
		Vcc = 4.5 to 5.5 V	38.8	40	40.8	MHz
		$-20^{\circ}C \le T_{opr} \le 85^{\circ}C$				
		Vcc = 4.5 to 5.5 V	38.4	40	40.8	MHz
		$-40^{\circ}C \le T_{opr} \le 85^{\circ}C$				
		Vcc = 3.0 to 5.5 V	38.8	40	41.2	MHz
		-20 °C \leq Topr \leq 85°C(2)				
		Vcc = 3.0 to 5.5 V	38.4	40	41.6	MHz
		-40 °C \leq Topr \leq 85°C(2)				
		Vcc = 2.7 to 5.5 V	38	40	42	MHz
		-20 °C \leq Topr \leq 85°C(2)				
		Vcc = 2.7 to 5.5 V	37.6	40	42.4	MHz
		$-40^{\circ}C \leq T_{opr} \leq 85^{\circ}C^{(2)}$				
		Vcc = 2.2 to 5.5 V	35.2	40	44.8	MHz
		-20 °C \leq Topr \leq 85°C ⁽³⁾				
		Vcc = 2.2 to 5.5 V	34	40	46	MHz
		-40 °C \leq Topr \leq 85°C ⁽³⁾				
	High-speed on-chip oscillator frequency when	Vcc = 5.0 V, Topr = 25°C	-	36.864		MHz
	correction value in FRA7 register is written to FRA1 register ⁽⁴⁾	Vcc = 3.0 to 5.5 V -20°C \le Topr \le 85°C	-3%	_	3%	%
_	Value in FRA1 register after reset		08h	-	F7h	_
_	Oscillation frequency adjustment unit of high-	Adjust FRA1 register	_	+0.3	_	MHz
	speed on-chip oscillator	(value after reset) to -1				
_	Oscillation stability time		_	10	100	μS
_	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	400	_	μΑ

- 1. Vcc = 2.2 to 5.5 V, Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), unless otherwise specified.
- 2. Standard values when the FRA1 register value after reset is assumed.
- 3. Standard values when the corrected value of the FRA6 register has been written to the FRA1 register.
- 4. This enables the setting errors of bit rates such as 9600 bps and 38400 bps to be 0% when the serial interface is used in UART mode.

Table 5.11 Low-speed On-Chip Oscillator Circuit Electrical Characteristics

Symbol	Parameter	Condition		Lloit		
Symbol	Faranteter	Condition	Min.	Тур.	Typ. Max. 125 250 H 10 100	Unit
fOCO-S	Low-speed on-chip oscillator frequency		30	125	250	kHz
_	Oscillation stability time		-	10	100	μS
=	Self power consumption at oscillation	Vcc = 5.0 V, Topr = 25°C	-	15	-	μА

NOTE:

1. Vcc = 2.2 to 5.5 V, Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

Table 5.12 Power Supply Circuit Timing Characteristics

Svmbol	Parameter	Condition	,	Unit		
Symbol	r alametel	Condition	Min.	Тур.	Max.	Offic
td(P-R)	Time for internal power supply stabilization during		1	_	2000	μS
	power-on ⁽²⁾					
td(R-S)	STOP exit time ⁽³⁾		1	ı	150	μS

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = 25°C.
- 2. Waiting time until the internal power supply generation circuit stabilizes during power-on.
- 3. Time until system clock supply starts after the interrupt is acknowledged to exit stop mode.

