

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

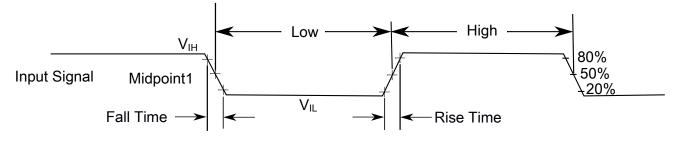
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore ProcessorARM® Cortex®-M4Core Size32-Bit Single-CoreSpeed120MHzConnectivityCANbus, EBI/EMI, IPC, IrDA, SD, SPI, UART/USART, USB, USB OTGPeripheralsDMA, IPS, LVD, POR, PWM, WDTNumber of I/O100Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-MAPBGA (13x13)Purchase URLhttps://www.e-xfl.com/product-detail/nxp-semiconductors/pk20fx512vmd12		
Core Size32-Bit Single-CoreSpeed120MHzConnectivityCANbus, EBI/EMI, I²C, IrDA, SD, SPI, UART/USART, USB, USB OTGPeripheralsDMA, I²S, LVD, POR, PWM, WDTNumber of I/O100Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Product Status	Obsolete
Speed120MHzConnectivityCANbus, EBI/EMI, I²C, IrDA, SD, SPI, UART/USART, USB, USB OTGPeripheralsDMA, I²S, LVD, POR, PWM, WDTNumber of I/O100Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Core Processor	ARM® Cortex®-M4
ConnectivityCANbus, EBI/EMI, I²C, IrDA, SD, SPI, UART/USART, USB, USB OTGPeripheralsDMA, I²S, LVD, POR, PWM, WDTNumber of I/O100Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Core Size	32-Bit Single-Core
PeripheralsDMA, I2S, LVD, POR, PWM, WDTNumber of I/O100Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Speed	120MHz
Number of I/O100Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Connectivity	CANbus, EBI/EMI, I ² C, IrDA, SD, SPI, UART/USART, USB, USB OTG
Program Memory Size512KB (512K x 8)Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Peripherals	DMA, I ² S, LVD, POR, PWM, WDT
Program Memory TypeFLASHEEPROM Size16K x 8RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Number of I/O	100
EEPROM Size16K × 8RAM Size128K × 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Program Memory Size	512KB (512K x 8)
RAM Size128K x 8Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Program Memory Type	FLASH
Voltage - Supply (Vcc/Vdd)1.71V ~ 3.6VData ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	EEPROM Size	16K x 8
Data ConvertersA/D 45x16b; D/A 2x12bOscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	RAM Size	128K x 8
Oscillator TypeInternalOperating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Voltage - Supply (Vcc/Vdd)	1.71V ~ 3.6V
Operating Temperature-40°C ~ 105°C (TA)Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Data Converters	A/D 45x16b; D/A 2x12b
Mounting TypeSurface MountPackage / Case144-LBGASupplier Device Package144-MAPBGA (13x13)	Oscillator Type	Internal
Package / Case 144-LBGA Supplier Device Package 144-MAPBGA (13x13)	Operating Temperature	-40°C ~ 105°C (TA)
Supplier Device Package 144-MAPBGA (13x13)	Mounting Type	Surface Mount
	Package / Case	144-LBGA
Purchase URL https://www.e-xfl.com/product-detail/nxp-semiconductors/pk20fx512vmd12	Supplier Device Package	144-MAPBGA (13x13)
	Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/pk20fx512vmd12

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



- 2. It covers digital pins.
 - 3. Analog pins are defined as pins that do not have an associated general purpose I/O port function.

5 General

5.1 AC electrical characteristics

Unless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.

The midpoint is V_{IL} + (V_{IH} - V_{IL}) / 2

Figure 1. Input signal measurement reference

All digital I/O switching characteristics assume:

- 1. output pins
 - have $C_L=30$ pF loads,
 - are configured for fast slew rate (PORTx_PCRn[SRE]=0), and
 - are configured for high drive strength (PORTx_PCRn[DSE]=1)
- 2. input pins
 - have their passive filter disabled (PORTx_PCRn[PFE]=0)

5.2 Nonswitching electrical specifications

5.2.1 Voltage and current operating requirements

Table 1. Voltage and current operating requirements

Symbol	Description	Min.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	3.6	V	
V _{DDA}	Analog supply voltage	1.71	3.6	V	

Table continues on the next page...

General

- 5. 4 MHz core, system, 2 MHz FlexBus, and 2 MHz bus clock and 0.5 MHz flash clock. MCG configured for BLPE mode. All peripheral clocks disabled.
- 6. Includes 32kHz oscillator current and RTC operation.

5.2.5.1 Diagram: Typical IDD_RUN operating behavior

The following data was measured under these conditions:

- MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies. MCG in PEE mode at greater than 100 MHz frequencies.
- USB regulator disabled
- No GPIOs toggled
- Code execution from flash with cache enabled
- For the ALLOFF curve, all peripheral clocks are disabled except FTFE

