

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	24KB (24K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21255snfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

RENESAS

R8C/24 Group, R8C/25 Group SINGLE-CHIP 16-BIT CMOS MCU

1. Overview

These MCUs are fabricated using a high-performance silicon gate CMOS process, embedding the R8C/Tiny Series CPU core, and are packaged in a 52-pin molded-plastic LQFP or a 64-pin molded-plastic FLGA. It implements sophisticated instructions for a high level of instruction efficiency. With 1 Mbyte of address space, they are capable of executing instructions at high speed.

Furthermore, the R8C/25 Group has on-chip data flash (1 KB x 2 blocks).

The difference between the R8C/24 Group and R8C/25 Group is only the presence or absence of data flash. Their peripheral functions are the same.

1.1 Applications

Electronic household appliances, office equipment, audio equipment, consumer products, etc.

1.2 **Performance Overview**

Table 1.1 outlines the Functions and Specifications for R8C/24 Group and Table 1.2 outlines the Functions and Specifications for R8C/25 Group.

	Item		Specification		
CPU	instruction		89 instructions		
	Minimum in time	struction execution	50 ns (f(XIN) = 20 MHz, VCC = 3.0 to 5.5 V) 100 ns (f(XIN) = 10 MHz, VCC = 2.7 to 5.5 V) 200 ns (f(XIN) = 5 MHz, VCC = 2.2 to 5.5 V)		
	Operating	mode	Single-chip		
	Address s	pace	1 Mbyte		
	Memory ca	apacity	Refer to Table 1.3 Product Information for R8C/24 Group		
Peripheral	Ports		I/O ports: 41 pins, Input port: 3 pins		
Functions	LED drive	ports	I/O ports: 8 pins		
	Timers		Timer RA: 8 bits × 1 channel Timer RB: 8 bits × 1 channel (Each timer equipped with 8-bit prescaler) Timer RD: 16 bits × 2 channels (Input capture and output compare circuits)		
	Serial interfaces		Timer RE: With real-time clock and compare match function 2 channels (UART0, UART1) Clock synchronous serial I/O, UART		
	Clock synchronous serial interface		1 channel I ² C bus Interface ⁽¹⁾ Clock synchronous serial I/O with chip select		
	LIN modul	е	Hardware LIN: 1 channel (timer RA, UART0)		
	A/D conve	rter	10-bit A/D converter: 1 circuit, 12 channels		
	Watchdog timer		15 bits x 1 channel (with prescaler) Reset start selectable		
	Interrupts		Internal: 11 sources, External: 5 sources, Software: 4 sources, Priority levels: 7 levels		
	Clock	Clock generation circuits	 3 circuits XIN clock generation circuit (with on-chip feedback resistor) On-chip oscillator (high speed, low speed) High-speed on-chip oscillator has a frequency adjustment function XCIN clock generation circuit (32 kHz) 		
			Real-time clock (timer RE)		
	Oscillation	stop detection function	XIN clock oscillation stop detection function		
		tection circuit	On-chip		
		reset circuit	On-chip		
Electrical Characteristics	Supply voltage		VCC = 3.0 to 5.5 V (f(XIN) = 20 MHz) VCC = 2.7 to 5.5 V (f(XIN) = 10 MHz) VCC = 2.2 to 5.5 V (f(XIN) = 5 MHz)		
	Current consumption		Typ. 10 mA (VCC = 5.0 V, f(XIN) = 20 MHz) Typ. 6 mA (VCC = 3.0 V, f(XIN) = 10 MHz) Typ. 2.0 μ A (VCC = 3.0 V, wait mode (f(XCIN) = 32 kHz) Typ. 0.7 μ A (VCC = 3.0 V, stop mode)		
Flash Memory		ng and erasure voltage	VCC = 2.7 to 5.5 V		
	,	g and erasure endurance	100 times		
Operating Ambi	ent Temper	ature	-20 to 85°C (N version)		
			-40 to 85°C (D version) ⁽²⁾		
			-20 to 105°C (Y version) ⁽³⁾		
Package			52-pin molded-plastic LQFP		
			64-pin molded-plastic FLGA		

Functions and Specifications for R8C/24 Group Table 1.1

NOTES:

I²C bus is a trademark of Koninklijke Philips Electronics N. V.
 Specify the D version if D version functions are to be used.
 Please contact Renesas Technology sales offices for the Y version.