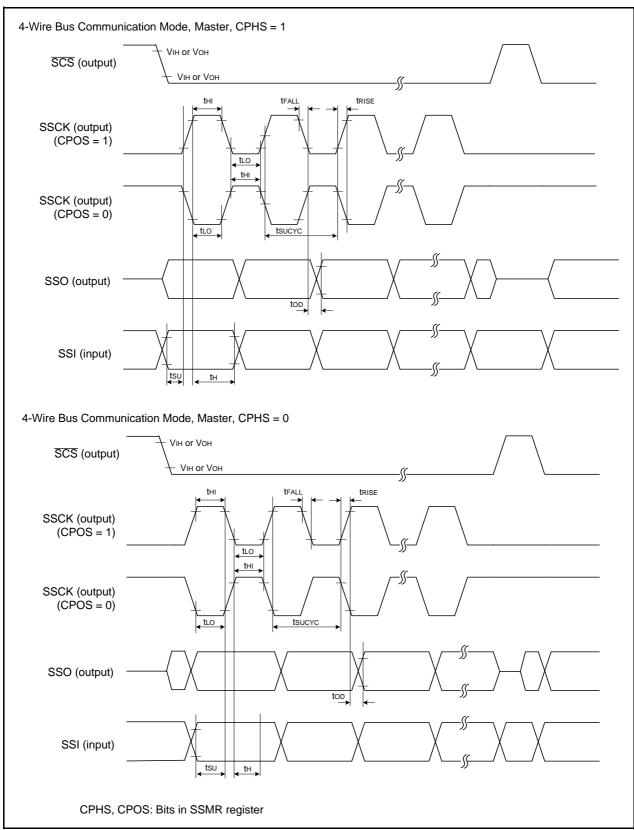


Figure 5.4 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Master)

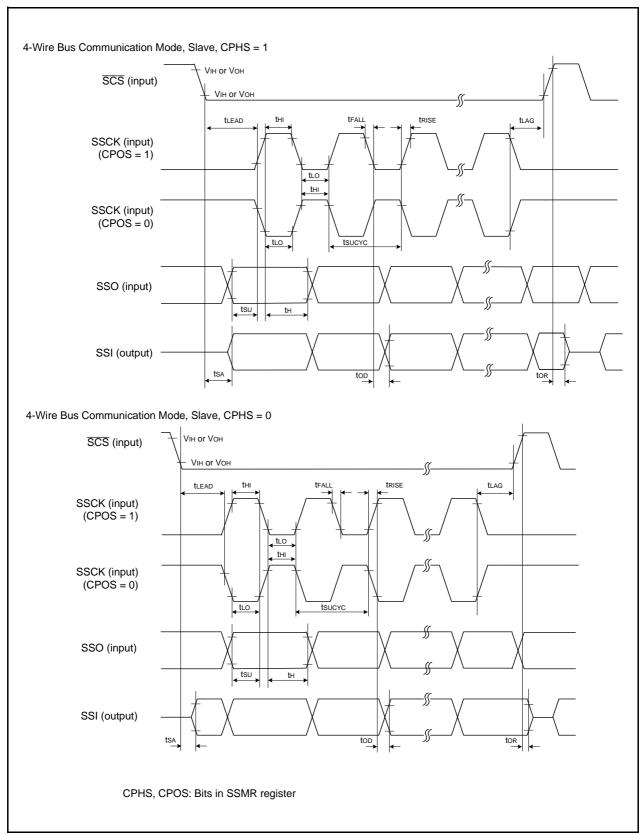


Figure 5.5 I/O Timing of Clock Synchronous Serial I/O with Chip Select (Slave)

Table 5.20 Serial Interface

Symbol	Parameter		Standard		
Symbol	Farameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	=	ns	
tW(CKH)	CLKi input "H" width	100	=	ns	
tW(CKL)	CLKi input "L" width	100	=	ns	
td(C-Q)	TXDi output delay time – 50				
th(C-Q)	TXDi hold time 0 -				
tsu(D-C)	RXDi input setup time 50 -				
th(C-D)	RXDi input hold time 90 -				