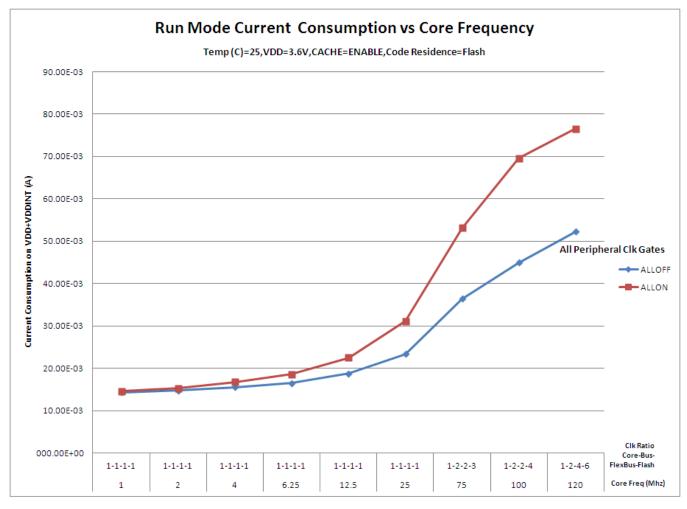


Figure 3. Run mode supply current vs. core frequency

General

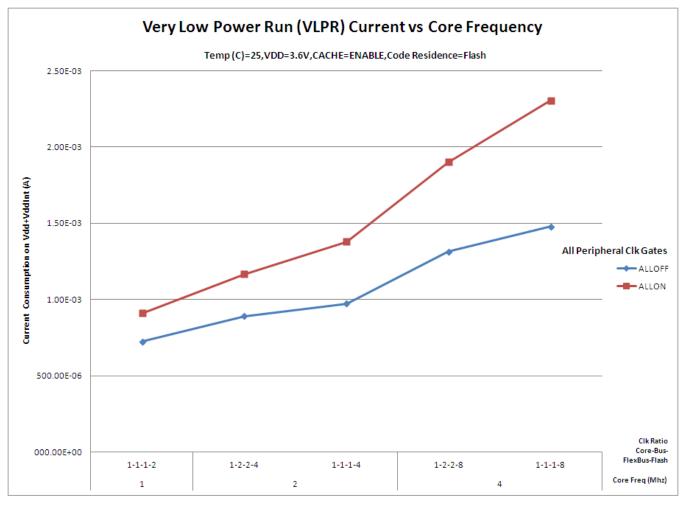


Figure 4. VLPR mode supply current vs. core frequency

5.2.6 EMC radiated emissions operating behaviors Table 7. EMC radiated emissions operating behaviors for 256MAPBGA

Symbol	Description	Frequency band (MHz)	Тур.	Unit	Notes
V _{RE1}	Radiated emissions voltage, band 1	0.15–50	21	dBµV	1, 2, 3
V _{RE2}	Radiated emissions voltage, band 2	50–150	24	dBµV	
V _{RE3}	Radiated emissions voltage, band 3	150–500	29	dBµV	
V _{RE4}	Radiated emissions voltage, band 4	500–1000	28	dBµV	

- Determined according to IEC Standard 61967-1, Integrated Circuits Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions – TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among the measured orientations in each frequency range.
- 2. V_{DD} = 3.3 V, T_A = 25 °C, f_{OSC} = 12 MHz (crystal), f_{SYS} = 72 MHz, f_{BUS} = 72 MHz
- 3. Determined according to IEC Standard JESD78, IC Latch-Up Test

Symbol	Description	Min.	Max.	Unit	Notes
t _{io50}	Port rise and fall time (low drive strength)				7
	Slew disabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	18	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	_	9	ns	_
	Slew enabled				
	 1.71 ≤ V_{DD} ≤ 2.7V 	_	48	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	_	24	ns	_
t _{io60}	Port rise and fall time (high drive strength)				6
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	6	ns	
	• $2.7 \le V_{DD} \le 3.6V$	_	3	ns	_
	Slew enabled				
	• $1.71 \le V_{DD} \le 2.7V$	_	28	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	_	14	ns	_
t _{io60}	Port rise and fall time (low drive strength)				7
	Slew disabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	_	18	ns	_
	• $2.7 \le V_{DD} \le 3.6V$	_	6	ns	_
	Slew enabled				
	• 1.71 ≤ V _{DD} ≤ 2.7V	—	48	ns	—
	• $2.7 \le V_{DD} \le 3.6V$	—	24	ns	—

 Table 10. General switching specifications (continued)

- 1. This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may or may not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.
- 2. The greater synchronous and asynchronous timing must be met.
- 3. This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, and VLLSx modes.
- 4. 75 pF load
- 5. 15 pF load
- 6. 25 pF load
- 7. 15 pF load

5.4 Thermal specifications

rempheral operating requirements and behaviors

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• f _{vco} = 180 MHz	—	100	_	ps	
	• f _{vco} = 360 MHz	—	75	—	ps	
J _{acc_pll}	PLL accumulated jitter over 1µs (RMS)					10
	• f _{vco} = 180 MHz	—	600	—	ps	
	• f _{vco} = 360 MHz	—	300	—	ps	

Table 15. MCG specifications (continued)

- 1. This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clock mode).
- 2. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.
- The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation (Δf_{dco t}) over voltage and temperature should be considered.
- 4. These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.
- 5. The resulting clock frequency must not exceed the maximum specified clock frequency of the device.
- 6. This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed, DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 7. Excludes any oscillator currents that are also consuming power while PLL is in operation.
- This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled (BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.
- 9. This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics of each PCB and results will vary.
- 10. Accumulated jitter depends on VCO frequency and VDIV.

6.3.2 Oscillator electrical specifications

6.3.2.1 Oscillator DC electrical specifications Table 16. Oscillator DC electrical specifications

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
V _{DD}	Supply voltage	1.71	—	3.6	V	
IDDOSC	Supply current — low-power mode (HGO=0)					1
	• 32 kHz	_	500	_	nA	
	• 4 MHz	_	200	_	μA	
	• 8 MHz (RANGE=01)	_	300	_	μA	
	• 16 MHz	_	950	_	μA	
	• 24 MHz	_	1.2	_	mA	
	• 32 MHz	_	1.5	_	mA	
IDDOSC	Supply current — high-gain mode (HGO=1)					1
	• 32 kHz	_	25	_	μA	
		_	400	—	μA	

Table continues on the next page...

