

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2000	
Product Status	Obsolete
Core Processor	R8C
Core Size	16-Bit
Speed	20MHz
Connectivity	I ² C, LINbus, SIO, SSU, UART/USART
Peripherals	POR, Voltage Detect, WDT
Number of I/O	41
Program Memory Size	48KB (48K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	2.5K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-20°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	52-LQFP
Supplier Device Package	52-LQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/renesas-electronics-america/r5f21257syfp-v2

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Notice

- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics shall not be in any way liable for any damages or losses incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

Current of Feb. 2008

1.4 **Product Information**

Table 1.3 lists the Product Information for R8C/24 Group and Table 1.4 lists the Product Information for R8C/25 Group.

Type No.	ROM Capacity	RAM Capacity	Package Type	Remarks
R5F21244SNFP	16 Kbytes	1 Kbyte	PLQP0052JA-A	N version
R5F21245SNFP	24 Kbytes	2 Kbytes	PLQP0052JA-A	Blank product
R5F21246SNFP	32 Kbytes	2 Kbytes	PLQP0052JA-A	
R5F21247SNFP	48 Kbytes	2.5 Kbytes	PLQP0052JA-A	
R5F21248SNFP	64 Kbytes	3 Kbytes	PLQP0052JA-A	
R5F21244SNLG	16 Kbytes	1 Kbyte	PTLG0064JA-A	
R5F21246SNLG	32 Kbytes	2 Kbytes	PTLG0064JA-A	
R5F21244SDFP	16 Kbytes	1 Kbyte	PLQP0052JA-A	D version
R5F21245SDFP	24 Kbytes	2 Kbytes	PLQP0052JA-A	Blank product
R5F21246SDFP	32 Kbytes	2 Kbytes	PLQP0052JA-A	
R5F21247SDFP	48 Kbytes	2.5 Kbytes	PLQP0052JA-A	
R5F21248SDFP	64 Kbytes	3 Kbytes	PLQP0052JA-A	
R5F21244SNXXXFP	16 Kbytes	1 Kbyte	PLQP0052JA-A	N version
R5F21245SNXXXFP	24 Kbytes	2 Kbytes	PLQP0052JA-A	Factory
R5F21246SNXXXFP	32 Kbytes	2 Kbytes	PLQP0052JA-A	programming
R5F21247SNXXXFP	48 Kbytes	2.5 Kbytes	PLQP0052JA-A	product ⁽¹⁾
R5F21248SNXXXFP	64 Kbytes	3 Kbytes	PLQP0052JA-A	
R5F21244SNXXXLG	16 Kbytes	1 Kbyte	PTLG0064JA-A	
R5F21246SNXXXLG	32 Kbytes	2 Kbytes	PTLG0064JA-A	
R5F21244SDXXXFP	16 Kbytes	1 Kbyte	PLQP0052JA-A	D version
R5F21245SDXXXFP	24 Kbytes	2 Kbytes	PLQP0052JA-A	Factory
R5F21246SDXXXFP	32 Kbytes	2 Kbytes	PLQP0052JA-A	programming
R5F21247SDXXXFP	48 Kbytes	2.5 Kbytes	PLQP0052JA-A	product ⁽¹⁾
R5F21248SDXXXFP	64 Kbytes	3 Kbytes	PLQP0052JA-A	

Table 1.3 Product Information for R8C/24 Group

NOTE:

