

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M4
Core Size	32-Bit Single-Core
Speed	120MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Number of I/O	100
Program Memory Size	1MB (1M x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128K x 8
Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Data Converters	A/D 58x16b; D/A 2x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LBGA
Supplier Device Package	144-MAPBGA (13x13)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mk20fn1m0vmd12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.4 Relationship between ratings and operating requirements

3.5 Guidelines for ratings and operating requirements

Follow these guidelines for ratings and operating requirements:

- Never exceed any of the chip's ratings.
- During normal operation, don't exceed any of the chip's operating requirements.
- If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.

4 Ratings

4.1 Thermal handling ratings

Symbol	Description	Min.	Max.	Unit	Notes
T _{STG}	Storage temperature	-55	150	°C	1
T _{SDR}	Solder temperature, lead-free	—	260	°C	2

1. Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.

2. Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for Nonhermetic Solid State Surface Mount Devices.

- 2. It covers digital pins.
 - 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	

Table continues on the next page...

Symbol	Description	Min.	Max.	Unit	Notes
$V_{DD} - V_{DDA}$	V _{DD} -to-V _{DDA} differential voltage	-0.1	0.1	V	
$V_{SS} - V_{SSA}$	V _{SS} -to-V _{SSA} differential voltage	-0.1	0.1	V	
V _{BAT}	RTC battery supply voltage	1.71	3.6	V	
V _{IH}	Input high voltage (digital pins)				
	• 2.7 V \leq V _{DD} \leq 3.6 V	$0.7 \times V_{DD}$		V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	$0.75 \times V_{DD}$	—	V	
VIL	Input low voltage (digital pins)				
	• 2.7 V \leq V _{DD} \leq 3.6 V	—	$0.35 \times V_{DD}$	V	
	• $1.7 \text{ V} \le \text{V}_{\text{DD}} \le 2.7 \text{ V}$	_	$0.3 \times V_{DD}$	V	
V _{HYS}	Input hysteresis (digital pins)	$0.06 \times V_{DD}$		V	
I _{ICDIO}	Digital pin negative DC injection current — single pin	-5	_	mA	1
	• V _{IN} < V _{SS} -0.3V				
I _{ICAIO}	Analog ² , EXTAL0/XTAL0, and EXTAL1/ XTAL1 pin DC injection current — single pin			mA	3
	 V_{IN} < V_{SS}-0.3V (Negative current injection) 	-5	_		
	 V_{IN} > V_{DD}+0.3V (Positive current injection) 	_	+5		
I _{ICcont}	Contiguous pin DC injection current — regional limit, includes sum of negative injection currents or sum of positive injection currents of 16 contiguous pins • Negative current injection	-25	 +25	mA	
	Positive current injection				
V _{ODPU}	Open drain pullup voltage level	V _{DD}	V _{DD}	V	4
V _{RAM}	V_{DD} voltage required to retain RAM	1.2		V	
V _{RFVBAT}	V _{BAT} voltage required to retain the VBAT register file	V _{POR_VBAT}	_	V	

Table 1. Voltage and current operating requirements (continued)

- All 5 V tolerant digital I/O pins are internally clamped to V_{SS} through an ESD protection diode. There is no diode connection to V_{DD}. If V_{IN} is less than V_{DIO_MIN}, a current limiting resistor is required. If V_{IN} greater than V_{DIO_MIN} (=VSS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. The negative DC injection current limiting resistor is calculated as R=(V_{DIO_MIN}-V_{IN})/II_{ICDIO}I.
- 2. Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL and XTAL are analog pins.
- 3. All analog pins are internally clamped to V_{SS} and V_{DD} through ESD protection diodes. If V_{IN} is less than V_{AIO_MIN} or greater than V_{AIO_MAX}, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated as R=(V_{AIO_MIN}-V_{IN})/II_{ICAIO}I. The positive injection current limiting resistor is calculated to positive and negative injection currents.
- 4. Open drain outputs must be pulled to VDD.