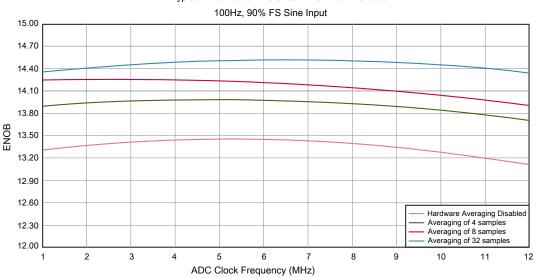
Symbol	Description	Min.	Тур.	Max.	Unit	Notes
	• 4 MHz	—	500		μA	
	• 8 MHz (RANGE=01)	—	2.5	_	mA	
	• 16 MHz	—	3	_	mA	
	• 24 MHz	—	4	_	mA	
	• 32 MHz					
C _x	EXTAL load capacitance	—	—	—		2, 3
Cy	XTAL load capacitance			—		2, 3
R _F	Feedback resistor — low-frequency, low-power mode (HGO=0)	—	—	_	MΩ	2, 4
	Feedback resistor — low-frequency, high-gain mode (HGO=1)	—	10		MΩ	
	Feedback resistor — high-frequency, low-power mode (HGO=0)	—	_	_	MΩ	
	Feedback resistor — high-frequency, high-gain mode (HGO=1)	—	1	_	MΩ	
R _S	Series resistor — low-frequency, low-power mode (HGO=0)	—	_	_	kΩ	
	Series resistor — low-frequency, high-gain mode (HGO=1)	—	200	_	kΩ	
	Series resistor — high-frequency, low-power mode (HGO=0)	_		_	kΩ	
	Series resistor — high-frequency, high-gain mode (HGO=1)					
		—	0	_	kΩ	
V _{pp} ⁵	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — low-frequency, high-gain mode (HGO=1)	—	V _{DD}	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, low-power mode (HGO=0)	_	0.6	_	V	
	Peak-to-peak amplitude of oscillation (oscillator mode) — high-frequency, high-gain mode (HGO=1)	—	V _{DD}	_	V	

Table 16. Oscillator DC electrical specifications (continued)

- 1. V_{DD} =3.3 V, Temperature =25 °C
- 2. See crystal or resonator manufacturer's recommendation
- 3. C_x and C_y can be provided by using either integrated capacitors or external components.
- 4. When low-power mode is selected, R_F is integrated and must not be attached externally.
- 5. The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to any other device.

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
		• ADLPC = 0, ADHSC = 0	3.0	5.2	7.3	MHz	
		• ADLPC = 0, ADHSC = 1	4.4	6.2	9.5	MHz	
	Sample Time	See Reference Manual chapter	for sample ti	mes			
TUE	Total unadjusted	12-bit modes	_	±4	±6.8	LSB ⁴	5
	error	12-bit modes	—	±1.4	±2.1		
DNL	Differential non- linearity	12-bit modes	_	±0.7	-1.1 to +1.9	LSB ⁴	5
	intearity	 <12-bit modes 	—	±0.2	-0.3 to 0.5		
INL	Integral non-linearity	12-bit modes		±1.0	–2.7 to +1.9	LSB ⁴	5
		• <12-bit modes	—	±0.5	–0.7 to +0.5		
E _{FS}	Full-scale error	12-bit modes	_	-4	-5.4	LSB ⁴	$V_{ADIN} = V_{DDA}$
		<12-bit modes	—	-1.4	-1.8		
EQ	Quantization error	16-bit modes		-1 to 0		LSB ⁴	
		 ≤13-bit modes 	—	-	±0.5		
ENOB	Effective number of	16-bit differential mode					6
	bits	• Avg = 32	12.8	14.5	—	bits	
		• Avg = 4	11.9	13.8	—	bits	
		16-bit single-ended mode					
		• Avg = 32	12.2	13.9	_		
		• Avg = 4	11.4	13.1		bits	
						bits	
SINAD	Signal-to-noise plus distortion	See ENOB	6.02 >	ENOB +	1.76	dB	
THD	Total harmonic	16-bit differential mode				dB	7
	distortion	• Avg = 32	—	-94	—	dB	
		16-bit single-ended mode	_	-85	_		
		• Avg = 32					
SFDR	Spurious free	16-bit differential mode	00	05	_	dB	7
	dynamic range	• Avg = 32	82	95	_	dB	
		16-bit single-ended mode	78	90			
		• Avg = 32					
E _{IL}	Input leakage error			$I_{ln} \times R_{AS}$		mV	I _{In} = leakage current

Table 29. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)


Table continues on the next page...

Symbol	Description	Conditions ¹	Min.	Typ. ²	Max.	Unit	Notes
							(refer to the MCU's voltage and current operating ratings)
	Temp sensor slope	Across the full temperature range of the device	1.55	1.62	1.69	mV/°C	8
V _{TEMP25}	Temp sensor voltage	25 °C	706	716	726	mV	8

Table 29. 16-bit ADC characteristics ($V_{REFH} = V_{DDA}$, $V_{REFL} = V_{SSA}$) (continued)

- 1. All accuracy numbers assume the ADC is calibrated with $V_{REFH} = V_{DDA}$
- Typical values assume V_{DDA} = 3.0 V, Temp = 25 °C, f_{ADCK} = 2.0 MHz unless otherwise stated. Typical values are for reference only and are not tested in production.
- The ADC supply current depends on the ADC conversion clock speed, conversion rate and ADC_CFG1[ADLPC] (low power). For lowest power operation, ADC_CFG1[ADLPC] must be set, the ADC_CFG2[ADHSC] bit must be clear with 1 MHz ADC conversion clock speed.
- 4. 1 LSB = $(V_{REFH} V_{REFL})/2^{N}$
- 5. ADC conversion clock < 16 MHz, Max hardware averaging (AVGE = %1, AVGS = %11)
- 6. Input data is 100 Hz sine wave. ADC conversion clock < 12 MHz.
- 7. Input data is 1 kHz sine wave. ADC conversion clock < 12 MHz.
- 8. ADC conversion clock < 3 MHz