1. The user ROM is programmed before shipment.

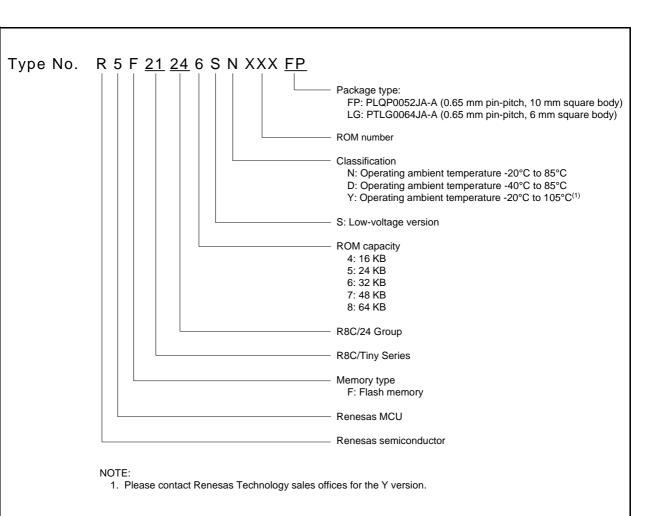


Figure 1.2 Type Number, Memory Size, and Package of R8C/24 Group

Type No.	ROM C	apacity	RAM	Package Type	Remarks
Type No.	Program ROM	Data flash	Capacity	Fackage Type	Remarks
R5F21254SNFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	N version
R5F21255SNFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Blank product
R5F21256SNFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	
R5F21257SNFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	
R5F21258SNFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	
R5F21254SNLG	16 Kbytes	1 Kbyte x 2	1 Kbyte	PTLG0064JA-A	
R5F21256SNLG	32 Kbytes	1 Kbyte x 2	2 Kbytes	PTLG0064JA-A	
R5F21254SDFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	D version
R5F21255SDFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Blank product
R5F21256SDFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	
R5F21257SDFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	
R5F21258SDFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	
R5F21254SNXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	N version
R5F21255SNXXXFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Factory
R5F21256SNXXXFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	programming
R5F21257SNXXXFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	product ⁽¹⁾
R5F21258SNXXXFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	
R5F21254SNXXXLG	16 Kbytes	1 Kbyte x 2	1 Kbyte	PTLG0064JA-A	
R5F21256SNXXXLG	32 Kbytes	1 Kbyte x 2	2 Kbytes	PTLG0064JA-A	
R5F21254SDXXXFP	16 Kbytes	1 Kbyte x 2	1 Kbyte	PLQP0052JA-A	D version
R5F21255SDXXXFP	24 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	Factory
R5F21256SDXXXFP	32 Kbytes	1 Kbyte x 2	2 Kbytes	PLQP0052JA-A	programming
R5F21257SDXXXFP	48 Kbytes	1 Kbyte x 2	2.5 Kbytes	PLQP0052JA-A	product ⁽¹⁾
R5F21258SDXXXFP	64 Kbytes	1 Kbyte x 2	3 Kbytes	PLQP0052JA-A	1

Table 1.4 Product Information for R8C/25 Group

Current of Feb. 2008

NOTE:

1. The user ROM is programmed before shipment.

RENESAS

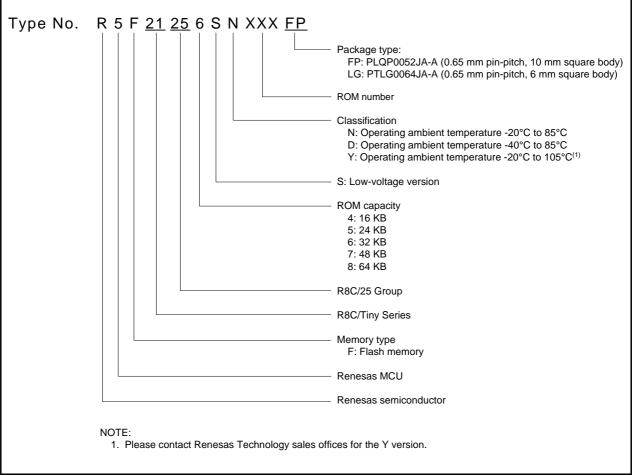


Figure 1.3 Type Number, Memory Size, and Package of R8C/25 Group

1.5 Pin Assignments

Figure 1.4 shows PLQP0052JA-A Package Pin Assignments (Top View). Figure 1.5 shows PTLG0064JA-A Package Pin Assignments.

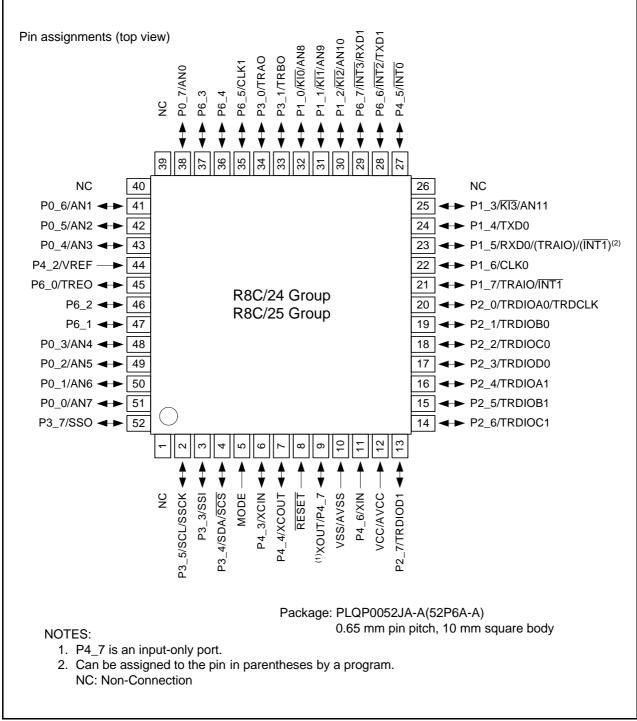


Figure 1.4 PLQP0052JA-A Package Pin Assignments (Top View)

1.6 Pin Functions

Table 1.5 lists Pin Functions.