General

Figure 4. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	21	dBµV	1, 2, 3
V _{RE2}	Radiated emissions voltage, band 2	50–150	24	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	29	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	28	dBµV	

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 72 MHz, f_{BUS} = 72 MHz
- 3. Determined according to IEC Standard JESD78, IC Latch-Up Test

Symbol	Description	Min.	Max.	Unit	Notes
t _{io50}	Port rise and fall time (low drive strength)				7
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	18	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	9	ns	—
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	48	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	—
t _{io60}	Port rise and fall time (high drive strength)				6
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	6	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	3	ns	—
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	—	28	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	14	ns	—
t _{io60}	Port rise and fall time (low drive strength)				7
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	18	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	_
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	48	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	—

 Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load
- 6. 25 pF load
- 7. 15 pF load

5.4 Thermal specifications

5.4.1 Thermal operating requirements

Table 11. Thermal operating requirements

Symbol	Description	Min.	Max.	Unit
TJ	Die junction temperature	-40	125	°C
T _A	Ambient temperature ¹	-40	105	°C

^{1.} Maximum T_A can be exceeded only if the user ensures that T_J does not exceed maximum T_J . The simplest method to determine T_J is:

 $T_J = T_A + R_{\theta JA} x$ chip power dissipation

5.4.2 Thermal attributes

Board type	Symbol	Description	144 LQFP	144 MAPBGA	Unit	Notes
Single-layer (1s)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	45	50	°C/W	1,2
Four-layer (2s2p)	R _{θJA}	Thermal resistance, junction to ambient (natural convection)	36	30	°C/W	1,2,3
Single-layer (1s)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	36	41	°C/W	1,3
Four-layer (2s2p)	R _{ejma}	Thermal resistance, junction to ambient (200 ft./ min. air speed)	30	27	°C/W	1,3
	R _{θJB}	Thermal resistance, junction to board	24	17	°C/W	4
_	R _{θJC}	Thermal resistance, junction to case	9	10	°C/W	5
	Ψ _{JT}	Thermal characterization parameter, junction to package top outside center (natural convection)	2	2	°C/W	6

Symbol	Description	Min.	Max.	Unit
J12	TCLK low to TDO high-Z	—	17	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8	_	ns

Table 13. JTAG limited voltage range electricals (continued)

Table 14. JTAG full voltage range electricals

Symbol	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
J1	TCLK frequency of operation			MHz
	Boundary Scan	0	10	
	JTAG and CJTAG	0	20	
	Serial Wire Debug	0	40	
J2	TCLK cycle period	1/J1	—	ns
J3	TCLK clock pulse width			
	Boundary Scan	50	_	ns
	JTAG and CJTAG	25		ns
	Serial Wire Debug	12.5	_	ns
J4	TCLK rise and fall times		3	ns
J5	Boundary scan input data setup time to TCLK rise	20		ns
J6	Boundary scan input data hold time after TCLK rise	2.4	—	ns
J7	TCLK low to boundary scan output data valid		25	ns
J8	TCLK low to boundary scan output high-Z		25	ns
J9	TMS, TDI input data setup time to TCLK rise	8		ns
J10	TMS, TDI input data hold time after TCLK rise	1.4		ns
J11	TCLK low to TDO data valid		22.1	ns
J12	TCLK low to TDO high-Z	—	22.1	ns
J13	TRST assert time	100	—	ns
J14	TRST setup time (negation) to TCLK high	8		ns

