

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	266MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	0°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8241lvr266d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Write buffering for PCI and processor accesses
- Normal parity, read-modify-write (RMW), or ECC
- Data-path buffering between memory interface and processor
- Low-voltage TTL logic (LVTTL) interfaces
- 272 Mbytes of base and extended ROM/Flash/PortX space
- Base ROM space for 8-bit data path or same size as the SDRAM data path (32- or 64-bit)
- Extended ROM space for 8-, 16-, 32-bit gathering data path, 32- or 64-bit (wide) data path
- PortX: 8-, 16-, 32-, or 64-bit general-purpose I/O port using ROM controller interface with programmable address strobe timing, data ready input signal (DRDY), and 4 chip selects
- 32-bit PCI interface
 - Operates up to 66 MHz
 - PCI 2.2-compatible
 - PCI 5.0-V tolerance
 - Dual address cycle (DAC) for 64-bit PCI addressing (master only)
 - PCI locked accesses to memory
 - Accesses to PCI memory, I/O, and configuration spaces
 - Selectable big- or little endian operation
 - Store gathering of processor-to-PCI write and PCI-to-memory write accesses
 - Memory prefetching of PCI read accesses
 - Selectable hardware-enforced coherency
 - PCI bus arbitration unit (five request/grant pairs)
 - PCI agent mode capability
 - Address translation with two inbound and outbound units (ATU)
 - Internal configuration registers accessible from PCI
 - Two-channel integrated DMA controller (writes to ROM/PortX not supported)
 - Direct mode or chaining mode (automatic linking of DMA transfers)
 - Scatter gathering-read or write discontinuous memory
 - 64-byte transfer queue per channel
 - Interrupt on completed segment, chain, and error
 - Local-to-local memory
 - PCI-to-PCI memory
 - Local-to-PCI memory
 - PCI memory-to-local memory
- Message unit
 - Two doorbell registers
 - Two inbound and two outbound messaging registers
 - I₂O message interface

4 Electrical and Thermal Characteristics

This section provides the AC and DC electrical specifications and thermal characteristics for the MPC8241.

4.1 DC Electrical Characteristics

This section covers ratings, conditions, and other characteristics.

4.1.1 Absolute Maximum Ratings

This section describes the MPC8241 DC electrical characteristics. Table 1 provides the absolute maximum ratings.

Characteristic ¹	Symbol	Range	Unit
Supply voltage—CPU core and peripheral logic	V _{DD}	-0.3 to 2.1	V
Supply voltage—memory bus drivers, PCI and standard I/O buffers	GV _{DD} OV _{DD}	-0.3 to 3.6	V
Supply voltage—PLLs	AV _{DD} /AV _{DD} 2	-0.3 to 2.1	V
Supply voltage—PCI reference	LV _{DD}	-0.3 to 5.4	V
Input voltage ²	V _{in}	-0.3 to 3.6	V
Operational die-junction temperature range	Tj	0 to 105	•C
Storage temperature range	T _{stg}	–55 to 150	•C

Table 1. Absolute Maximum Ratings

Notes:

1. Table 2 provides functional and tested operating conditions. Absolute maximum ratings are stress ratings only, and functional operation at the maximums is not guaranteed. Stresses beyond those listed may affect device reliability or cause permanent damage to the device.

2. PCI inputs with LV_{DD} = 5 V ± 5% V DC may be correspondingly stressed at voltages exceeding LV_{DD} + 0.5 V DC.

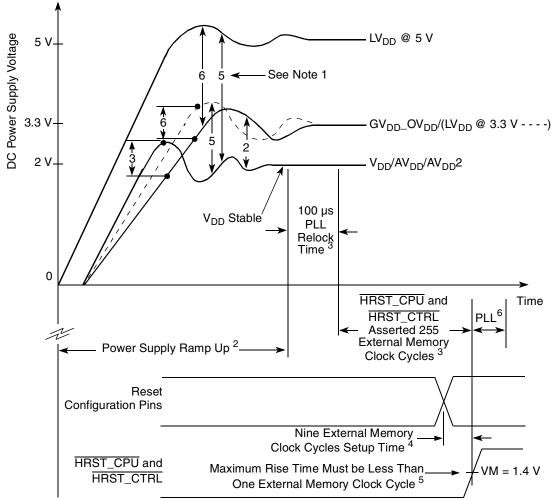
4.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8241.