Typical ADC 16-bit Differential ENOB vs ADC Clock

Figure 21. Typical ENOB vs. ADC_CLK for 16-bit differential mode

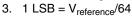


 Table 32. Comparator and 6-bit DAC electrical specifications (continued)

Symbol	Description	Min.	Тур.	Max.	Unit
INL	6-bit DAC integral non-linearity	-0.5	_	0.5	LSB ³
DNL	6-bit DAC differential non-linearity	-0.3		0.3	LSB

1. Typical hysteresis is measured with input voltage range limited to 0.6 to V_{DD}-0.6 V.

 Comparator initialization delay is defined as the time between software writes to change control inputs (Writes to CMP_DACCR[DACEN], CMP_DACCR[VRSEL], CMP_DACCR[VOSEL], CMP_MUXCR[PSEL], and CMP_MUXCR[MSEL]) and the comparator output settling to a stable level.

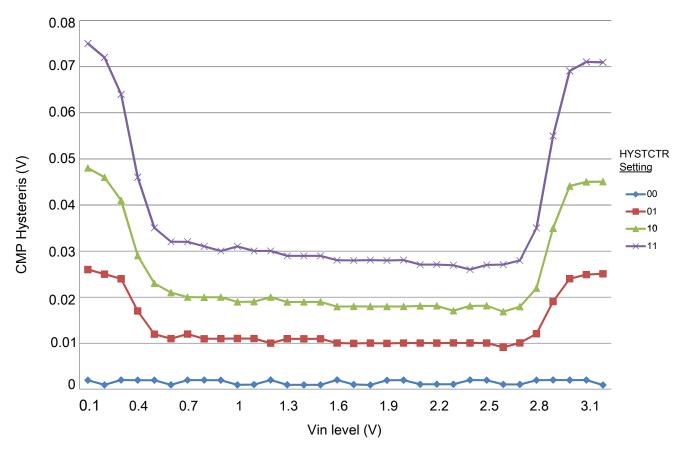
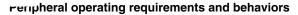



Figure 23. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 0)

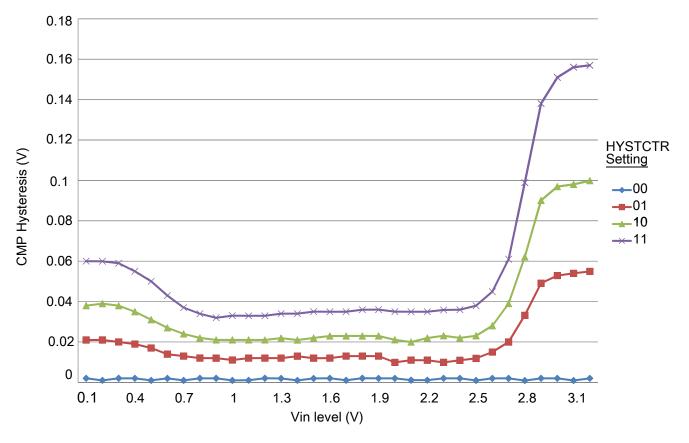


Figure 24. Typical hysteresis vs. Vin level (VDD = 3.3 V, PMODE = 1)

6.6.3 12-bit DAC electrical characteristics

6.6.3.1 12-bit DAC operating requirements Table 33. 12-bit DAC operating requirements

Symbol	Desciption	Min.	Max.	Unit	Notes
V _{DDA}	Supply voltage	1.71	3.6	V	
V _{DACR}	Reference voltage	1.13	3.6	V	1
CL	Output load capacitance	—	100	pF	2
١L	Output load current		1	mA	

1. The DAC reference can be selected to be V_{DDA} or V_{REFH}

2. A small load capacitance (47 pF) can improve the bandwidth performance of the DAC.

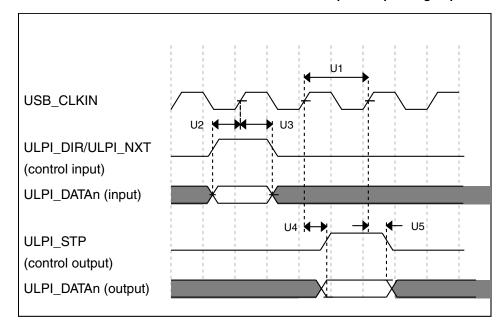


Figure 27. ULPI timing diagram

6.8.5 CAN switching specifications

See General switching specifications.

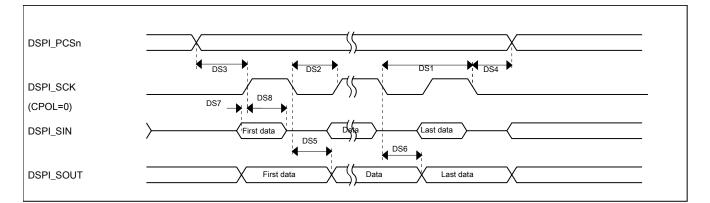
6.8.6 DSPI switching specifications (limited voltage range)

The DMA Serial Peripheral Interface (DSPI) provides a synchronous serial bus with master and slave operations. Many of the transfer attributes are programmable. The tables below provide DSPI timing characteristics for classic SPI timing modes. Refer to the DSPI chapter of the Reference Manual for information on the modified transfer formats used for communicating with slower peripheral devices.