1.6 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5Pin Functions

Туре	Symbol	I/O Type	Description			
Power supply input	VCC, VSS	I	Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.			
Analog power	AVCC, AVSS	I	Power supply for the A/D converter.			
supply input			Connect a capacitor between AVCC and AVSS.			
Reset input	RESET	I	Input "L" on this pin resets the MCU.			
MODE	MODE	I	Connect this pin to VCC via a resistor.			
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between			
XIN clock output	XOUT	0	the XIN and XOUT pins. To use an external clock, input it to the XIN pin and leave the XOUT pin open.			
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT			
XCIN clock output	XCOUT	0	pins. To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.			
INT interrupt input	INT0 to INT3	I	INT interrupt input pins. INT0 is timer RD input pin. INT1 is timer RA input pin.			
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins			
Timer RA	TRAIO	I/O	Timer RA I/O pin			
	TRAO	0	Timer RA output pin			
Timer RB	TRBO	0	Timer RB output pin			
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O ports			
	TRDCLK	I	External clock input pin			
Timer RE	TREO	0	Divided clock output pin			
Serial interface	CLK0, CLK1	I/O	Transfer clock I/O pin			
	RXD0, RXD1	I	Serial data input pins			
	TXD0, TXD1	0	Serial data output pins			
I ² C bus interface	SCL	I/O	Clock I/O pin			
	SDA	I/O	Data I/O pin			
Clock synchronous	SSI	I/O	Data I/O pin			
serial I/O with chip	SCS	I/O	Chip-select signal I/O pin			
select	SSCK	I/O	Clock I/O pin			
	SSO	I/O	Data I/O pin			
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter			
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter			
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P2_0 to P2_7 also function as LED drive ports.			
Input port	P4_2, P4_6, P4_7	I	Input-only ports			
: Input O: Outp						

I: Input O: Output I/O: Input and output

2. Central Processing Unit (CPU)

Figure 2.1 shows the CPU Registers. The CPU contains 13 registers. R0, R1, R2, R3, A0, A1, and FB configure a register bank. There are two sets of register bank.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3.2 R8C/25 Group

Figure 3.2 is a Memory Map of R8C/25 Group. The R8C/25 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 2-Kbyte internal RAM is allocated addresses 00400h to 00BFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

Figure 3.2 Memory Map of R8C/25 Group

Special Function Registers (SFRs) 4.

An SFR (special function register) is a control register for a peripheral function. Tables 4.1 to 4.7 list the special function registers.

Address	Register	Symbol	After reset
0000h			
0001h			
0002h			
0003h			
0004h	Processor Mode Register 0	PM0	00h
0005h	Processor Mode Register 1	PM1	00h
0006h	System Clock Control Register 0	CM0	01101000b
0007h	System Clock Control Register 1	CM1	0010000b
0008h			
0009h			
000Ah	Protect Register	PRCR	00h
000Bh			
000Ch	Oscillation Stop Detection Register	OCD	00000100b
000Dh	Watchdog Timer Reset Register	WDTR	XXh
000Eh	Watchdog Timer Start Register	WDTS	XXh
000Fh	Watchdog Timer Control Register	WDC	00X11111b
0010h	Address Match Interrupt Register 0	RMAD0	00h
0011h	1		00h
0012h			00h
0013h	Address Match Interrupt Enable Register	AIER	00h
0014h	Address Match Interrupt Register 1	RMAD1	00h
0015h	1		00h
0016h	1		00h
0017h			
0018h			
0019h			
001Ah			
001Bh			
001Ch	Count Source Protection Mode Register	CSPR	00h 10000000b ⁽⁶⁾
001Dh			
001Eh			
001Fh			
0020h			
0021h			
0022h			
0023h	High-Speed On-Chip Oscillator Control Register 0	FRA0	00h
0024h	High-Speed On-Chip Oscillator Control Register 1	FRA1	When shipping
0025h	High-Speed On-Chip Oscillator Control Register 2	FRA2	00h
0026h			
0027h			
0028h	Clock Prescaler Reset Flag	CPSRF	00h
0029h	High-Speed On-Chip Oscillator Control Register 4	FRA4	When shipping
002Ah	<u> </u>		·····ə
002Bh	High-Speed On-Chip Oscillator Control Register 6	FRA6	When shipping
002Ch	High-Speed On-Chip Oscillator Control Register 7	FRA7	When shipping
0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 1 ⁽²⁾	VCA2	00h ⁽³⁾
003211		V UNZ	0010000b ⁽⁴⁾