Chara	cteristic	Symbol	Recommended Value	Unit	Notes
Supply voltage		V _{DD}	$1.8\pm100\ mV$	V	2
I/O buffer supply for PCI and sta memory bus drivers	andard; supply voltages for	GV _{DD} OV _{DD}	3.3 ± 0.3	V	2
CPU PLL supply voltage		AV _{DD}	$1.8\pm100~\text{mV}$		2
PLL supply voltage—periphera	logic	AV _{DD} 2	$1.8\pm100~\text{mV}$	V	2
PCI reference		LV _{DD}	$5.0\pm5\%$	V	4, 5, 6
			3.3 ± 0.3	V	5, 6, 7
Input voltage	PCI inputs	V _{in}	0 to 3.6 or 5.75	V	4, 7
	All other inputs		0 to 3.6	V	8
Die-junction temperature	•	Тј	0 to 105	•C	

Table 2. Recommended Operating Conditions ¹

Notes:


1. Freescale has tested these operating conditions and recommends them. Proper device operation outside of these conditions is not guaranteed.

- Caution: GV_{DD}_OV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}/AV_{DD}2 by more than 1.8 V at any time including during power-on reset. Note that GV_{DD}_OV_{DD} pins are all shorted together: This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. Connections should not be made to individual PWRRING pins.
- Caution: V_{DD}/AV_{DD}/AV_{DD}2 must not exceed GV_{DD}OV_{DD} by more than 0.6 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. PCI pins are designed to withstand LV_{DD} + 0.5 V DC when LV_{DD} is connected to a 5.0 V DC power supply.
- 5. Caution: LV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}2 by more than 5.4 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 6. Caution: LV_{DD} must not exceed GV_{DD}OV_{DD} by more than 3.0 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 7. PCI pins are designed to withstand LV_{DD} + 0.5 V DC when LV_{DD} is connected to a 3.3 V DC power supply.
- Caution: Input voltage (V_{in}) must not be greater than the supply voltage (V_{DD}/AV_{DD}/AV_{DD}2) by more than 2.5 V at all times including during power-on reset. Input voltage (V_{in}) must not be greater than GV_{DD}OV_{DD} by more than 0.6 V at all times including during power-on reset.

NP____

Electrical and Thermal Characteristics

Figure 2 shows supply voltage sequencing and separation cautions.

Notes:

- 1. Numbers associated with waveform separations correspond to caution numbers listed in Table 2.
- 2. See the Cautions section of Table 2 for details on this topic.
- 3. Refer to Table 8 for details on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 10 for details on reset configuration pin setup timing requirements.
- 5. HRST_CPU/HRST_CTRL must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the device to be in the nonreset state.
- 6. PLL_CFG signals must be driven on reset and must be held for at least 25 clock cycles after the negation of HRST_CTRL and HRST_CPU negate in order to be latched.

Figure 2. Supply Voltage Sequencing and Separation Cautions

Figure 3 shows the undershoot and overshoot voltage of the memory interface.

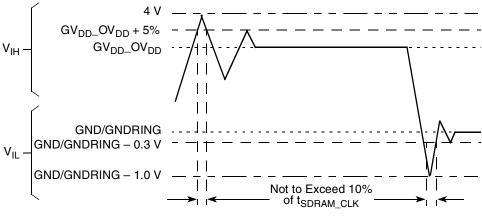


Figure 3. Overshoot/Undershoot Voltage

Figure 4 and Figure 5 show the undershoot and overshoot voltage of the PCI interface for the 3.3- and 5-V signals, respectively.

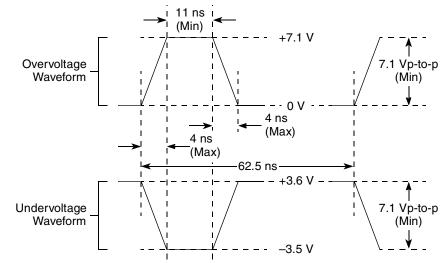


Figure 4. Maximum AC Waveforms for 3.3-V Signaling

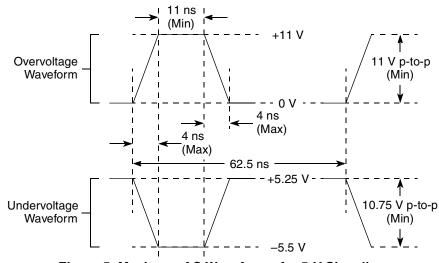


Figure 5. Maximum AC Waveforms for 5-V Signaling

4.2 DC Electrical Characteristics

Table 3 provides the DC electrical characteristics for the MPC8241 at recommended operating conditions.