Num	Description	Min.	Max.	Unit	Notes
	Operating voltage	2.7	3.6	V	
	Frequency of operation	—	30	MHz	
DS1	DSPI_SCK output cycle time	2 x t _{BUS}	_	ns	
DS2	DSPI_SCK output high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns	
DS3	DSPI_PCSn valid to DSPI_SCK delay	(t _{BUS} x 2) – 2	_	ns	1
DS4	DSPI_SCK to DSPI_PCSn invalid delay	(t _{BUS} x 2) – 2	_	ns	2
DS5	DSPI_SCK to DSPI_SOUT valid	—	8.5	ns	

 Table 42.
 Master mode DSPI timing (limited voltage range)

Table continues on the next page ...


rempheral operating requirements and behaviors

Num	Description	Min.	Max.	Unit	Notes
DS6	DSPI_SCK to DSPI_SOUT invalid	-2	—	ns	
DS7	DSPI_SIN to DSPI_SCK input setup	15	—	ns	
DS8	DSPI_SCK to DSPI_SIN input hold	0		ns	

Table 42. Master mode DSPI timing (limited voltage range) (continued)

1. The delay is programmable in SPIx_CTARn[PSSCK] and SPIx_CTARn[CSSCK].

2. The delay is programmable in SPIx_CTARn[PASC] and SPIx_CTARn[ASC].

Figure 28. DSPI classic SPI timing — master mode

Table 43. Slave mode DSPI timing (limited voltage range)

Num	Description	Min.	Max.	Unit
	Operating voltage	2.7	3.6	V
	Frequency of operation		15	MHz
DS9	DSPI_SCK input cycle time	4 x t _{BUS}	—	ns
DS10	DSPI_SCK input high/low time	(t _{SCK} /2) – 2	(t _{SCK} /2) + 2	ns
DS11	DSPI_SCK to DSPI_SOUT valid	_	10	ns
DS12	DSPI_SCK to DSPI_SOUT invalid	0	—	ns
DS13	DSPI_SIN to DSPI_SCK input setup	2	—	ns
DS14	DSPI_SCK to DSPI_SIN input hold	7	—	ns
DS15	DSPI_SS active to DSPI_SOUT driven	—	14	ns
DS16	DSPI_SS inactive to DSPI_SOUT not driven	_	14	ns

6.8.8 Inter-Integrated Circuit Interface (I²C) timing

Table 46. I²C timing

Characteristic	Symbol	Standa	rd Mode	Fast	Mode	Unit
		Minimum	Maximum	Minimum	Maximum	
SCL Clock Frequency	f _{SCL}	0	100	0	400 ¹	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	t _{HD} ; STA	4	_	0.6	—	μs
LOW period of the SCL clock	t _{LOW}	4.7	_	1.25	—	μs
HIGH period of the SCL clock	t _{HIGH}	4	_	0.6	—	μs
Set-up time for a repeated START condition	t _{SU} ; STA	4.7	_	0.6	—	μs
Data hold time for I ² C bus devices	t _{HD} ; DAT	0 ²	3.45 ³	04	0.9 ²	μs
Data set-up time	t _{SU} ; DAT	250 ⁵		100 ^{3,6}	_	ns
Rise time of SDA and SCL signals	t _r	_	1000	20 +0.1C _b ⁷	300	ns
Fall time of SDA and SCL signals	t _f	—	300	20 +0.1C _b ⁶	300	ns
Set-up time for STOP condition	t _{SU} ; STO	4		0.6	_	μs
Bus free time between STOP and START condition	t _{BUF}	4.7	—	1.3	—	μs
Pulse width of spikes that must be suppressed by the input filter	t _{SP}	N/A	N/A	0	50	ns

- 1. The maximum SCL Clock Frequency in Fast mode with maximum bus loading can only be achieved when using a pin configured for high drive across the full voltage range and when using the a pin configured for low drive with VDD ≥ 2.7 V.
- The master mode I²C deasserts ACK of an address byte simultaneously with the falling edge of SCL. If no slaves
 acknowledge this address byte, then a negative hold time can result, depending on the edge rates of the SDA and SCL
 lines.
- 3. The maximum tHD; DAT must be met only if the device does not stretch the LOW period (tLOW) of the SCL signal.
- 4. Input signal Slew = 10 ns and Output Load = 50 pF
- 5. Set-up time in slave-transmitter mode is 1 IPBus clock period, if the TX FIFO is empty.
- 6. A Fast mode I²C bus device can be used in a Standard mode I2C bus system, but the requirement t_{SU; DAT} ≥ 250 ns must then be met. This is automatically the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, then it must output the next data bit to the SDA line t_{rmax} + t_{SU; DAT} = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification) before the SCL line is released.
- 7. C_b = total capacitance of the one bus line in pF.

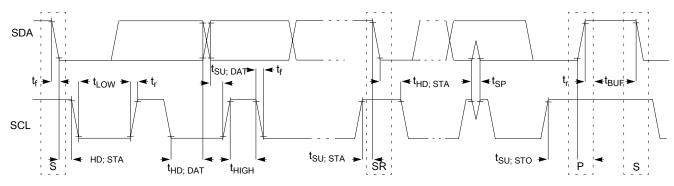


Figure 32. Timing definition for fast and standard mode devices on the I²C bus

Num	Symbol	Description	Min.	Max.	Unit			
SD5	t _{THL}	Clock fall time	—	3	ns			
	SDHC output / card inputs SDHC_CMD, SDHC_DAT (reference to SDHC_CLK)							
SD6	t _{OD}	SDHC output delay (output valid)	-5	6.5	ns			
		SDHC input / card inputs SDHC_CMD, SDHC_DAT (reference to	SDHC_CLK)				
SD7	t _{ISU}	SDHC input setup time	5	—	ns			
SD8	t _{IH}	SDHC input hold time	1.3		ns			

Table 48. SDHC switching specifications over the full operating voltage range (continued)