Table 1.5Pin Functions

Туре	Symbol	I/O Type	Description
Power supply input	VCC, VSS	I	Apply 2.2 V to 5.5 V to the VCC pin. Apply 0 V to the VSS pin.
Analog power	AVCC, AVSS	I	Power supply for the A/D converter.
supply input			Connect a capacitor between AVCC and AVSS.
Reset input	RESET	I	Input "L" on this pin resets the MCU.
MODE	MODE	I	Connect this pin to VCC via a resistor.
XIN clock input	XIN	I	These pins are provided for XIN clock generation circuit I/O. Connect a ceramic resonator or a crystal oscillator between
XIN clock output	XOUT	0	the XIN and XOUT pins. To use an external clock, input it to the XIN pin and leave the XOUT pin open.
XCIN clock input	XCIN	I	These pins are provided for XCIN clock generation circuit I/O. Connect a crystal oscillator between the XCIN and XCOUT
XCIN clock output	XCOUT	0	pins. To use an external clock, input it to the XCIN pin and leave the XCOUT pin open.
INT interrupt input	INT0 to INT3	I	INT interrupt input pins. INT0 is timer RD input pin. INT1 is timer RA input pin.
Key input interrupt	KI0 to KI3	I	Key input interrupt input pins
Timer RA	TRAIO	I/O	Timer RA I/O pin
	TRAO	0	Timer RA output pin
Timer RB	TRBO	0	Timer RB output pin
Timer RD	TRDIOA0, TRDIOA1, TRDIOB0, TRDIOB1, TRDIOC0, TRDIOC1, TRDIOD0, TRDIOD1	I/O	Timer RD I/O ports
	TRDCLK	I	External clock input pin
Timer RE	TREO	0	Divided clock output pin
Serial interface	CLK0, CLK1	I/O	Transfer clock I/O pin
	RXD0, RXD1	I	Serial data input pins
	TXD0, TXD1	0	Serial data output pins
I ² C bus interface	SCL	I/O	Clock I/O pin
	SDA	I/O	Data I/O pin
Clock synchronous	SSI	I/O	Data I/O pin
serial I/O with chip	SCS	I/O	Chip-select signal I/O pin
select	SSCK	I/O	Clock I/O pin
	SSO	I/O	Data I/O pin
Reference voltage input	VREF	I	Reference voltage input pin to A/D converter
A/D converter	AN0 to AN11	I	Analog input pins to A/D converter
I/O port	P0_0 to P0_7, P1_0 to P1_7, P2_0 to P2_7, P3_0, P3_1, P3_3 to P3_5, P3_7, P4_3 to P4_5, P6_0 to P6_7	I/O	CMOS I/O ports. Each port has an I/O select direction register, allowing each pin in the port to be directed for input or output individually. Any port set to input can be set to use a pull-up resistor or not by a program. P2_0 to P2_7 also function as LED drive ports.
Input port	P4_2, P4_6, P4_7	I	Input-only ports
: Input O: Outp			

I: Input O: Output I/O: Input and output

2.1 Data Registers (R0, R1, R2, and R3)

R0 is a 16-bit register for transfer, arithmetic, and logic operations. The same applies to R1 to R3. R0 can be split into high-order bits (R0H) and low-order bits (R0L) to be used separately as 8-bit data registers. R1H and R1L are analogous to R0H and R0L. R2 can be combined with R0 and used as a 32-bit data register (R2R0). R3R1 is analogous to R2R0.

2.2 Address Registers (A0 and A1)

A0 is a 16-bit register for address register indirect addressing and address register relative addressing. It is also used for transfer, arithmetic, and logic operations. A1 is analogous to A0. A1 can be combined with A0 and as a 32-bit address register (A1A0).

2.3 Frame Base Register (FB)

FB is a 16-bit register for FB relative addressing.

2.4 Interrupt Table Register (INTB)

INTB is a 20-bit register that indicates the start address of an interrupt vector table.

2.5 Program Counter (PC)

PC is 20 bits wide and indicates the address of the next instruction to be executed.

2.6 User Stack Pointer (USP) and Interrupt Stack Pointer (ISP)

The stack pointers (SP), USP, and ISP, are each 16 bits wide. The U flag of FLG is used to switch between USP and ISP.

2.7 Static Base Register (SB)

SB is a 16-bit register for SB relative addressing.

2.8 Flag Register (FLG)

FLG is an 11-bit register indicating the CPU state.

2.8.1 Carry Flag (C)

The C flag retains carry, borrow, or shift-out bits that have been generated by the arithmetic and logic unit.

2.8.2 Debug Flag (D)

The D flag is for debugging only. Set it to 0.

2.8.3 Zero Flag (Z)

The Z flag is set to 1 when an arithmetic operation results in 0; otherwise to 0.

2.8.4 Sign Flag (S)

The S flag is set to 1 when an arithmetic operation results in a negative value; otherwise to 0.

2.8.5 Register Bank Select Flag (B)

Register bank 0 is selected when the B flag is 0. Register bank 1 is selected when this flag is set to 1.