Characteristics	Conditions	Symbol	Min	Мах	Unit	Notes
Input high voltage	PCI only, except PCI_SYNC_IN	V _{IH}	$0.65 \times \text{GV}_{\text{DD}} - \text{OV}_{\text{DD}}$	LV _{DD}	V	1
Input low voltage	PCI only, except PCI_SYNC_IN	V _{IL}	—	$0.3 \times \text{GV}_{\text{DD}}$ OV_{DD}	V	
Input high voltage	All other pins, including PCI_SYNC_IN (GV _{DD} _OV _{DD} = 3.3 V)	V _{IH}	2.0	3.3	V	
Input low voltage	All inputs, including PCI_SYNC_IN	V _{IL}	GND/GNDRING	0.8	V	2
Input leakage current for pins using DRV_PCI driver	$0.5 V \le V_{in} \le 2.7 V$ @ LV _{DD} = 4.75 V	۱ _L	—	±70	μA	3
Input leakage current all others	$ LV_{DD} = 3.6 V \\ GV_{DD} = OV_{DD} \le 3.465 V $	ΙL	—	±10	μA	3
Output high voltage	I_{OH} = driver dependent (GV _{DD} _OV _{DD} = 3.3 V)	V _{OH}	2.4	_	V	4
Output low voltage	I_{OL} = driver dependent (GV _{DD} _OV _{DD} = 3.3 V)	V _{OL}	_	0.4	V	4

Table 3. DC Electrical Specifications

Characteristics	Conditions	Symbol	Min	Мах	Unit	Notes
Capacitance	V _{in} = 0 V, f = 1 MHz	C _{in}	_	16.0	рF	

Notes:

- 1. See Table 16 for pins with internal pull-up resistors.
- 2. All grounded pins are connected together.
- 3. Leakage current is measured on input and output pins in the high-impedance state. The leakage current is measured for nominal GV_{DD}OV_{DD}/LV_{DD} and V_{DD} or both GV_{DD}OV_{DD}/LV_{DD} and V_{DD} must vary in the same direction.
- 4. See Table 4 for the typical drive capability of a specific signal pin based on the type of output driver associated with that pin as listed in Table 16.

4.2.1 Output Driver Characteristics

Table 4 provides information on the characteristics of the output drivers referenced in Table 16. The values are preliminary estimates from an IBIS model and are not tested.

Driver Type	Programmable Output Impedance (Ω)	Supply Voltage	I _{ОН}	I _{OL}	Unit	Notes
DRV_STD_MEM	20 (default)	$GV_{DD}OV_{DD} = 3.3 V$	36.6	18.0	mA	2, 4
	40		18.6	9.2	mA	2, 4
DRV_PCI	20		12.0	12.4	mA	1, 3
	40 (default)		6.1	6.3	mA	1, 3
DRV_MEM_CTRL	6 (default)		89.0	42.3	mA	2, 4
DRV_PCI_CLK DRV_MEM_CLK	20		36.6	18.0	mA	2, 4
	40		18.6	9.2	mA	2, 4

Table 4. Drive Capability of MPC8241 Output Pins 5,6

Notes:

- 1. For DRV_PCI, I_{OH} read from the IBIS listing in the pull-up mode, I(Min) column, at the 0.33-V label by interpolating between the 0.3- and 0.4-V table entries current values which corresponds to the PCI $V_{OH} = 2.97 = 0.9 \times GV_{DD} OV_{DD} (GV_{DD} OV_{DD} = 3.3 V)$ where table entry voltage = $GV_{DD} OV_{DD} PCI V_{OH}$.
- 2. For all others with GV_{DD} OV_{DD} = 3.3 V, I_{OH} read from the IBIS listing in the pull-up mode, I(Min) column, at the 0.9-V table entry which corresponds to the V_{OH} = 2.4 V where table entry voltage = GV_{DD} V_{OH} .
- 3. For DRV_PCI, I_{OL} read from the IBIS listing in the pull-down mode, I(Min) column, at 0.33 V = PCI V_{OL} = $0.1 \times GV_{DD}$ _OV_{DD} (GV_{DD}_OV_{DD} = 3.3 V) by interpolating between the 0.3- and 0.4-V table entries.
- 4. For all others with GV_{DD}_OV_{DD} = 3.3 V, I_{OL} read from the IBIS listing in the pull-down mode, I(Min) column, at the 0.4-V table entry.
- 5. See driver bit details for output driver control register (0x73) in the MPC8245 Integrated Processor Reference Manual.
- 6. See Chip Errata No. 19 in the MPC8245/MPC8241 Integrated Processor Chip Errata.