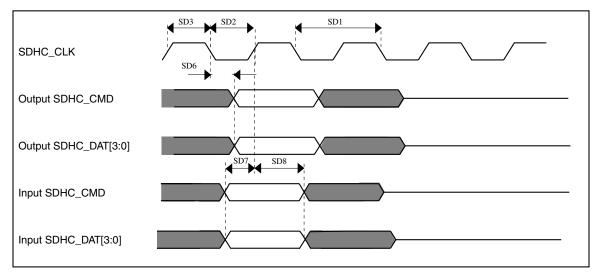
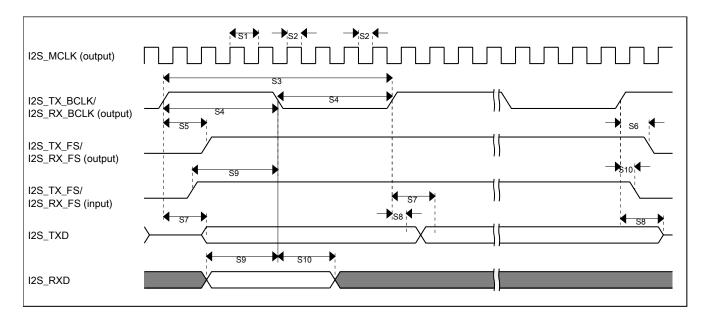


Figure 33. SDHC timing

6.8.11 I2S/SAI switching specifications


This section provides the AC timing for the I2S/SAI module in master mode (clocks are driven) and slave mode (clocks are input). All timing is given for noninverted serial clock polarity (TCR2[BCP] is 0, RCR2[BCP] is 0) and a noninverted frame sync (TCR4[FSP] is 0, RCR4[FSP] is 0). If the polarity of the clock and/or the frame sync have been inverted, all the timing remains valid by inverting the bit clock signal (BCLK) and/or the frame sync (FS) signal shown in the following figures.

6.8.11.1 Normal Run, Wait and Stop mode performance over a limited operating voltage range

This section provides the operating performance over a limited operating voltage for the device in Normal Run, Wait and Stop modes.

Table 51. I2S/SAI master mode timing in Normal Run, Wait and Stop modes (full voltage range) (continued)

Num.	Characteristic	Min.	Max.	Unit
S1	I2S_MCLK cycle time	40	—	ns
S2	I2S_MCLK pulse width high/low	45%	55%	MCLK period
S3	I2S_TX_BCLK/I2S_RX_BCLK cycle time (output)	80	_	ns
S4	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low	45%	55%	BCLK period
S5	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output valid		15	ns
S6	I2S_TX_BCLK/I2S_RX_BCLK to I2S_TX_FS/ I2S_RX_FS output invalid	-1.0	-	ns
S7	I2S_TX_BCLK to I2S_TXD valid	-	15	ns
S8	I2S_TX_BCLK to I2S_TXD invalid	0	_	ns
S9	I2S_RXD/I2S_RX_FS input setup before I2S_RX_BCLK	20.5	-	ns
S10	I2S_RXD/I2S_RX_FS input hold after I2S_RX_BCLK	0	_	ns

Figure 36. I2S/SAI timing — master modes

Table 52.I2S/SAI slave mode timing in Normal Run, Wait and Stop modes
(full voltage range)

Num.	Characteristic	Min.	Max.	Unit
	Operating voltage	1.71	3.6	V
S11	I2S_TX_BCLK/I2S_RX_BCLK cycle time (input)	80	—	ns
S12	I2S_TX_BCLK/I2S_RX_BCLK pulse width high/low (input)	45%	55%	MCLK period

Table continues on the next page ...

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
C _{REF}	Internal reference capacitor	—	1	—	pF	
V _{DELTA}	Oscillator delta voltage	_	600	_	mV	² , 5
I _{REF}	Reference oscillator current source base current • 2 μA setting (REFCHRG = 0)	_	2	3	μA	2, 6
	 32 µA setting (REFCHRG = 15) 	—	36	50		
I _{ELE}	Electrode oscillator current source base current • 2 µA setting (EXTCHRG = 0)	_	2	3	μA	2, 7
	 32 μA setting (EXTCHRG = 15) 	—	36	50		
Pres5	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	8
Pres20	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	9
Pres100	Electrode capacitance measurement precision	_	8.3333	38400	fF/count	10
MaxSens	Maximum sensitivity	0.008	1.46	_	fF/count	11
Res	Resolution	_	_	16	bits	
T _{Con20}	Response time @ 20 pF	8	15	25	μs	12
I _{TSI_RUN}	Current added in run mode	_	55	—	μA	
I _{TSI_LP}	Low power mode current adder		1.3	2.5	μA	13

Table 55. TSI electrical specifications (continued)

1. The TSI module is functional with capacitance values outside this range. However, optimal performance is not guaranteed.

- 2. Fixed external capacitance of 20 pF.
- 3. REFCHRG = 2, EXTCHRG=0.
- 4. REFCHRG = 0, EXTCHRG = 10.
- 5. $V_{DD} = 3.0 V.$
- 6. The programmable current source value is generated by multiplying the SCANC[REFCHRG] value and the base current.
- 7. The programmable current source value is generated by multiplying the SCANC[EXTCHRG] value and the base current.
- 8. Measured with a 5 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 8; lext = 16.
- 9. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 128, NSCN = 2; lext = 16.
- 10. Measured with a 20 pF electrode, reference oscillator frequency of 10 MHz, PS = 16, NSCN = 3; lext = 16.
- 11. Sensitivity defines the minimum capacitance change when a single count from the TSI module changes. Sensitivity depends on the configuration used. The documented values are provided as examples calculated for a specific configuration of operating conditions using the following equation: (C_{ref} * I_{ext})/(I_{ref} * PS * NSCN)

The typical value is calculated with the following configuration:

 I_{ext} = 6 μ A (EXTCHRG = 2), PS = 128, NSCN = 2, I_{ref} = 16 μ A (REFCHRG = 7), C_{ref} = 1.0 pF

The minimum value is calculated with the following configuration:

 I_{ext} = 2 µA (EXTCHRG = 0), PS = 128, NSCN = 32, I_{ref} = 32 µA (REFCHRG = 15), C_{ref} = 0.5 pF