2.8.6 Overflow Flag (O)

The O flag is set to 1 when an operation results in an overflow; otherwise to 0.

2.8.7 Interrupt Enable Flag (I)

The I flag enables maskable interrupts.

Interrupt are disabled when the I flag is set to 0, and are enabled when the I flag is set to 1. The I flag is set to 0 when an interrupt request is acknowledged.

2.8.8 Stack Pointer Select Flag (U)

ISP is selected when the U flag is set to 0; USP is selected when the U flag is set to 1. The U flag is set to 0 when a hardware interrupt request is acknowledged or the INT instruction of software interrupt numbers 0 to 31 is executed.

2.8.9 Processor Interrupt Priority Level (IPL)

IPL is 3 bits wide and assigns processor interrupt priority levels from level 0 to level 7. If a requested interrupt has higher priority than IPL, the interrupt is enabled.

2.8.10 Reserved Bit

If necessary, set to 0. When read, the content is undefined.

3. Memory

3.1 R8C/24 Group

Figure 3.1 is a Memory Map of R8C/24 Group. The R8C/24 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal RAM is allocated higher addresses, beginning with address 00400h. For example, a 2-Kbyte internal RAM area is allocated addresses 00400h to 00BFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

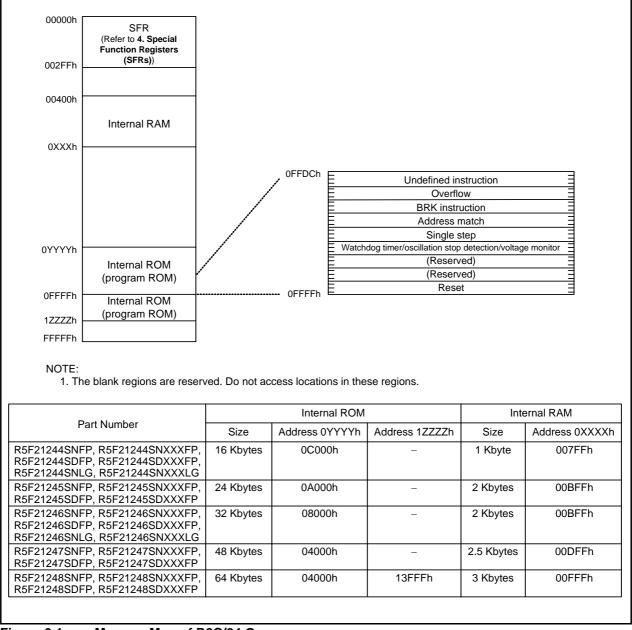


Figure 3.1 Memory Map of R8C/24 Group

3.2 R8C/25 Group

Figure 3.2 is a Memory Map of R8C/25 Group. The R8C/25 group has 1 Mbyte of address space from addresses 00000h to FFFFFh.

The internal ROM (program ROM) is allocated lower addresses, beginning with address 0FFFFh. For example, a 48-Kbyte internal ROM area is allocated addresses 04000h to 0FFFFh.

The fixed interrupt vector table is allocated addresses 0FFDCh to 0FFFFh. They store the starting address of each interrupt routine.

The internal ROM (data flash) is allocated addresses 02400h to 02BFFh.

The internal RAM area is allocated higher addresses, beginning with address 00400h. For example, a 2-Kbyte internal RAM is allocated addresses 00400h to 00BFFh. The internal RAM is used not only for storing data but also for calling subroutines and as stacks when interrupt requests are acknowledged.

Special function registers (SFRs) are allocated addresses 00000h to 002FFh. The peripheral function control registers are allocated here. All addresses within the SFR, which have nothing allocated are reserved for future use and cannot be accessed by users.