NP

Table 8. Clock AC Timing Specifications (continued)

At recommended operating conditions (see Table 2) with LV_{DD} = 3.3 V \pm 0.3 V

Num	Characteristics and Conditions	Min	Мах	Unit	Notes
21	OSC_IN frequency stability	_	100	ppm	

Notes:

- 1. Rise and fall times for the PCI_SYNC_IN input are measured from 0.4 through 2.4 V.
- 2. Specification value at maximum frequency of operation.
- 3. Pin-to-pin skew includes quantifying the additional amount of clock skew (or jitter) from the DLL besides any intentional skew added to the clocking signals from the variable length DLL synchronization feedback loop, that is, the amount of variance between the internal *sys_logic_clk* and the SDRAM_SYNC_IN signal after the DLL is locked. While pin-to-pin skew between SDRAM_CLKs can be measured, the relationship between the internal *sys_logic_clk* and the external SDRAM_SYNC_IN cannot be measured and is guaranteed by design.
- 4. Relock time is guaranteed by design and characterization. Relock time is not tested.
- 5. Relock timing is guaranteed by design. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and PCI_SYNC_IN are reached during the reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRST_CPU/HRST_CTRL must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the reset sequence.
- 6. DLL_EXTEND is bit 7 of the PMC2 register <72>. N is a non-zero integer (see Figure 7 through Figure 10). T_{clk} is the period of one SDRAM_SYNC_OUT clock cycle in ns. T_{loop} is the propagation delay of the DLL synchronization feedback loop (PC board runner) from SDRAM_SYNC_OUT to SDRAM_SYNC_IN in ns; 6.25 inches of loop length (unloaded PC board runner) corresponds to approximately 1 ns of delay. For details about how Figure 7 through Figure 10 may be used, refer to the Freescale application note AN2164, MPC8245/MPC8241 Memory Clock Design Guidelines, for details on MPC8241 memory clock design.
- 7. Rise and fall times for the OSC_IN input are guaranteed by design and characterization. OSC_IN input rise and fall times are not tested.

Figure 6 shows the PCI_SYNC_IN input clock timing diagram, and Figure 7 through Figure 10 show the DLL locking range loop delay versus frequency of operation.

VM = Midpoint Voltage (1.4 V)

Figure 6. PCI_SYNC_IN Input Clock Timing Diagram

Register settings that define each DLL mode are shown in Table 9.

DLL Mode	Bit 2 of Configuration Register at 0x76	Bit 7 of Configuration Register at 0x72
Normal tap delay, No DLL extend	0	0
Normal tap delay, DLL extend	0	1
Max tap delay, No DLL extend	1	0
Max tap delay, DLL extend	1	1

Table 9. DLL Mode Definition

The DLL_MAX_DELAY bit can lengthen the amount of time through the delay line by increasing the time between each of the 128 tap points in the delay line. Although this increased time makes it easier to guarantee that the reference clock is within the DLL lock range, there may be slightly more jitter in the output clock of the DLL if the phase comparator shifts the clock between adjacent tap points. Refer to the Freescale application note AN2164, *MPC8245/MPC8241 Memory Clock Design Guidelines: Part 1*, for details on DLL modes and memory design.

The value of the current tap point after the DLL locks can be determined by reading bits 6–0 (DLL_TAP_COUNT) of the DLL tap count register (DTCR, located at offset 0xE3). These bits store the value (binary 0 through 127) of the current tap point and can indicate whether the DLL advances or decrements as it maintains the DLL lock. Therefore, for evaluation purposes, DTCR can be read for all DLL modes that support the T_{loop} value used for the trace length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN. The DLL mode with the smallest tap point value in the DTCR should be used because the bigger the tap point value, the more jitter that can be expected for clock signals. Keeping a DLL mode locked below tap point decimal 12 is not recommended.

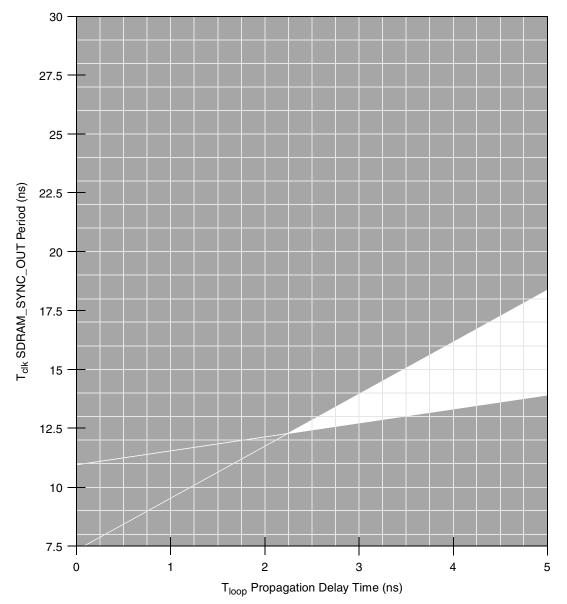


Figure 10. DLL Locking Range Loop Delay versus Frequency of Operation for DLL_Extend=1 and Max Tap Delay