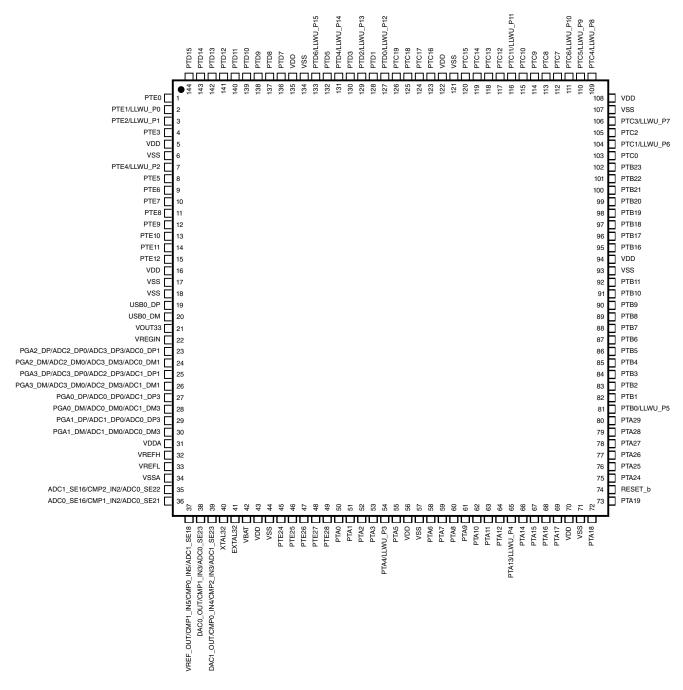
The highest possible sensitivity is the minimum value because it represents the smallest possible capacitance that can be measured by a single count.

- 12. Time to do one complete measurement of the electrode. Sensitivity resolution of 0.0133 pF, PS = 0, NSCN = 0, 1 electrode, EXTCHRG = 7.
- 13. REFCHRG=0, EXTCHRG=4, PS=7, NSCN=0F, LPSCNITV=F, LPO is selected (1 kHz), and fixed external capacitance of 20 pF. Data is captured with an average of 7 periods window.

7 Dimensions

۲	11	I	υ	u	t	
Г	II	I	υ	u	L	

144 LQFP	144 MAP BGA	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
_	C10	NC	NC	NC								
1	D3	PTE0	ADC1_SE4a	ADC1_SE4a	PTE0	SPI1_PCS1	UART1_TX	SDHC0_D1		I2C1_SDA	RTC_ CLKOUT	
2	D2	PTE1/ LLWU_P0	ADC1_SE5a	ADC1_SE5a	PTE1/ LLWU_P0	SPI1_SOUT	UART1_RX	SDHC0_D0		I2C1_SCL	SPI1_SIN	
3	D1	PTE2/ LLWU_P1	ADC1_SE6a	ADC1_SE6a	PTE2/ LLWU_P1	SPI1_SCK	UART1_ CTS_b	SDHC0_ DCLK				
4	E4	PTE3	ADC1_SE7a	ADC1_SE7a	PTE3	SPI1_SIN	UART1_ RTS_b	SDHC0_CMD			SPI1_SOUT	
5	E5	VDD	VDD	VDD								
6	F6	VSS	VSS	VSS								
7	E3	PTE4/ LLWU_P2	DISABLED		PTE4/ LLWU_P2	SPI1_PCS0	UART3_TX	SDHC0_D3				
8	E2	PTE5	DISABLED		PTE5	SPI1_PCS2	UART3_RX	SDHC0_D2		FTM3_CH0		
9	E1	PTE6	DISABLED		PTE6	SPI1_PCS3	UART3_ CTS_b	I2S0_MCLK		FTM3_CH1	USB_SOF_ OUT	
10	F4	PTE7	DISABLED		PTE7		UART3_ RTS_b	I2S0_RXD0		FTM3_CH2		
11	F3	PTE8	ADC2_SE16	ADC2_SE16	PTE8	I2S0_RXD1	UART5_TX	I2S0_RX_FS		FTM3_CH3		
12	F2	PTE9	ADC2_SE17	ADC2_SE17	PTE9	I2S0_TXD1	UART5_RX	I2S0_RX_ BCLK		FTM3_CH4		
13	F1	PTE10	DISABLED		PTE10		UART5_ CTS_b	I2S0_TXD0		FTM3_CH5		
14	G4	PTE11	ADC3_SE16	ADC3_SE16	PTE11		UART5_ RTS_b	I2S0_TX_FS		FTM3_CH6		
15	G3	PTE12	ADC3_SE17	ADC3_SE17	PTE12			I2S0_TX_ BCLK		FTM3_CH7		
16	E6	VDD	VDD	VDD								
17	F7	VSS	VSS	VSS								
18	H3	VSS	VSS	VSS								
19	H1	USB0_DP	USB0_DP	USB0_DP								
20	H2	USB0_DM	USB0_DM	USB0_DM								
21	G1	VOUT33	VOUT33	VOUT33								
22	G2	VREGIN	VREGIN	VREGIN								
23	J1	PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1	PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1	PGA2_DP/ ADC2_DP0/ ADC3_DP3/ ADC0_DP1								
24	J2	PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1	PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1	PGA2_DM/ ADC2_DM0/ ADC3_DM3/ ADC0_DM1								
25	K1	PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1	PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1	PGA3_DP/ ADC3_DP0/ ADC2_DP3/ ADC1_DP1								