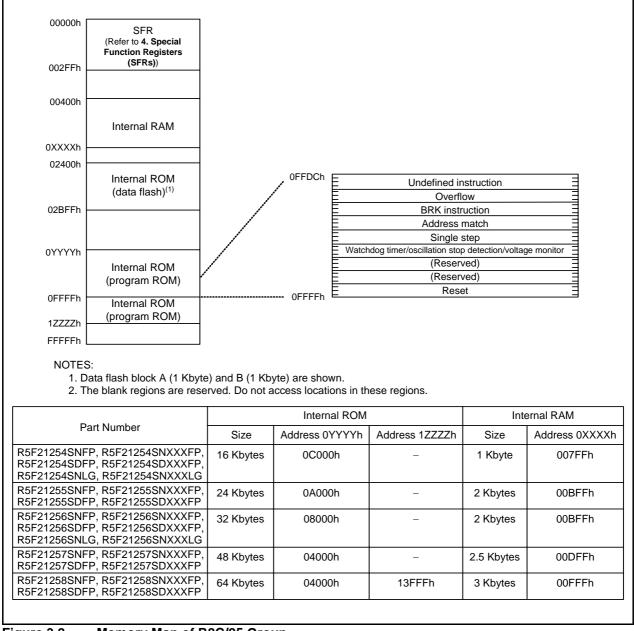


Figure 3.2 Memory Map of R8C/25 Group

Address	Register	Symbol	After reset
0180h			
0181h			
0182h			
0183h			
0184h			
0185h			
0186h			
0187h			
0188h			
0189h			
018Ah			
018Bh			
018Ch			
018Dh			
018Eh			
018Fh			
0190h			
0191h			
0192h			
0193h			
0194h			
0195h			
0196h			
0197h			
0198h			
0199h			
019Ah			
019Bh			
019Ch			
019Dh			
019Eh			
019Fh			
01A0h			
01A1h			
01A2h			
01A3h			
01A4h			
01A5h			
01A6h			
01A7h			
01A8h			
01A9h			
01AAh			
01ABh			
01ACh			
01ADh			
01AEh			
01AFh			
01B0h			
01B1h			
01B2h			
01B3h	Flash Memory Control Register 4	FMR4	0100000b
01B4h			
01B5h	Flash Memory Control Register 1	FMR1	1000000Xb
01B6h			
01B7h	Flash Memory Control Register 0	FMR0	0000001b
01B8h			
01B9h			
01BAh			
01BBh			
01BCh			
01BDh			
01BDh		L	
01BEh			
			L

SFR Information (7)⁽¹⁾ Table 4.7

FFFFh Option Function Select Register

X: Undefined
NOTES:

The blank regions are reserved. Do not access locations in these regions.
The OFS register cannot be changed by a program. Use a flash programmer to write to it.

OFS

(Note 2)

Currents et	Parameter	Conditions	Standard			1.1.4.14	
Symbol	1	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vcc/AVcc	Supply voltage			2.2	-	5.5	V
Vss/AVss	Supply voltage			-	0	-	V
Vih	Input "H" voltage			0.8 Vcc	_	Vcc	V
VIL	Input "L" voltage			0	-	0.2 Vcc	V
IOH(sum)	Peak sum output "H" current	Sum of all pins IOH(peak)		-	-	-160	mA
IOH(sum)	Average sum output "H" current	Sum of all pins IOH(avg)		-	_	-80	mA
IOH(peak)	Peak output "H"	Except P2_0 to P2_7		-	-	-10	mA
	current	P2_0 to P2_7		-	-	-40	mA
IOH(avg)	Average output	Except P2_0 to P2_7		-	-	-5	mA
1	"H" current	P2_0 to P2_7		-	-	-20	mA
IOL(sum)	Peak sum output "L" current	Sum of all pins IOL(peak)		-	-	160	mA
IOL(sum)	Average sum output "L" current	Sum of all pins IOL(avg)		-	-	80	mA
IOL(peak)	Peak output "L"	Except P2_0 to P2_7		-	_	10	mA
	current	P2_0 to P2_7		-	-	40	mA
IOL(avg)	Average output	Except P2_0 to P2_7		-	_	5	mA
	"L" current	P2_0 to P2_7		-	_	20	mA
f(XIN)	XIN clock input osc	cillation frequency	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
			$2.7~\text{V} \leq \text{Vcc} < 3.0~\text{V}$	0	-	10	MHz
			$2.2 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	5	MHz
f(XCIN)	XCIN clock input or	scillation frequency	$2.2 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	_	70	kHz
-	System clock	OCD2 = 0	$3.0 \text{ V} \leq \text{Vcc} \leq 5.5 \text{ V}$	0	-	20	MHz
		XIN clock selected	$2.7 \text{ V} \leq \text{Vcc} < 3.0 \text{ V}$	0	_	10	MHz
			$2.2 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$	0	_	5	MHz
		OCD2 = 1 On-chip oscillator clock selected	FRA01 = 0 Low-speed on-chip oscillator clock selected	-	125	-	kHz
			$\label{eq:FRA01} \begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{3.0 V} \le Vcc \le 5.5 \ V \end{array}$	_	_	20	MHz
			$\label{eq:FRA01} \begin{array}{l} \mbox{FRA01} = 1 \\ \mbox{High-speed on-chip} \\ \mbox{oscillator clock selected} \\ \mbox{2.7 V} \le Vcc \le 5.5 \ V \end{array}$	_	_	10	MHz
			$\label{eq:FRA01 = 1} \begin{array}{l} FRA01 = 1 \\ High\text{-speed on-chip} \\ oscillator \ clock \ selected \\ 2.2 \ V \leq Vcc \leq 5.5 \ V \end{array}$	_	_	5	MHz

Recommended Operating Conditions Table 5.2

NOTES:

1. Vcc = 2.2 to 5.5 V at T_{opr} = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified. 2. The average output current indicates the average value of current measured during 100 ms.