4.5.2 Input AC Timing Specifications

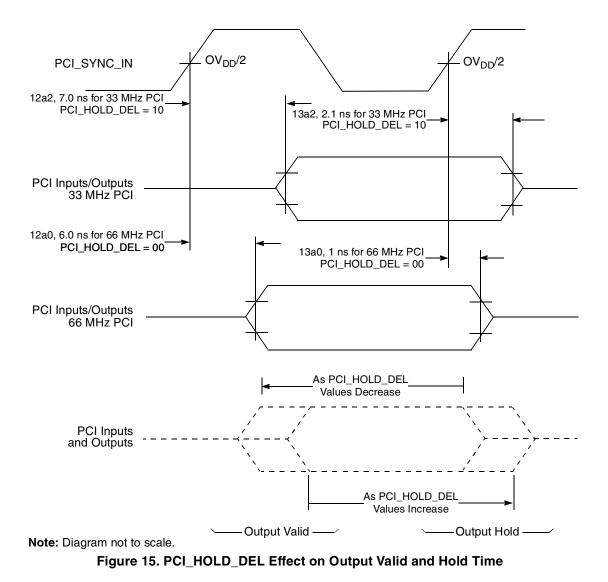
Table 10 provides the input AC timing specifications at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 V \pm 0.3 V$. See Figure 11 and Figure 12.

Num	Characteristic	Min	Мах	Unit	Notes
10a	PCI input signals valid to PCI_SYNC_IN (input setup)	3.0	—	ns	1, 3
10b	Memory input signals valid to sys_logic_clk (input setup)				

Table 10. Input AC Timing Specifications

Num	Characteristic	Min	Max	Unit	Notes
10b0	Tap 0, register offset <0x77>, bits 5:4 = 0b00	2.6	_	ns	2, 3, 6
10b1	Tap 1, register offset <0x77>, bits 5:4 = 0b01	1.9	_		
10b2	Tap 2, register offset <0x77>, bits 5:4 = 0b10 (default)	1.2	—		
10b3	Tap 3, register offset <0x77>, bits 5:4 = 0b11	0.5	—		
10c	PIC miscellaneous debug input signals valid to <i>sys_logic_clk</i> (input setup)	3.0	—	ns	2, 3
10d	I ² C input signals valid to <i>sys_logic_clk</i> (input setup)	3.0	—	ns	2, 3
10e	Mode select inputs valid to HRST_CPU/HRST_CTRL (input setup)	$9 imes t_{CLK}$	_	ns	2, 3–5
11	T _{os} —SDRAM_SYNC_IN to <i>sys_logic_clk</i> offset time	0.4	1.0	ns	7
11a	sys_logic_clk to memory signal inputs invalid (input hold)				
11a0	Tap 0, register offset <0x77>, bits 5:4 = 0b00	0	—	ns	2, 3, 6
11a1	Tap 1, register offset <0x77>, bits 5:4 = 0b01	0.7	—		
11a2	Tap 2, register offset <0x77>, bits 5:4 = 0b10 (default)	1.4	—		
11a3	Tap 3, register offset <0x77>, bits 5:4 = 0b11	2.1	—		
11b	HRST_CPU/HRST_CTRL to mode select inputs invalid (input hold)	0	—	ns	2, 3, 5
11c	PCI_SYNC_IN to inputs invalid (input hold)	1.0	—	ns	1, 2, 3

Table 10. Input AC Timing Specifications (continued)


Notes:

1. All PCI signals are measured from GV_{DD} _ OV_{DD} /2 of the rising edge of PCI_SYNC_IN to 0.4 × GV_{DD} _ OV_{DD} of the signal in question for 3.3-V PCI signaling levels. See Figure 12.