i = 0 or 1

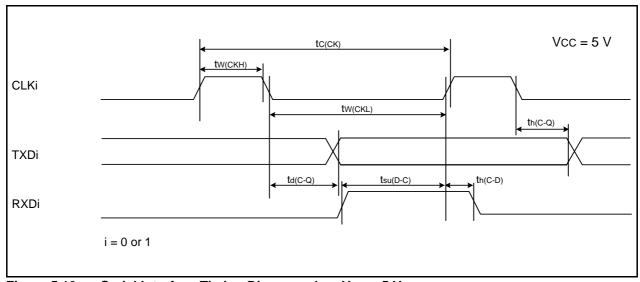
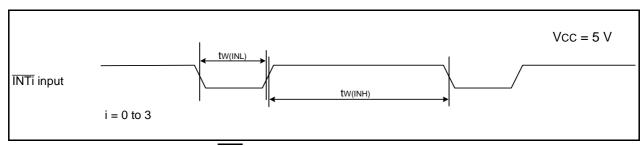



Figure 5.10 Serial Interface Timing Diagram when Vcc = 5 V

External Interrupt INTi (i = 0 to 3) Input **Table 5.21**

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tW(INH)	INTO input "H" width	250 ⁽¹⁾	-	ns	
tW(INL)	INT0 input "L" width 250 ⁽²⁾ –				

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

External Interrupt INTi Input Timing Diagram when Vcc = 5 V Figure 5.11

Electrical Characteristics (3) [Vcc = 3 V] **Table 5.22**

Symbol	Parameter		Condition		Standard			Unit
Syllibol	Faia	imetei	Condition		Min.	Тур.	Max.	Offic
Voн	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	=	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Iон = -5 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	1	Vcc	V
			Drive capacity LOW	Ιοн = -50 μΑ	Vcc - 0.5	ı	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		=	-	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IoL = 5 mA	_	_	0.5	V
			Drive capacity LOW	IoL = 1 mA	=	-	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IOL = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	NT0, NT1, NT2, NT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK1, SSI, SCL, SDA, SSO			0.1	0.3	_	V
		RESET			0.1	0.4	-	V
Іін	Input "H" current		VI = 3 V, Vcc = 3	V	=	_	4.0	μΑ
lıL	Input "L" current		VI = 0 V, Vcc = 3	V	_	_	-4.0	μΑ
RPULLUP	•		VI = 0 V, Vcc = 3	V	66	160	500	kΩ
RfXIN	Feedback resistance	XIN			ı	3.0	-	ΜΩ
RfXCIN	Feedback resistance	XCIN			-	18	-	МΩ
VRAM	RAM hold voltage		During stop mod	e	1.8	_		V

^{1.} Vcc =2.7 to 3.3 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 10 MHz, unless otherwise specified.

Table 5.23 Electrical Characteristics (4) [Vcc = 3 V] (Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter	Condition			Standar		Unit
,				Min.	Тур.	Max.	
Icc	Power supply current (Vcc = 2.7 to 3.3 V) Single-chip mode, output pins are open,	High-speed clock mode	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	_	mA
	other pins are Vss		XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	_	mA
		High-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	5	9	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2	=	mA
		Low-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	130	300	μА
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	-	30	_	μА
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	25	70	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	23	55	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.8	-	μА
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	2.0	-	μА
		Increase during	Without sample & hold	-	0.9	-	mA
		A/D converter operation	With sample & hold	=	0.5	=	mA
		Stop mode	XIN clock off, Topr = 25°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	0.7	3.0	μА
			XIN clock off, Topr = 85°C High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0	_	1.1	-	μА

Timing requirements

(Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.24 XIN Input, XCIN Input

Symbol	Parameter		Standard		
Symbol	Falanielei	Min.	Max.	Unit	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
tWL(XIN)	XIN input "L" width	40	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μS	
twh(xcin)	XCIN input "H" width	-	μS		
twl(xcin)	XCIN input "L" width 7 -				

Figure 5.12 XIN Input and XCIN Input Timing Diagram when Vcc = 3 V

Table 5.25 TRAIO Input

Symbol	Parameter		Standard		
Symbol			Max.	Unit	
tc(TRAIO)	TRAIO input cycle time	300	=	ns	
twh(traio)	TRAIO input "H" width 120 –				
tWL(TRAIO)	TRAIO input "L" width	TRAIO input "L" width 120 -			