Symbol	Parameter	Conditions		Stand	ard	Unit
Symbol	Falameter	Conditions	Min.	Тур.	Max.	Unit
-	Program/erase endurance ⁽²⁾		10,000 ⁽³⁾	-	-	times
-	Byte program time (program/erase endurance ≤ 1,000 times)		-	50	400	μs
-	Byte program time (program/erase endurance > 1,000 times)		-	65	_	μS
-	Block erase time (program/erase endurance ≤ 1,000 times)		-	0.2	9	S
-	Block erase time (program/erase endurance > 1,000 times)		-	0.3	_	S
td(SR-SUS)	Time delay from suspend request until suspend		-	-	97+CPU clock × 6 cycles	μs
-	Interval from erase start/restart until following suspend request		650	-	_	μs
-	Interval from program start/restart until following suspend request		0	_	_	ns
-	Time from suspend until program/erase restart		-	-	3+CPU clock × 4 cycles	μs
-	Program, erase voltage		2.7	-	5.5	V
-	Read voltage		2.2	-	5.5	V
-	Program, erase temperature		-20 ⁽⁸⁾	-	85	°C
-	Data hold time ⁽⁹⁾	Ambient temperature = 55 °C	20	-	-	year

Table 5.5 Flash Memory (Data flash Block A, Block B) Electrical Characteristics⁽⁴⁾

NOTES:

1. Vcc = 2.7 to 5.5 V at Topr = -20 to 85°C (N version) / -40 to 85°C (D version), unless otherwise specified.

2. Definition of programming/erasure endurance

The programming and erasure endurance is defined on a per-block basis. If the programming and erasure endurance is n (n = 100 or 10,000), each block can be erased n times. For example, if 1,024 1-byte writes are performed to block A, a 1 Kbyte block, and then the block is erased, the programming/erasure endurance still stands at one.

However, the same address must not be programmed more than once per erase operation (overwriting prohibited).

3. Endurance to guarantee all electrical characteristics after program and erase. (1 to Min. value can be guaranteed).

- 4. Standard of block A and block B when program and erase endurance exceeds 1,000 times. Byte program time to 1,000 times is the same as that in program ROM.
- 5. In a system that executes multiple programming operations, the actual erasure count can be reduced by writing to sequential addresses in turn so that as much of the block as possible is used up before performing an erase operation. For example, when programming groups of 16 bytes, the effective number of rewrites can be minimized by programming up to 128 groups before erasing them all in one operation. It is also advisable to retain data on the erase count of each block and limit the number of erase operations to a certain number.
- 6. If an error occurs during block erase, attempt to execute the clear status register command, then execute the block erase command at least three times until the erase error does not occur.
- 7. Customers desiring program/erase failure rate information should contact their Renesas technical support representative.

8. -40°C for D version.

9. The data hold time includes time that the power supply is off or the clock is not supplied.

Timing requirements (Unless Otherwise Specified: Vcc = 3 V, Vss = 0 V at Topr = 25°C) [Vcc = 3 V]

Table 5.24 XIN Input, XCIN Input

Symbol	Parameter	Stand	Standard		Unit
	Falanielei	Min.	Max.	Unit	
tc(XIN)	XIN input cycle time	100	-	ns	
twh(xin)	XIN input "H" width	40	-	ns	
twl(XIN)	XIN input "L" width	40	-	ns	
tc(XCIN)	XCIN input cycle time	14	-	μs	
tWH(XCIN)	XCIN input "H" width	7	-	μs	
tWL(XCIN)	XCIN input "L" width	7	-	μS	

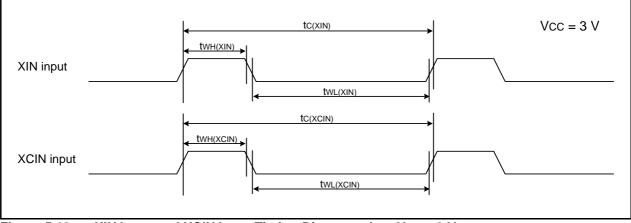


Figure 5.12 XIN Input and XCIN Input Timing Diagram when Vcc = 3 V

Table 5.25 TRAIO Input

Symbol	Parameter	Stan	Standard	
	Falantelei	Min.	Min. Max.	Unit
tc(TRAIO)	TRAIO input cycle time	300	-	ns
twh(traio)	TRAIO input "H" width	120	-	ns
twl(traio)	TRAIO input "L" width	120	-	ns