- 2. All memory and related interface input signal specifications are measured from the TTL level (0.8 or 2.0 V) of the signal in question to the VM = 1.4 V of the rising edge of the memory bus clock. sys_logic_clk. sys_logic_clk is the same as PCI_SYNC_IN in 1:1 mode, but is twice the frequency in 2:1 mode (processor/memory bus clock rising edges occur on every rising and falling edge of PCI_SYNC_IN). See Figure 11.
- 3. Input timings are measured at the pin.
- 4. t_{CLK} is the time of one SDRAM_SYNC_IN clock cycle.
- 5. All mode select input signals specifications are measured from the TTL level (0.8 or 2.0 V) of the signal in question to the VM = 1.4 V of the rising edge of the HRST_CPU/HRST_CTRL signal. See Figure 13.
- The memory interface input setup and hold times are programmable to four possible combinations by programming bits 5:4 of register offset <0x77> to select the desired input setup and hold times.
- 7. T_{os} represents a timing adjustment for SDRAM_SYNC_IN with respect to sys_logic_clk. Due to the internal delay present on the SDRAM_SYNC_IN signal with respect to the sys_logic_clk inputs to the DLL, the resulting SDRAM clocks become offset by the delay amount. The feedback trace length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN must be shortened to accommodate this range relative to the SDRAM clock output trace lengths to maintain phase-alignment of the memory clocks with respect to sys_logic_clk. It is recommended that the length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN be shortened by 0.7 ns because that is the midpoint of the range of T_{os} and allows the impact from the range of T_{os} to be reduced. Additional analyses of trace lengths and SDRAM loading must be performed to optimize timing. For details on trace measurements and the T_{os} problem, refer to the Freescale application note AN2164, MPC8245/MPC8241 Memory Clock Design Guidelines.

Electrical and Thermal Characteristics

4.6 I^2C

This section describes the DC and AC electrical characteristics for the I²C interfaces of the MPC8241.

4.6.1 I²C DC Electrical Characteristics

Table 12 provides the DC electrical characteristics for the I²C interfaces.

Table 12. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V ± 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	
Low level output voltage	V _{OL}	0	$0.2 \times \text{OV}_{\text{DD}}$	V	1

Package Description

5.2 Pin Assignments and Package Dimensions

Figure 24 shows the top surface, side profile, and pinout of the MPC8241, 357 PBGA ZP package. Note that this is available for Rev. B parts only.

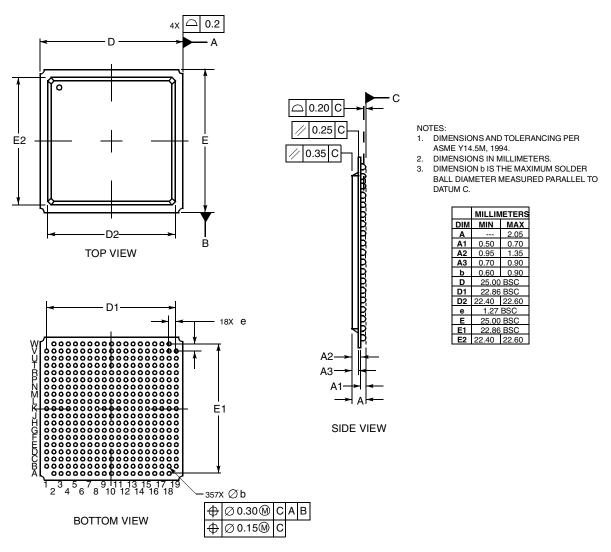


Figure 24. MPC8241 Package Dimensions and Pinout Assignments (ZP Package)