Figure 7. Test clock input timing

Symbol	Description	Min.	Тур.	Max.	Unit	Notes	
f _{dco}	DCO output	Low range (DRS=00)	20	20.97	25	MHz	2, 3
	frequency range	$640 \times f_{fll_ref}$					
		Mid range (DRS=01)	40	41.94	50	MHz	•
		$1280 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	60	62.91	75	MHz	
		$1920 \times f_{fll_ref}$					
		High range (DRS=11)	80	83.89	100	MHz	
		$2560 \times f_{fll_ref}$					
f _{dco_t_DMX32}	DCO output	Low range (DRS=00)	—	23.99	_	MHz	4, 5
	frequency	$732 \times f_{fll_ref}$					
		Mid range (DRS=01)	_	47.97	—	MHz	
		$1464 \times f_{fll_ref}$					
		Mid-high range (DRS=10)	—	71.99	_	MHz	
		$2197 \times f_{fll_ref}$					
		High range (DRS=11)	—	95.98	_	MHz	
		$2929 \times f_{fll_ref}$					
J _{cyc_fll}	FLL period jitter		_	180	_	ps	
	• $f_{VCO} = 48 \text{ MHz}$		_	150	_		
t	• f _{VCO} = 98 MHz				1	me	6
4fl_acquire		PLL	0.1		I	1115	U
foll ref	PLL reference free	uencv range	8	_	16	MHz	
f _{vcoclk} 2x	VCO output freque	ency	100			MHz	
		,	180		360	N 41 1-	
T _{vcoclk}	PLL output freque	ncy	90	_	180	MHZ	
f _{vcoclk_90}	PLL quadrature ou	tput frequency	90	—	180	MHz	
I _{pll}	PLL0 operating cu	rrent	_	2.8		mA	
	= 8 MHz, VE	$VIII 2 (I_{osc_hi_1} = 32 VIII 2, I_{pll_ref})$					
I _{pll}	PLL0 operating cu	rrent		47		m۸	7
	• VCO @ 360	$MHz (f_{osc_{hi_1}} = 32 \text{ MHz}, f_{pll_ref}$		4.7		ША	
	= 8 MHZ, VL	nv multiplier = 45)					7
'pll	• VCO @ 184	MHz (f _{osc hi 1} = 32 MHz, f _{oll ref}	—	2.3	_	mA	/
	= 8 MHz, VD	0IV multiplier = 23)					
I _{pll}	PLL1 operating cu	rrent	_	3.6	_	mA	7
	= 8 MHz, VE	DIV multiplier = 45)					
t _{pll_lock}	Lock detector dete	ction time	_	_	100 × 10 ⁻⁶	S	8
					+ 1075(1/		
	PLL period iitter (F	(MS)			'pil_ret/		9

Table 15. MCG specifications (continued)

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 4 MHz	—	500	—	μA	
	• 8 MHz (RANGE=01)	_	2.5	—	mA	
	• 16 MHz	_	3	_	mA	
	• 24 MHz	_	4	_	mA	
	• 32 MHz					
C _x	EXTAL load capacitance	—	—	—		2, 3
Cy	XTAL load capacitance					2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	_	_	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	_	10	_	MΩ	•
	Feedback resistor — high-frequency, low-power mode (HGO=0)	_	_	_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	_	1		MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)				kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	_	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_	_	_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		_	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	_	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	—	V _{DD}	—	V	

Table 16. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x and C_y can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

6.3.2.2 Oscillator frequency specifications Table 17. Oscillator frequency specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
f _{osc_lo}	Oscillator crystal or resonator frequency — low- frequency mode (MCG_C2[RANGE]=00)	32	—	40	kHz	
f _{osc_hi_1}	Oscillator crystal or resonator frequency — high- frequency mode (low range) (MCG_C2[RANGE]=01)	3	_	8	MHz	1
f _{osc_hi_2}	Oscillator crystal or resonator frequency — high frequency mode (high range) (MCG_C2[RANGE]=1x)	8	_	32	MHz	
f _{ec_extal}	Input clock frequency (external clock mode)	—	—	60	MHz	2, 3
t _{dc_extal}	Input clock duty cycle (external clock mode)	40	50	60	%	
t _{cst}	Crystal startup time — 32 kHz low-frequency, low-power mode (HGO=0)	_	1000		ms	4, 5
	Crystal startup time — 32 kHz low-frequency, high-gain mode (HGO=1)	—	500		ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), low-power mode (HGO=0)	_	0.6	_	ms	
	Crystal startup time — 8 MHz high-frequency (MCG_C2[RANGE]=01), high-gain mode (HGO=1)	_	1	_	ms	

1. Frequencies less than 8 MHz are not in the PLL range.

2. Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.

3. When transitioning from FEI or FBI to FBE mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, it remains within the limits of the DCO input clock frequency.

- 4. Proper PC board layout procedures must be followed to achieve specifications.
- 5. Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S register being set.