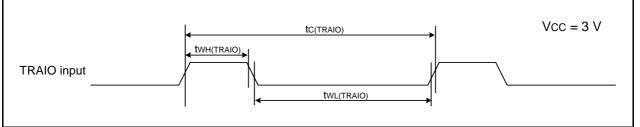
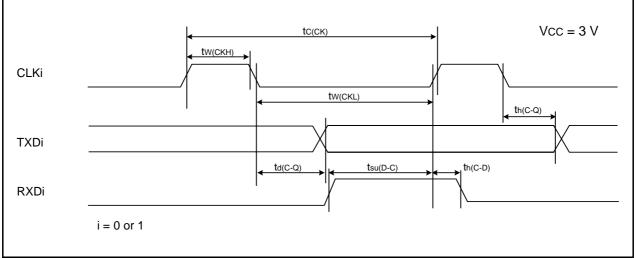



Figure 5.13 TRAIO Input Timing Diagram when Vcc = 3 V

Symbol	Parameter	Sta	Standard		
Symbol	Falameter	Min.	Max.	Unit	
tc(CK)	CLKi input cycle time	300	-	ns	
tW(CKH)	CLKi input "H" width	150	-	ns	
tW(CKL)	CLKi Input "L" width	150	-	ns	
td(C-Q)	TXDi output delay time	-	80	ns	
th(C-Q)	TXDi hold time	0	-	ns	
tsu(D-C)	RXDi input setup time	70	-	ns	
th(C-D)	RXDi input hold time	90	-	ns	

i = 0 or 1

Table 5.27 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Standard		Unit
Symbol	Falantelei	Min.	Max.	Unit
tw(INH)	INTO input "H" width	380(1)	-	ns
tw(INL)	INTO input "L" width	380(2)	1	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

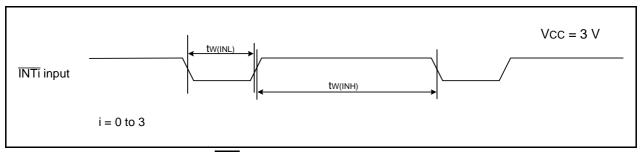
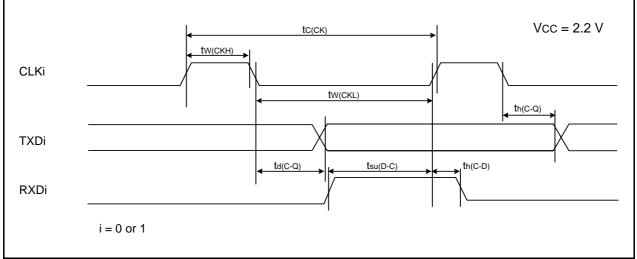



Figure 5.15 External Interrupt INTi Input Timing Diagram when Vcc = 3 V

Symbol	Deremeter	Star	Standard	
	Parameter		Max.	Unit
tc(CK)	CLKi input cycle time	800	-	ns
tw(CKH)	CLKi input "H" width	400	-	ns
tw(CKL)	CLKi input "L" width	400	-	ns
td(C-Q)	TXDi output delay time	-	200	ns
th(C-Q)	TXDi hold time	0	-	ns
tsu(D-C)	RXDi input setup time	150	-	ns
th(C-D)	RXDi input hold time	90	-	ns

i = 0 or 1

Table 5.33 External Interrupt INTi (i = 0 to 3) Input

Symbol	Parameter	Standard		Unit
		Min.	Max.	Offic
tw(INH)	INTO input "H" width	1000(1)	-	ns
tw(INL)	INTO input "L" width	1000 ⁽²⁾	_	ns

NOTES:

1. When selecting the digital filter by the INTi input filter select bit, use an INTi input HIGH width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

2. When selecting the digital filter by the INTi input filter select bit, use an INTi input LOW width of either (1/digital filter clock frequency × 3) or the minimum value of standard, whichever is greater.

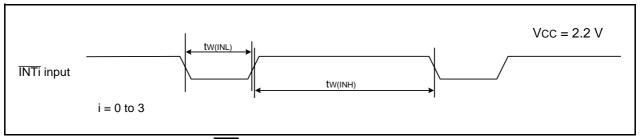
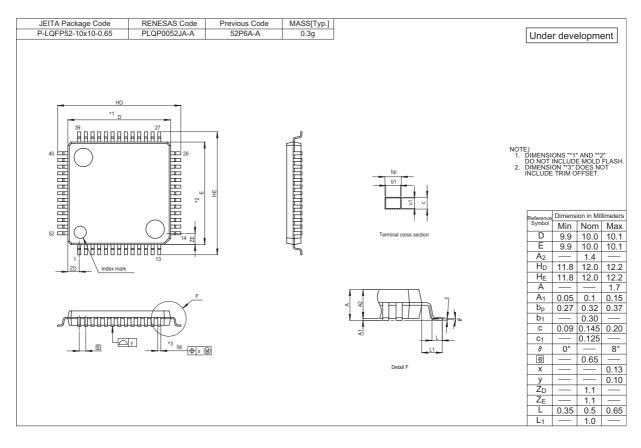
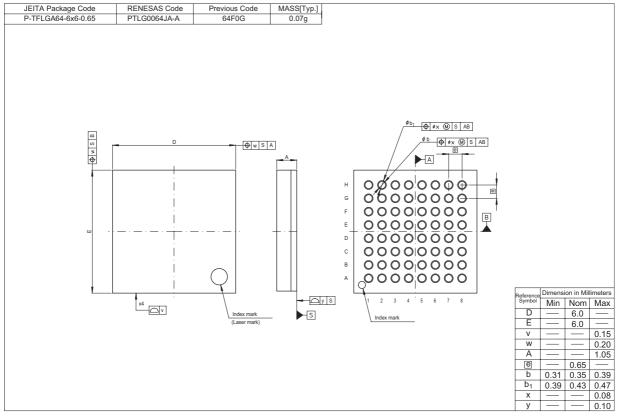