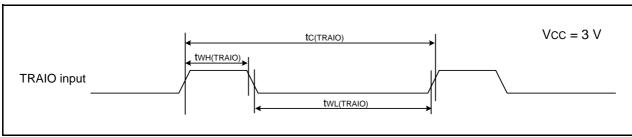


Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

Table 5.26 Serial Interface

Symbol	Parameter		Standard		
Symbol	Farameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	=	ns	
tW(CKH)	CLKi input "H" width	150	=	ns	
tW(CKL)	CLKi Input "L" width	150	=	ns	
td(C-Q)	TXDi output delay time – 80				
th(C-Q)	TXDi hold time 0 -				
tsu(D-C)	RXDi input setup time 70 -				
th(C-D)	RXDi input hold time 90 -				

i = 0 or 1

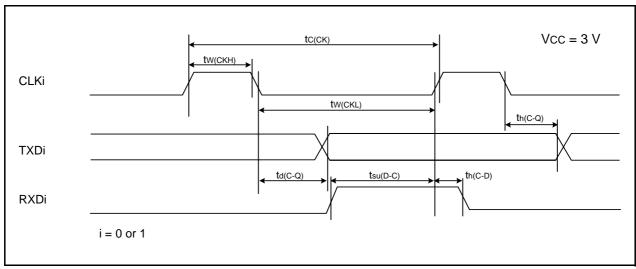


Figure 5.14 Serial Interface Timing Diagram when Vcc = 3 V

Table 5.27 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard		
Symbol	Faianielei	Min.	Max.	Unit	
tW(INH)	INTO input "H" width	380(1)	_	ns	
tW(INL)	NT0 input "L" width 380 ⁽²⁾ –				

- 1. When selecting the digital filter by the $\overline{\text{INTi}}$ input filter select bit, use an $\overline{\text{INTi}}$ input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.
- 2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

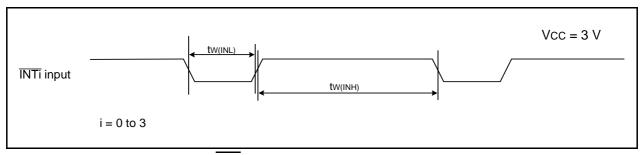


Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Table 5.28 Electrical Characteristics (5) [VCC = 2.2 V]

Cumbal	Doro	Parameter		Condition		Standard		
Symbol	Para	imeter	Condition		Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	=	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Iон = -2 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Iон = -1 mA	Vcc - 0.5	=	Vcc	V
		XOUT	Drive capacity HIGH	Iон = -0.1 mA	Vcc - 0.5	=	Vcc	V
			Drive capacity LOW	IOH = -50 μA	Vcc - 0.5	=	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	IoL = 1 mA		=	=	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IOL = 2 mA	_	_	0.5	V
			Drive capacity LOW	IoL = 1 mA	=	=	0.5	V
		XOUT	Drive capacity HIGH	IOL = 0.1 mA	=	=	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	=	0.5	V
VT+-VT-	Hysteresis	INTO, INT1, INT2, INT3, KIO, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.05	0.3	-	V
		RESET			0.05	0.15	-	V
Іін	Input "H" current		VI = 2.2 V		=	_	4.0	μА
lıL	Input "L" current		VI = 0 V		_	_	-4.0	μА
RPULLUP	Pull-up resistance		VI = 0 V		100	200	600	kΩ
RfXIN	Feedback resistance	XIN			=	5	=	MΩ
RfXCIN	Feedback resistance	XCIN			_	35	_	ΜΩ
VRAM	RAM hold voltage		During stop mod	е	1.8	-	_	V

^{1.} Vcc = 2.2 V at Topr = -20 to $85^{\circ}C$ (N version) / -40 to $85^{\circ}C$ (D version), f(XIN) = 5 MHz, unless otherwise specified.