SFR Information (1)⁽¹⁾ Table 4.1

0030h			
0031h	Voltage Detection Register 1 ⁽²⁾	VCA1	00001000b
0032h	Voltage Detection Register 2 ⁽²⁾	VCA2	00h ⁽³⁾ 00100000b ⁽⁴⁾
0033h			
0034h			
0035h			
0036h	Voltage Monitor 1 Circuit Control Register ⁽⁵⁾	VW1C	00001000b
0037h	Voltage Monitor 2 Circuit Control Register ⁽⁵⁾	VW2C	00h
0038h	Voltage Monitor 0 Circuit Control Register ⁽²⁾	VW0C	0000X000b ⁽³⁾ 0100X001b ⁽⁴⁾
0039h			
003Ah			

003Eh 003Fh

X: Undefined

NOTES:

The blank regions are reserved. Do not access locations in these regions. 1.

Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect this register. The LVD0ON bit in the OFS register is set to 1 and hardware reset. Power-on reset, voltage monitor 0 reset or the LVD0ON bit in the OFS register is set to 0, and hardware reset.

1. 2. 3. 4.

Software reset, watchdog timer reset, and voltage monitor 1 reset or voltage monitor 2 reset do not affect b2 and b3. The CSPROINI bit in the OFS register is set to 0. 5.

6.

Address	Register	Symbol	After reset
0140h	Timer RD Control Register 0	TRDCR0	00h
0141h	Timer RD I/O Control Register A0	TRDIORA0	10001000b
0142h	Timer RD I/O Control Register C0	TRDIORC0	10001000b
0143h	Timer RD Status Register 0	TRDSR0	11100000b
0144h	Timer RD Interrupt Enable Register 0	TRDIER0	11100000b
0145h	Timer RD PWM Mode Output Level Control Register 0	TRDPOCR0	11111000b
0146h	Timer RD Counter 0	TRD0	00h
0147h			00h
0148h	Timer RD General Register A0	TRDGRA0	FFh
0149h			FFh
014Ah	Timer RD General Register B0	TRDGRB0	FFh
014Bh			FFh
014Ch	Timer RD General Register C0	TRDGRC0	FFh
014Dh			FFh
014Eh	Timer RD General Register D0	TRDGRD0	FFh
014Fh			FFh
0150h	Timer RD Control Register 1	TRDCR1	00h
0151h	Timer RD I/O Control Register A1	TRDIORA1	10001000b
0152h	Timer RD I/O Control Register C1	TRDIORC1	10001000b
0153h	Timer RD Status Register 1	TRDSR1	1100000b
0154h	Timer RD Interrupt Enable Register 1	TRDIER1	11100000b
0155h	Timer RD PWM Mode Output Level Control Register 1	TRDPOCR1	11111000b
0156h	Timer RD Counter 1	TRD1	00h
0157h	Time DD Connect Desister M	TDDODA	00h FFh
0158h	Timer RD General Register A1	TRDGRA1	
0159h 015Ah	Timer DD Ceneral Degister D4	TRDGRB1	FFh FFh
015An 015Bh	Timer RD General Register B1	IRDGRBI	FFh
015Ch	Timer RD General Register C1	TRDGRC1	FFh
015Dh		INDGRUI	FFh
015Eh	Timer RD General Register D1	TRDGRD1	FFh
015Fh		INDONDI	FFh
0160h			
0161h			
0162h			
0163h			
0164h			
0165h			
0166h			
0167h			
0168h			
0169h			
016Ah			
016Bh			
016Ch			
016Dh			
016Eh			
016Fh			
0170h			
0171h			
0172h			
0173h			ļ
0174h			
0175h			
0176h			
0177h		+	
0178h 0179h			
0179h 017Ah			
017An 017Bh			
017Bh 017Ch			
017Ch			
017Dh 017Eh		+	
017En		+	
01/111			

SFR Information (6)⁽¹⁾ Table 4.6

X: Undefined NOTE: 1. The blank regions are reserved. Do not access locations in these regions.