NOTE

The 32 kHz oscillator works in low power mode by default and cannot be moved into high power/gain mode.

6.3.3 32 kHz oscillator electrical characteristics

6.3.3.1 32 kHz oscillator DC electrical specifications Table 18. 32kHz oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit
V _{BAT}	Supply voltage	1.71	—	3.6	V
R _F	Internal feedback resistor		100	_	MΩ
C _{para}	Parasitical capacitance of EXTAL32 and XTAL32		5	7	pF
V _{pp} ¹	Peak-to-peak amplitude of oscillation		0.6	_	V

Symbol	Description	Min.	Typ. ¹	Max.	Unit	Notes
t _{nvmretp1k}	Data retention after up to 1 K cycles	20	100	—	years	
n _{nvmcycp}	Cycling endurance	10 K	50 K	_	cycles	2
	Data Flas	sh	•			
t _{nvmretd10k}	Data retention after up to 10 K cycles	5	50	_	years	
t _{nvmretd1k}	Data retention after up to 1 K cycles	20	100	_	years	
n _{nvmcycd}	Cycling endurance	10 K	50 K	_	cycles	2
	FlexRAM as EE	EPROM				
t _{nvmretee100}	Data retention up to 100% of write endurance	5	50	_	years	
t _{nvmretee10}	Data retention up to 10% of write endurance	20	100	_	years	
n _{nvmcycee}	Cycling endurance for EEPROM backup	20 K	50 K	_	cycles	2
	Write endurance					3
n _{nvmwree16}	 EEPROM backup to FlexRAM ratio = 16 	70 K	175 K	—	writes	
n _{nvmwree128}	 EEPROM backup to FlexRAM ratio = 128 	630 K	1.6 M	—	writes	
n _{nvmwree512}	 EEPROM backup to FlexRAM ratio = 512 	2.5 M	6.4 M	—	writes	
n _{nvmwree2k}	 EEPROM backup to FlexRAM ratio = 2,048 	10 M	25 M	_	writes	

Table 23. NVM reliability specifications (continued)

 Typical data retention values are based on measured response accelerated at high temperature and derated to a constant 25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.

2. Cycling endurance represents number of program/erase cycles at -40°C \leq T_i \leq 125°C.

3. Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cycling endurance of the FlexNVM and the allocated EEPROM backup per subsystem. Minimum and typical values assume all 16-bit or 32-bit writes to FlexRAM; all 8-bit writes result in 50% less endurance.

6.4.1.5 Write endurance to FlexRAM for EEPROM

When the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.

The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFE to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.

While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.

Writes_subsystem = $\frac{\text{EEPROM} - 2 \times \text{EEESPLIT} \times \text{EEESIZE}}{\text{EEESPLIT} \times \text{EEESIZE}} \times \text{Write_efficiency} \times n_{\text{nvmcycee}}$

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 29. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Differential ENOB vs ADC Clock

Figure 21. Typical ENOB vs. ADC_CLK for 16-bit differential mode

Figure 24. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	_	100	pF	2
١L	Output load current	_	1	mA	

1. The DAC reference can be selected to be V_{DDA} or V_{REFH}

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim at nominal V _{DDA} and temperature=25C	1.1915	1.195	1.1977	V	1
V _{out}	Voltage reference output — factory trim	1.1584	—	1.2376	V	1
V _{out}	Voltage reference output — user trim	1.193	_	1.197	V	1
V _{step}	Voltage reference trim step	_	0.5	—	mV	1
V _{tdrift}	Temperature drift (Vmax -Vmin across the full temperature range)	_	_	80	mV	1
I _{bg}	Bandgap only current	—	—	80	μA	1
I _{hp}	High-power buffer current	—	—	1	mA	1
ΔV_{LOAD}	Load regulation				mV	1, 2
	• current = + 1.0 mA	_	2	_		
	• current = - 1.0 mA	_	5	_		
T _{stup}	Buffer startup time	—	—	100	μs	
V _{vdrift}	Voltage drift (Vmax -Vmin across the full voltage range)	_	2		mV	1

Table 36. VREF full-range operating behaviors

1. See the chip's Reference Manual for the appropriate settings of the VREF Status and Control register.

2. Load regulation voltage is the difference between the VREF_OUT voltage with no load vs. voltage with defined load

Table 37. VREF limited-range operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
T _A	Temperature	0	50	°C	

Table 38. VREF limited-range operating behaviors

Symbol	Description	Min.	Max.	Unit	Notes
V _{out}	Voltage reference output with factory trim	1.173	1.225	V	

6.7 Timers

See General switching specifications.