REVISION HISTORY

R8C/24 Group, R8C/25 Group Datasheet

D :	Data		Description
Rev.	Date	Page	Summary
0.01	Sep 17, 2004	-	First Edition issued
0.02	Dec 10, 2004	All pages	Part Number revised. R8C/26 → R8C/24, R8C/27 → R8C/25
		2, 3	Table 1.1 R8C/24 Group Performance, Table 1.2 R8C/25 Group Performance - Serial Interface: I ² C Bus Interface and Chip-select clock synchronous (SSU) added LIN Module added Interrupt: Internal factors revised; 10 → 11 - Note on Operating Ambient Temperature added.
		4	Figure 1.1 Block Diagram - LIN Module added Chip-select clock synchronous (SSU) is added to I ² C Bus Interface.
		5, 6	Table 1.3 Product Information of R8C/24 Group, Table 1.4 Product Information of R8C/25 Group Date and Development state revised.
		7	Figure 1.4 Pin Assignment P3_5/SCL \rightarrow P3_5/SCL/SSCK, P3_3 \rightarrow P3_3/SSI, P3_4/SDA \rightarrow P3_4/SDA/SCS, P3_7 \rightarrow P3_7/SSO, VSS/AVSS \rightarrow VSS, XIN/P4_6 \rightarrow P4_6/XIN, VCC/AVSS \rightarrow VCC 12pin P1_7/TRAIO/INT1 to 22pin P1_0/KI0/AN8 \rightarrow 20pin P1_7/TRAIO/INT1 to 30pin P1_0/KI0/AN8
		8	Table 1.5 Pin Description - Analog Power Supply Input eliminated SSU added.
		9	Table 1.6 Pin Name Information by Pin Number added.
		15	Table 4.1 SFR Information (1) - 0031h: Voltage Detection Register 1 \rightarrow Voltage Detection \underline{A} Register 1 - 0032h: Voltage Detection Register 1 \rightarrow Voltage Detection \underline{A} Register 2 01000001b \rightarrow 00100001b (Note 4) - 0036h: "(3), 01000001b (4)" eliminated 0038h: Voltage Monitor 0 Control Register (2), VW0C, 00001000b (3), 01000001b (4) added.
		16	Table 4.2 SFR Information (2) - 0048h: Timer RD0 Interrupt Control Register, RD0IC, XXXXX000b added 0049h: Timer RD Interrupt Control Register, RDIC → Timer RD1 Interrupt Control Register, RD1IC - 004Fh: IIC Interrupt Control Register, IIC → IIC/SSU Interrupt Control Register, IIC2IC
		19	Table 4.5 SFR Information (3) - 0106h: LIN Control Register, LINCR, 00h added0107h: LIN Status Register, LINST, 00h added.