Figure 5.2 Time delay until Suspend

Table 5.6 Voltage Detection 0 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Falameter	Condition	Min.	Тур.	Max.	Offic
Vdet0	Voltage detection level		2.2	2.3	2.4	V
-	Voltage detection circuit self power consumption	VCA25 = 1, Vcc = 5.0 V	-	0.9	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽²⁾		-	-	300	μS
Vccmin	MCU operating voltage minimum value		2.2	-	-	V

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA25 bit in the VCA2 register to 0.

Table 5.7 Voltage Detection 1 Circuit Electrical Characteristics

Symbol	Parameter	Condition		Unit		
Symbol	Farameter	Condition		Тур.	Max.	Unit
Vdet1	Voltage detection level		2.70	2.85	3.00	V
-	Voltage monitor 1 interrupt request generation time ⁽²⁾		-	40		μS
-	Voltage detection circuit self power consumption	VCA26 = 1, Vcc = 5.0 V	_	0.6	-	μΑ
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

- 1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).
- 2. Time until the voltage monitor 1 interrupt request is generated after the voltage passes Vdet1.
- 3. Necessary time until the voltage detection circuit operates when setting to 1 again after setting the VCA26 bit in the VCA2 register to 0.

Table 5.8 Voltage Detection 2 Circuit Electrical Characteristics

Symbol	Parameter	Condition	Standard			Unit
Symbol	Farameter	Condition		Тур.	Max.	Unit
Vdet2	Voltage detection level		3.3	3.6	3.9	V
-	Voltage monitor 2 interrupt request generation time ⁽²⁾		-	40	-	μS
-	Voltage detection circuit self power consumption	VCA27 = 1, Vcc = 5.0 V	_	0.6	-	μA
td(E-A)	Waiting time until voltage detection circuit operation starts ⁽³⁾		-	-	100	μS

NOTES:

1. The measurement condition is Vcc = 2.2 to 5.5 V and T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version).

2. Time until the voltage monitor 2 interrupt request is generated after the voltage passes Vdet2.

3. Necessary time until the voltage detection circuit operates after setting to 1 again after setting the VCA27 bit in the VCA2 register to 0.

Symbol	Parameter		Conditions		Stand	ard	Unit
Symbol			Conditions	Min.	Тур.	Max.	
tsucyc	SSCK clock cycle time			4	_	-	tCYC ⁽²⁾
tнı	SSCK clock "H" width	SSCK clock "H" width		0.4	I	0.6	tsucyc
tlo	SSCK clock "L" width			0.4	-	0.6	tsucyc
trise	SSCK clock rising	Master		-	-	1	tCYC ⁽²⁾
time	time	Slave		-	-	1	μs
t FALL	SSCK clock falling	Master		-	-	1	tCYC ⁽²⁾
	time	Slave		-	I	1	μs
ts∪	SSO, SSI data input setup time			100	-	-	ns
tн	SSO, SSI data input hold time			1	-	-	tCYC ⁽²⁾
tlead	SCS setup time	Slave		1tcyc + 50	-	_	ns
tlag	SCS hold time	Slave		1tcyc + 50	_	_	ns
top	SSO, SSI data output delay time			-	-	1	tCYC ⁽²⁾
tsa	SSI slave access time	;	$2.7 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	_	Ī	1.5tcyc + 100	ns
				-	_	1.5tcyc + 200	ns
tOR	SSI slave out open tin	ne	$2.7~V \leq Vcc \leq 5.5~V$	-	_	1.5tcyc + 100	ns
			$2.2 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	-	_	1.5tcyc + 200	ns