	1		ig (continued)		
Signal Name	Package Pin Number	Pin Type	Power Supply	Output Driver Type	Notes
TMS	T18	Input	GV_{DD} OV_{DD}	—	6, 13
TRST	R16	Input	$GV_{DD}OV_{DD}$	—	6, 13
	Power and	Ground Sign	als		
GNDRING/GND	F07 F08 F09 F10 F11 F12 F13 G07 G08 G09 G10 G11 G12 G13 H07 H08 H09 H10 H11 H12 H13 J07 J08 J09 J10 J11 J12 J13 K07 K08 K09 K10 K11 K12 K13 L07 L08 L09 L10 L11 L12 L13 M07 M08 M09 M10 M11 M12 M13 N07 N08 N09 N10 N11 N12 N13 P08 P09 P10 P11 P12 P13 R15	Ground	_		17
LV _{DD}	R18 U18 T1 U4 T6 W11 T14	Reference voltage 3.3 V, 5.0 V	LV _{DD}	_	_
GV _{DD} _OV _{DD} /PWRRING	D09 D10 D11 E06 E07 E08 E09 E10 E11 E12 E13 E14 F06 F14 G06 G14 H06 H14 J06 J14 K06 K14 L06 L14 M06 M14 N06 N14 P06 P07 P14 R08 R09 R10 R11 R12	Power for memory drivers and PCI/Stnd 3.3 V	GV _{DD} OV _{DD}	_	18
V _{DD}	F03 H3 L5 N4 P5 V5 U8 W12 W16 R13 P19 L19 H19 F19 F15 C15 A13 A8 B5 A2	Power for core 1.8 V	V _{DD}	_	_
No Connect	N5 W2 B1	—	_	—	_
AV _{DD}	M5	Power for PLL (CPU core logic) 1.8 V	AV _{DD}	_	_
AV _{DD} 2	R14	Power for PLL (peripheral logic) 1.8 V	AV _{DD} 2	_	_
	Debug/Man	ufacturing P	ins		
DA0/QACK	A3	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_STD_MEM	5, 11, 12
DA1/CKO	L1	Output	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_STD_MEM	5
DA2	R5	Output	$GV_{DD}OV_{DD}$	DRV_PCI	19
DA3/PCI_CLK4	V17	Output	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_PCI_CLK	5
DA4/REQ4	W13	I/O	$GV_{DD}OV_{DD}$	—	5, 6
DA5/GNT4	T11	Output	GV _{DD} OV _{DD}	DRV_PCI	2, 4, 5

Table 16. MPC8241 Pinout Listing (continued)

System Design Information

7.4 Pull-Up/Pull-Down Resistor Requirements

The data bus input receivers are normally turned off when no read operation is in progress; therefore, they do not require pull-up resistors on the bus. The data bus signals are: MDH[0:31], MDL[0:31], and PAR[0:7].

If the 32-bit data bus mode is selected, the input receivers of the unused data and parity bits (MDL[0:31] and PAR[4:7]) are disabled, and their outputs drive logic zeros when they would otherwise be driven. For this mode, these pins do not require pull-up resistors and should be left unconnected to minimize possible output switching.

The TEST0 pin requires a pull-up resistor of 120 Ω or less connected to GV_{DD} - OV_{DD} .

RTC should have weak pull-up resistors $(2-10 \text{ k}\Omega)$ connected to GV_{DD} - OV_{DD} and that the following signals should be pulled up to GV_{DD} - OV_{DD} with weak pull-up resistors $(2-10 \text{ k}\Omega)$: SDA, SCL, SMI, SRESET/SDMA12, TBEN/SDMA13, CHKSTOP_IN/SDMA14, TRIG_IN/RCS2, QACK/DA0, and DRDY.

The following PCI control signals should be pulled up to LV_{DD} (the clamping voltage) with weak pull-up resistors (2–10 k Ω): DEVSEL, FRAME, IRDY, LOCK, PERR, SERR, STOP, and TRDY. The resistor values may need to have stronger adjustment to reduce induced noise on specific board designs.

The following pins have internal pull-up resistors enabled at all times: $\overline{\text{REQ}}[3:0]$, $\overline{\text{REQ4}}/\text{DA4}$, TCK, TDI, TMS, and TRST. See Table 16.

The following pins have internal pull-up resistors that are enabled only while the device is in the reset state: GNT4/DA5, MDL0, FOE, RCS0, SDRAS, SDCAS, CKE, AS, MCP, MAA[0:2], and PMAA[0:2]. See Table 16.

The following pins are reset configuration pins: $\overline{\text{GNT4}/\text{DA5}}$, $\overline{\text{MDL}[0]}$, $\overline{\text{FOE}}$, $\overline{\text{RCS0}}$, $\overline{\text{CKE}}$, $\overline{\text{AS}}$, $\overline{\text{MCP}}$, $\overline{\text{QACK}/\text{DA0}}$, $\overline{\text{MAA}[0:2]}$, $\overline{\text{PMAA}[0:2]}$, $\overline{\text{SDMA}[1:0]}$, $\overline{\text{MDH}[16:31]}$, and $\overline{\text{PLL}_\text{CFG}[0:4]/\text{DA}[10:15]}$. These pins are sampled during reset to configure the device. The $\overline{\text{PLL}_\text{CFG}[0:4]}$ signals are sampled a few clocks after the negation of $\overline{\text{HRST}_\text{CPU}}$ and $\overline{\text{HRST}_\text{CTRL}}$.

Reset configuration pins should be tied to GND by means of $1-k\Omega$ pull-down resistors to ensure that a logic zero level is read into the configuration bits during reset if the default logic-one level is not desired.