Figure 5.19 External Interrupt INTi Input Timing Diagram when VCC = 2.2 V

Package Dimensions

Diagrams showing the latest package dimensions and mounting information are available in the "Packages" section of the Renesas Technology website.

RENESAS

REVISION HISTORY

R8C/24 Group, R8C/25 Group Datasheet

Rev.	Date	Description		
		Page	Summary	
0.30	Sep 01, 2005	7	Figure 1.4 Pin Assignment • Pin name revised; $VSS \rightarrow VSS/AVSS$, $VCC \rightarrow VCC/AVCC$, $P1_5/RXD0/(TRAIO)/(\overline{INT1}) \rightarrow P1_5/RXD0/(TRAIO)/(\overline{INT1})^{(2)}$, $P6_6/\overline{INT2}/(TXD1) \rightarrow P6_6/\overline{INT2}/TXD1$, $P6_7/\overline{INT3}/(RXD1) \rightarrow P6_7/\overline{INT3}/RXD1$, $P6_5 \rightarrow P6_5/CLK1$ • NOTE2 added	
		8	 Table 1.5 Pin Description Analog Power Supply Input: line added INT Interrupt Input: "INT0 Timer RD input pins. INT1 Timer RA input pins." added Serial Interface: "CLK1" added "I²C Bus Interface (IIC)" → "I²C Bus Interface" "SSU" → "Clock Synchronous Serial I/O with Chip Select" 	
		9	Table 1.6 Pin Name Information by Pin Number revised • Pin Number 10: "VSS" \rightarrow "VSS/AVSS" • Pin Number 12: "VCC" \rightarrow "VCC/AVCC" • Pin Number 27: "INT0" added • Pin Number 28: "(TXD1)" \rightarrow "TXD1" • Pin Number 29: "(RXD1)" \rightarrow "RXD1" • Pin Number 35: "CLK1" added	
		15	Tabel 4.1 SFR Information(1) revised: • 0012h: X0h \rightarrow 00h • 0013h: XXXXX00b \rightarrow 00h • 0016h: X0h \rightarrow 00h • 0036h: Voltage Monitor 1 Control Register ⁽²⁾ \rightarrow Voltage Monitor 1 Control Register ⁽⁵⁾ • 0038h: 00001000b ⁽³⁾ , 01000001b ⁽⁴⁾ \rightarrow 0000X000b ⁽³⁾ , 0100X001b ⁽⁴⁾ • NOTES2, 5: "the voltage monitor 1 reset" added • NOTE3: "voltage monitor 1 reset" \rightarrow "voltage monitor 0 reset"	
		16	Tabel 4.2 SFR Information(2) revised: • 0048h: RD0IC \rightarrow TRD0IC • 0049h: RD1IC \rightarrow TRD1IC • 004Ah: REIC \rightarrow TREIC • 004Fh: SSU/IIC Interrupt Control Register, IIC2AIC \rightarrow SSU/IIC Interrupt Control Register ⁽²⁾ , SSUAIC/IIC2AIC • 0056h: RAIC \rightarrow TRAIC • 0058h: RBIC \rightarrow TRBIC • NOTE2 added	
		17	Tabel 4.3 SFR Information(3) revised: • 00BCh: 00h \rightarrow 00h/0000X000b	
		18	 Tabel 4.4 SFR Information(4) revised: 00D6h: 00000XXXb → 00h 00F5h: UART1 Function Select Register, U1SR, XXh added 	

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 But not infinited to, product data. diagrams, charts, programs, algorithms, and application scule as the development of weapons of mass and regulations, and proceedures required by such laws and regulation.
 All information in this document, included in this document for the purpose of military application scuch as the development of weapons of mass and regulations, and proceedures required by such laws and regulations.
 All information included in this document, such as product data, diagrams, charts, programs, algorithms, and application carcuit examples, is current as of the data the discovered in this document, but Renesas as an evel and inferent information in the data current for the purpose of any data programs. Algorithms, and application is a the development of a different information in the data diagrams, charts, programs, algorithms, and application is additional and different information in the data different information in the data the information in the data different information included in the document.
 Renes

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

http://www.renesas.com