Table 5.13 Timing Requirements of Clock Synchronous Serial I/O with Chip Select⁽¹⁾

NOTES:

1. Vcc = 2.2 to 5.5 V, Vss = 0 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. $1t_{CYC} = 1/f1(s)$

Unit

ns ns ns

ns

ns ns ns

ns

ns

ns

ns

_

_

Symbol	Parameter	Condition	Standard					
Symbol	Falametei	Condition	Min.	Тур.	Max.			
tSCL	SCL input cycle time		12tcyc + 600 ⁽²⁾	-	-			
t SCLH	SCL input "H" width		3tcyc + 300 ⁽²⁾	-	-			
tSCLL	SCL input "L" width		5tcyc + 500 ⁽²⁾	-	-			
tsf	SCL, SDA input fall time		-	-	300			
tSP	SCL, SDA input spike pulse rejection time		-	-	1tcyc ⁽²⁾			
t BUF	SDA input bus-free time		5tcyc ⁽²⁾	-	-			
t STAH	Start condition input hold time		3tcyc ⁽²⁾	-	-			

Table 5.14	Timing Requirements of I ² C bus Interface ⁽¹⁾
------------	--

Retransmit start condition input setup time

Stop condition input setup time

Data input setup time

Data input hold time

tSDAH NOTES:

tSTAS

tSTOP

tSDAS

1. Vcc = 2.2 to 5.5 V, Vss = 0 V and Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

3tcyc(2)

3tcyc⁽²⁾

1tcyc + 20⁽²⁾

0

_

_

2. 1tcyc = 1/f1(s)

Table 5.16Electrical Characteristics (2) [Vcc = 5 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Deremeter	Parameter Condition	Condition	Standard			Unit
	Farameter	Condition	Min.	Тур.	Max.	Unit	
Icc	Power supply current (Vcc = 3.3 to 5.5 V) Single-chip mode,	High-speed clock mode	XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	10	17	mA
	output pins are open, other pins are Vss		XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	-	9	15	mA
	XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	6	-	mA		
			XIN = 20 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	5	-	mA
			XIN = 16 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	4	-	mA
			XIN = 10 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	2.5	-	mA
	High-speed on-chip oscillator modeXIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz No divisionXIN clock off High-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on fOCO = 20 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz No division	_	10	15	mA		
		_	4	_	mA		
		_	5.5	10	mA		
			XIN clock off High-speed on-chip oscillator on fOCO = 10 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	2.5	_	mA
	Low-speed on-chip oscillator modeXIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	_	130	300	μΑ		
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	_	130	300	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	30	_	μA

Symbol	Parameter		Standard		
Symbol	Faianelei	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	200	-	ns	
tw(CKH)	CLKi input "H" width	100	-	ns	
tW(CKL)	CLKi input "L" width	100	-	ns	
td(C-Q)	TXDi output delay time	-	50	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	50	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.21 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTO input "H" width	250 ⁽¹⁾	-	ns	
tw(INL)	INTO input "L" width		-	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.11 External Interrupt INTi Input Timing Diagram when Vcc = 5 V

Symbol	Parameter		Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.27 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter		Standard		
			Max.	Unit	
tw(INH)	INTO input "H" width		-	ns	
tw(INL)	INTO input "L" width	380(2)	1	ns	