Б.	Data	Description	
Rev.	Date	Page	Summary
0.10	Feb 24, 2005	1 to 3 5, 6	Pin type changed: 48-pin(under consideration) → 52-pin.
		5 to 7	Package type revised: 48-pin LQFP(under consideration) → PLQP0052JA-A
		8	Table 1.5 TCLK added, VREF revised.
		9	Table 1.6 revised.
		13, 14	Figures 3.1 and 3.2 part number revised.
		15	Tabel 4.1 revised: - 000Fh: 000XXXXXb → 00011111b - 0023h: FR0 → FRA0 - 0024h: FR1 → FRA1 - 0025h: FR2 → FRA2 - 0031h: Voltage Detection A Register 1, VC1 → Voltage Detection Register 1, VCA1 - 0032h: Voltage Detection A Register 2, VC2 → Voltage Detection Register 2, VCA2
		17	Tabel 4.3 Register name and the value after reset at 00B8h to 00BFh revised; NOTE2 added.
		19	Tabel 4.5 revised: - 0107h: LINSR → LINST - 0137h to 013Fh: Register symbol revised
		20	Tabel 4.6 revised: - 0140h to 015Fh: Register symbol revised - 0158h, 0159h: Timer RD General Register → Timer RD General Register A1
0.20	Mar 8, 2005	2, 3 8	Tables 1.1, 1.2 and 1.5 revised: "main clock" → "XIN clock"; "sub clock" → "XCIN clock"
		15	- 0023h to 0025h: 40MHz On-Chip Oscillator Control Register → High-Speed On-Chip Oscillator Control Register
0.30	Sep 01, 2005	2, 3	Table 1.1 R8C/24 Group Performance, Table 1.2 R8C/25 Group Performance • Serial Interface revised: - Serial Interface: 2 channels Clock synchronous serial I/O, UART - Clock Synchronous Serial Interface: 1 channel I ² C bus Interface(1), Clock synchronous serial I/O with chip select
		4	Figure 1.1 Block Diagram • UART or Clock Synchronous Serial Interface: "(8 bits × 1 channel)" → "(8 bits × 2 channels)" revised • UART (8 bits × 1 channel) deleted
		5, 6	Table 1.3 Product Information of R8C/24 Group, Table 1.4 Product Information of R8C/25 Group "Flash Memory Version" → "N Version" revised

	Data		Description
Rev.	Date	Page	Summary
2.00	Jul 14, 2006	all pages	"PTLG0064JA-A (64F0G)" package added
		1	1. Overview; " or a 64-pin molded-plastic FLGA." added
		2, 3	Table 1.1 Functions and Specifications for R8C/24 Group, Table 1.2 Functions and Specifications for R8C/25 Group; Package: "64-pin molded-plastic FLGA" added
		5	Table 1.3 Product Information for R8C/24 Group, Figure 1.2 Type Number, Memory Size, and Package of R8C/24 Group revised
		6	Table 1.4 Product Information for R8C/25 Group, Figure 1.3 Type Number, Memory Size, and Package of R8C/25 Group revised
		7	Figure 1.4 PLQP0052JA-A Package Pin Assignments (Top View); NOTE3 revised
		8	Figure 1.5 PTLG0064JA-A Package Pin Assignments added
		14	Figure 3.1 Memory Map of R8C/24 Group revised
		15	Figure 3.2 Memory Map of R8C/25 Group revised
		23	Table 5.1 Absolute Maximum Ratings; NOTE1 added
		47	Package Dimensions; "PTLG0064JA-A (64F0G)" added
3.00	Feb 29, 2008	all pages	Y version added
			Factory programming product added
		2, 3	Table 1.1, Table 1.2 Clock; "Real-time clock (timer RE)" added
		5, 7	Table 1.3, Table 1.4 revised
		6, 8	Figure 1.2, Figure 1.3; ROM number "XXX" added
		16, 17	Figure 3.1, Figure 3.2; "Expanded area" deleted
		18	Table 4.1 revised
		26	Table 5.2 NOTE2 revised
		32	Table 5.10; revised, NOTE4 added Table 5.11; Oscillation stability time: Condition "Vcc = 5.0 V, Topr = 25°C" deleted
		38	Table 5.15; Ін, Ік, Rpullup Condition: "Vcc = 5V" added
		39	Table 5.16; Condition: High-speed on-chip oscillator mode revised
		40	Table 5.17 added
		41	Figure 5.8 revised
		43	Table 5.22; IIH, IIL, RPULLUP Condition: "Vcc = 3V" added
		44	Table 5.23; Condition "Increase during A/D converter operation" added
		45	Figure 5.12 revised
		48	Table 5.29; Condition "Increase during A/D converter operation" added
		49	Figure 5.16 revised

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the such procedure in the procedure of the description of the such and the procedure of the description of the such and the procedure of the description of the description of the such as the such and the procedure of the description of the such as the such and the procedure of the such and

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510