6.8 Communication interfaces

Num	Description	Min.	Max.	Unit	Notes
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	—	ns	

Table 42. Master mode DSPI timing (limited voltage range) (continued)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 28. DSPI classic SPI timing — master mode

Table 43. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		15	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}		ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid		10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0		ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7		ns
DS15	DSPI_SS active to DSPI_SOUT driven		14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	—	14	ns

Figure 29. DSPI classic SPI timing — slave mode

6.8.7 DSPI switching specifications (full voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provides DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	1.71	3.6	V	1
	Frequency of operation	_	15	MHz	
DS1	DSPI_SCK output cycle time	4 x t _{BUS}	—	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 4	_	ns	2
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 4	_	ns	3
DS5	DSPI_SCK to DSPI_SOUT valid	_	10	ns	
DS6	DSPI_SCK to DSPI_SOUT invalid	-4.5	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	20.5		ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0	_	ns	

Table 44. Master mode DSPI timing (full voltage range)

1. The DSPI module can operate across the entire operating voltage for the processor, but to run across the full voltage range the maximum frequency of operation is reduced.

2. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

3. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 30. DSPI classic SPI timing — master mode

Num	Description	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
	Frequency of operation	—	7.5	MHz
DS9	DSPI_SCK input cycle time	8 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) - 4	(t _{SCK/2)} + 4	ns
DS11	DSPI_SCK to DSPI_SOUT valid	—	20	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	_	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	_	ns
DS15	DSPI_SS active to DSPI_SOUT driven		19	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven		19	ns

Table 45. Slave mode DSPI timing (full voltage range)

Figure 31. DSPI classic SPI timing — slave mode

Table 51. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	—	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid	_	15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1.0	_	ns
S7	I2S_TX_BCLK to I2S_TXD valid	—	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	—	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	—	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	—	ns

Figure 36. I2S/SAI timing — master modes

Table 52.I2S/SAI slave mode timing in Normal Run, Wait and Stop modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit s	
	Operating voltage	1.71	3.6	V	
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns	
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period	

Table continues on the next page ...

Table 54. I2S/SAI slave mode timing in VLPR, VLPW, and VLPS modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S13	I2S_TX_FS/I2S_RX_FS input setup before I2S_TX_BCLK/I2S_RX_BCLK	30	-	ns
S14	I2S_TX_FS/I2S_RX_FS input hold after I2S_TX_BCLK/I2S_RX_BCLK	3	-	ns
S15	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output valid	—	63	ns
S16	I2S_TX_BCLK to I2S_TXD/I2S_TX_FS output invalid	0	—	ns
S17	I2S_RXD setup before I2S_RX_BCLK	30	—	ns
S18	I2S_RXD hold after I2S_RX_BCLK	2	—	ns
S19	I2S_TX_FS input assertion to I2S_TXD output valid ¹	_	72	ns

1. Applies to first bit in each frame and only if the TCR4[FSE] bit is clear

Figure 39. I2S/SAI timing — slave modes

6.9 Human-machine interfaces (HMI)

6.9.1 TSI electrical specifications

Table 55. TSI electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DDTSI}	Operating voltage	1.71	—	3.6	V	
C _{ELE}	Target electrode capacitance range	1	20	500	pF	1
f _{REFmax}	Reference oscillator frequency	—	8	15	MHz	² , 3
f _{ELEmax}	Electrode oscillator frequency		1	1.8	MHz	² , 4

Table continues on the next page...