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Symbol	Parameter		Condition		S	tandard		Unit
Symbol					Min.	Тур.	Max.	Unit
Vон	Output "H" voltage	Except P2_0 to P2_7, XOUT	Iон = -1 mA		Vcc - 0.5	_	Vcc	V
		P2_0 to P2_7	Drive capacity HIGH	Іон = -2 mA	Vcc - 0.5	_	Vcc	V
			Drive capacity LOW	Іон = -1 mA	Vcc - 0.5	-	Vcc	V
		XOUT	Drive capacity HIGH	Іон = -0.1 mA	Vcc - 0.5	-	Vcc	V
			Drive capacity LOW	Іон = -50 μА	Vcc - 0.5	-	Vcc	V
Vol	Output "L" voltage	Except P2_0 to P2_7, XOUT	Iol = 1 mA		-	-	0.5	V
		P2_0 to P2_7	Drive capacity HIGH	IoL = 2 mA	_	_	0.5	V
			Drive capacity LOW	IoL = 1 mA	-	-	0.5	V
		XOUT	Drive capacity HIGH	lo∟ = 0.1 mA	-	-	0.5	V
			Drive capacity LOW	IoL = 50 μA	-	-	0.5	V
VT+-VT-	Hysteresis	INT0, INT1, INT2, INT3, KI0, KI1, KI2, KI3, TRAIO, RXD0, RXD1, CLK0, CLK1, SSI, SCL, SDA, SSO			0.05	0.3	_	V
		RESET			0.05	0.15	-	V
Ін	Input "H" current		VI = 2.2 V		-	_	4.0	μA
lı∟	Input "L" current		VI = 0 V		-	-	-4.0	μA
Rpullup	Pull-up resistance		VI = 0 V		100	200	600	kΩ
Rfxin	Feedback resistance	XIN			-	5	-	MΩ
Rfxcin	Feedback resistance	XCIN			-	35	-	MΩ
Vram	RAM hold voltage	During stop mode		e	1.8	-	-	V

Table 5.28	Electrical Characteristics (5) [Vcc = 2.2 V]

NOTE:

1. Vcc = 2.2 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), f(XIN) = 5 MHz, unless otherwise specified.

Table 5.29Electrical Characteristics (6) [Vcc = 2.2 V]
(Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.)

Symbol	Parameter		Condition	5	Standar	d	Unit
Symbol	Falametei		Condition	Min.	Тур.	Max.	Unit
Icc	Power supply current (Vcc = 2.2 to 2.7 V) Single-chip mode, output pins are open.	High-speed clock mode	XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz No division	_	3.5	_	mA
	other pins are Vss		XIN = 5 MHz (square wave) High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8	_	1.5	_	mA
		High-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz No division	-	3.5	-	mA
			XIN clock off High-speed on-chip oscillator on fOCO = 5 MHz Low-speed on-chip oscillator on = 125 kHz Divide-by-8	-	1.5	_	mA
		Low-speed on- chip oscillator mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz Divide-by-8, FMR47 = 1	-	100	230	μA
		Low-speed clock mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz FMR47 = 1	-	100	230	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz Program operation on RAM Flash memory off, FMSTP = 1	_	25	_	μA
		Wait mode	XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock operation VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	22	60	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator on = 125 kHz While a WAIT instruction is executed Peripheral clock off VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	20	55	μΑ
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (high drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	_	3.0	_	μA
			XIN clock off High-speed on-chip oscillator off Low-speed on-chip oscillator off XCIN clock oscillator on = 32 kHz (low drive) While a WAIT instruction is executed VCA27 = VCA26 = VCA25 = 0 VCA20 = 1	-	1.8	_	μA
		Increase during	Without sample & hold	-	0.4	-	mA
		A/D converter operation	With sample & hold	-	0.3	-	mA
		Stop mode	XIN clock off, $T_{opr} = 25^{\circ}C$ High-speed on-chip oscillator off Low-speed on-chip oscillator off CM10 = 1 Peripheral clock off VCA27 = VCA26 = VCA25 = 0		0.7	3.0	μΑ
			VCA27 = VCA25 = VCA25 = 0XIN clock off, $T_{opr} = 85^{\circ}C$ High-speed on-chip oscillator offLow-speed on-chip oscillator offCM10 = 1Peripheral clock offVCA27 = VCA26 = VCA25 = 0	_	1.1	_	μΑ

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as a such as the development of the purpose of any there military use. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compling the information in this document, but Renesas assumes no liability whatsoever for any damages incurred as a set experiment on the data discover the purpose of any damages incurred as a disclosed by Renesas state and applications, and proceedures required by the data disclosed through or representations. Were applicable sport on the steed on the data disclosed through the data disclosed through Renesas as subtaints of motion in the document.
 Renesas hall have the data disclosed through Renesas as subtaints of motion and the data disclosed to the reseas of the transmation in the document.
 Weren using or otherwise relying

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com