rmout

144 LQFP	144 Map Bga	Pin Name	Default	ALTO	ALT1	ALT2	ALT3	ALT4	ALT5	ALT6	ALT7	EzPort
48	J4	PTE27	ADC3_SE4b	ADC3_SE4b	PTE27		UART4_ RTS_b	I2S1_MCLK				
49	H4	PTE28	ADC3_SE7a	ADC3_SE7a	PTE28							
50	J5	PTA0	JTAG_TCLK/ SWD_CLK/ EZP_CLK	TSI0_CH1	PTA0	UART0_ CTS_b/ UART0_ COL_b	FTM0_CH5				JTAG_TCLK/ SWD_CLK	EZP_CLK
51	J6	PTA1	JTAG_TDI/ EZP_DI	TSI0_CH2	PTA1	UART0_RX	FTM0_CH6				JTAG_TDI	EZP_DI
52	K6	PTA2	JTAG_TDO/ TRACE_ SWO/ EZP_DO	TSI0_CH3	PTA2	UART0_TX	FTM0_CH7				JTAG_TDO/ TRACE_ SWO	EZP_DO
53	K7	PTA3	JTAG_TMS/ SWD_DIO	TSI0_CH4	PTA3	UART0_ RTS_b	FTM0_CH0				JTAG_TMS/ SWD_DIO	
54	L7	PTA4/ LLWU_P3	NMI_b/ EZP_CS_b	TSI0_CH5	PTA4/ LLWU_P3		FTM0_CH1				NMI_b	EZP_CS_b
55	M8	PTA5	DISABLED		PTA5	USB_CLKIN	FTM0_CH2		CMP2_OUT	I2S0_TX_ BCLK	JTAG_TRST_ b	
56	E7	VDD	VDD	VDD								
57	G7	VSS	VSS	VSS								
58	J7	PTA6	ADC3_SE6a	ADC3_SE6a	PTA6	ULPI_CLK	FTM0_CH3	I2S1_RXD0	CLKOUT		TRACE_ CLKOUT	
59	J8	PTA7	ADC0_SE10	ADC0_SE10	PTA7	ULPI_DIR	FTM0_CH4	I2S1_RX_ BCLK			TRACE_D3	
60	K8	PTA8	ADC0_SE11	ADC0_SE11	PTA8	ULPI_NXT	FTM1_CH0	I2S1_RX_FS		FTM1_QD_ PHA	TRACE_D2	
61	L8	PTA9	ADC3_SE5a	ADC3_SE5a	PTA9	ULPI_STP	FTM1_CH1			FTM1_QD_ PHB	TRACE_D1	
62	M9	PTA10	ADC3_SE4a	ADC3_SE4a	PTA10	ULPI_DATA0	FTM2_CH0			FTM2_QD_ PHA	TRACE_D0	
63	L9	PTA11	ADC3_SE15	ADC3_SE15	PTA11	ULPI_DATA1	FTM2_CH1			FTM2_QD_ PHB		
64	K9	PTA12	CMP2_IN0	CMP2_IN0	PTA12	CAN0_TX	FTM1_CH0			I2S0_TXD0	FTM1_QD_ PHA	
65	J9	PTA13/ LLWU_P4	CMP2_IN1	CMP2_IN1	PTA13/ LLWU_P4	CAN0_RX	FTM1_CH1			I2S0_TX_FS	FTM1_QD_ PHB	
66	L10	PTA14	CMP3_IN0	CMP3_IN0	PTA14	SPI0_PCS0	UART0_TX			I2S0_RX_ BCLK	I2S0_TXD1	
67	L11	PTA15	CMP3_IN1	CMP3_IN1	PTA15	SPI0_SCK	UART0_RX			I2S0_RXD0		
68	K10	PTA16	CMP3_IN2	CMP3_IN2	PTA16	SPI0_SOUT	UART0_ CTS_b/ UART0_ COL_b			I2S0_RX_FS	12S0_RXD1	
69	K11	PTA17	ADC1_SE17	ADC1_SE17	PTA17	SPI0_SIN	UART0_ RTS_b			I2S0_MCLK		
70	E8	VDD	VDD	VDD								

8.3 K20 pinouts

The figure below shows the pinout diagram for the devices supported by this document. Many signals may be multiplexed onto a single pin. To determine what signals can be used on which pin, see the previous section.

nevision History

Rev. No.	Date	Substantial Changes
4	10/2012	Replaced TBDs throughout.
5	10/2013	Changes for 4N96B mask set:Min VDD operating requirement specification updated to support operation down to 1.71V.
		New specifications:
		 Updated Vdd_ddr min specification. Added Vodpu specification. Removed loz, loz_ddr, and loz_tamper Hi-Z leakage specifications. They have been replaced by new lina, lind, and Zind specifications. Fpll_ref_acc specification has been added.
		 I²C module was previously covered by the general switching specifications. To provide more detail on I²C operation a dedicated Inter-Integrated Circuit Interface (I²C) timing section has been added.
		Modified specifications:
		 Vref_ddr max spec has been updated. Tpor spec has been split into two specifications based on VDD slew rate. Trd1allx and Trd1alln max have been updated. 16-bit ADC Temp sensor slope and Temp sensor voltage (Vtemp25) have been modified. The typical values that were listed previously have been updated, and min and max specifications have been added.
		Corrections:
		 Some versions of the datasheets listed incorrect clock mode information in the "Diagram: Typical IDD_RUN operating behavior section." These errors have been corrected. Fintf_ft specification was previously shown as a max value. It has been corrected to be
		 shown as a typical value as originally intended. Corrected DDR write and read timing diagrams to show the correct location of the Tcmv specification. SDHC peripheral 50MHz high speed mode options were left out of the last datasheet.
6	09/2015	These have been added to the SDHC specifications section. Updated the footnotes of Thermal Attributes table Removed Power Sequencing section
		 Added footnote to ambient temperature specification of Thermal Operating requirements Removed "USB HS/LS/FS on-the-go controller with on-chip high speed transceiver" from features section Updated Terminology and guidelines section Updated the footnotes and the values of Power consumption operating behaviors table Added Notes in USB electrical specification section Updated I2C timing table

Table 57. Revision History (continued)