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
71	G8	VSS	VSS	VSS								
72	M12	PTA18	EXTAL0	EXTAL0	PTA18		FTM0_FLT2	FTM_CLKIN0				
73	M11	PTA19	XTAL0	XTAL0	PTA19		FTM1_FLT0	FTM_CLKIN1		LPTMR0_ ALT1		
74	L12	RESET_b	RESET_b	RESET_b								
75	K12	PTA24	CMP3_IN4	CMP3_IN4	PTA24	ULPI_DATA2				FB_A29		
76	J12	PTA25	CMP3_IN5	CMP3_IN5	PTA25	ULPI_DATA3				FB_A28		
77	J11	PTA26	ADC2_SE15	ADC2_SE15	PTA26	ULPI_DATA4				FB_A27		
78	J10	PTA27	ADC2_SE14	ADC2_SE14	PTA27	ULPI_DATA5				FB_A26		
79	H12	PTA28	ADC2_SE13	ADC2_SE13	PTA28	ULPI_DATA6				FB_A25		
80	H11	PTA29	ADC2_SE12	ADC2_SE12	PTA29	ULPI_DATA7				FB_A24		
81	H10	PTB0/ LLWU_P5	ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0	ADC0_SE8/ ADC1_SE8/ ADC2_SE8/ ADC3_SE8/ TSI0_CH0	PTB0/ LLWU_P5	12C0_SCL	FTM1_CH0			FTM1_QD_ PHA		
82	H9	PTB1	ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC3_SE9/ TSI0_CH6	ADC0_SE9/ ADC1_SE9/ ADC2_SE9/ ADC3_SE9/ TSI0_CH6	PTB1	I2C0_SDA	FTM1_CH1			FTM1_QD_ PHB		
83	G12	PTB2	ADC0_SE12/ TSI0_CH7	ADC0_SE12/ TSI0_CH7	PTB2	I2C0_SCL	UART0_ RTS_b			FTM0_FLT3		
84	G11	PTB3	ADC0_SE13/ TSI0_CH8	ADC0_SE13/ TSI0_CH8	PTB3	I2C0_SDA	UART0_ CTS_b/ UART0_ COL_b			FTM0_FLT0		
85	G10	PTB4	ADC1_SE10	ADC1_SE10	PTB4					FTM1_FLT0		
86	G9	PTB5	ADC1_SE11	ADC1_SE11	PTB5					FTM2_FLT0		
87	F12	PTB6	ADC1_SE12	ADC1_SE12	PTB6				FB_AD23			
88	F11	PTB7	ADC1_SE13	ADC1_SE13	PTB7				FB_AD22			
89	F10	PTB8	DISABLED		PTB8		UART3_ RTS_b		FB_AD21			
90	F9	PTB9	DISABLED		PTB9	SPI1_PCS1	UART3_ CTS_b		FB_AD20			
91	E12	PTB10	ADC1_SE14	ADC1_SE14	PTB10	SPI1_PCS0	UART3_RX	I2S1_TX_ BCLK	FB_AD19	FTM0_FLT1		
92	E11	PTB11	ADC1_SE15	ADC1_SE15	PTB11	SPI1_SCK	UART3_TX	I2S1_TX_FS	FB_AD18	FTM0_FLT2		
93	H7	VSS	VSS	VSS								
94	F5	VDD	VDD	VDD								
95	E10	PTB16	TSI0_CH9	TSI0_CH9	PTB16	SPI1_SOUT	UART0_RX	I2S1_TXD0	FB_AD17	EWM_IN		
96	E9	PTB17	TSI0_CH10	TSI0_CH10	PTB17	SPI1_SIN	UART0_TX	I2S1_TXD1	FB_AD16	EWM_OUT_b		
97	D12	PTB18	TSI0_CH11	TSI0_CH11	PTB18	CAN0_TX	FTM2_CH0	I2S0_TX_ BCLK	FB_AD15	FTM2_QD_ PHA		
98	D11	PTB19	TSI0_CH12	TSI0_CH12	PTB19	CAN0_RX	FTM2_CH1	I2S0_TX_FS	FB_OE_b	FTM2_QD_ PHB		

K20 Sub-Family, Rev.6, 09/2015.

NP

Pinout