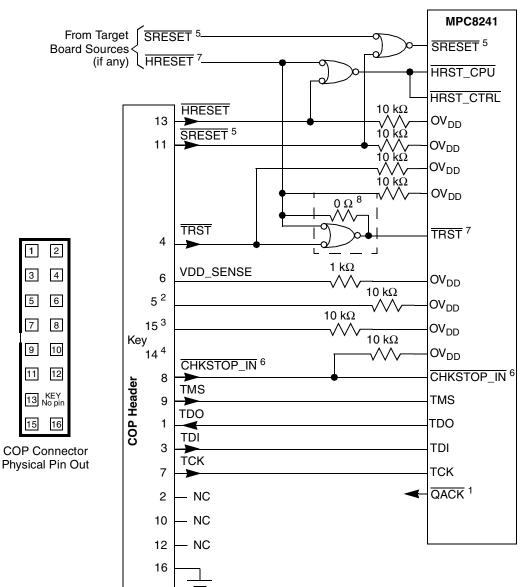
Any other unused active low input pins should be tied to a logic-one level by means of weak pull-up resistors $(2-10 \text{ k}\Omega)$ to the appropriate power supply listed in Table 16. Unused active high input pins should be tied to GND by means of weak pull-down resistors $(2-10 \text{ k}\Omega)$.

7.5 PCI Reference Voltage—LV_{DD}

The MPC8241 PCI reference voltage (LV_{DD}) pins should be connected to 3.3 ± 0.3 V power supply if interfacing the MPC8241 into a 3.3-V PCI bus system. Similarly, the LV_{DD} pins should be connected to $5.0 \text{ V} \pm 5\%$ power supply if interfacing the MPC8241 into a 5-V PCI bus system. For either reference voltage, the MPC8241 always performs 3.3-V signaling as described in the *PCI Local Bus Specification* (Rev. 2.2). The MPC8241 tolerates 5-V signals when interfaced into a 5-V PCI bus system. (See Errata No. 18 in the *MPC8245/MPC8241 Integrated Processor Chip Errata*).

7.6 JTAG Configuration Signals

Boundary scan testing is enabled through the JTAG interface signals. The TRST signal is optional in the IEEE 1149.1 specification, but is provided on all processors that implement the PowerPC architecture. While the TAP controller can be forced to the reset state using only the TCK and TMS signals, more reliable power-on reset performance will be obtained if the TRST signal is asserted during power-on reset. Because the JTAG interface is also used for accessing the common on-chip processor (COP) function, simply tying TRST to HRESET is not practical.


The COP function of these processors allows a remote computer system (typically, a PC with dedicated hardware and debugging software) to access and control the internal operations of the processor. The COP interface connects primarily through the JTAG port, with additional status monitoring signals. The COP port must independently assert HRESET or TRST to control the processor. If the target system has independent reset sources, such as voltage monitors, watchdog timers, power supply failures, or push-button switches, the COP reset signals must be merged into these signals with logic.

The arrangement shown in Figure 27 allows the COP port to independently assert HRESET or TRST, while ensuring that the target can drive HRESET as well. If the JTAG interface and COP header will not be used, TRST should be tied to HRESET through a 0- Ω isolation resistor so that it is asserted when the system reset signal (HRESET) is asserted, ensuring that the JTAG scan chain is initialized during power-on. Although Freescale recommends that the COP header be designed into the system as shown in Figure 27, if this is not possible, the isolation resistor will allow future access to TRST in the case where a JTAG interface may need to be wired onto the system in debug situations.

The COP interface has a standard header for connection to the target system, based on the 0.025" square-post, 0.100" centered header assembly (often called a Berg header). Typically, pin 14 is removed as a connector key.

There is no standardized way to number the COP header shown in Figure 27. Consequently, different emulator vendors number the pins differently. Some pins are numbered top-to-bottom and left-to-right while others use left-to-right then top-to-bottom and still others number the pins counter clockwise from pin 1 (as with an IC). Regardless of the numbering, the signal placement recommended in Figure 27 is common to all known emulators.

Notes:

- 1. QACK is an output and is not required at the COP header for emulation.
- 2. RUN/STOP normally on pin 5 of the COP header is not implemented on the MPC8241. Connect pin 5 of the COP header to OV_{DD} with a 1- k Ω pull-up resistor.
- 3. CKSTP_OUT normally on pin 15 of the COP header is not implemented on the MPC8241. Connect pin 15 of the COP header to OV_{DD} with a 10-k Ω pull-up resistor.
- 4. Pin 14 is not physically present on the COP header.
- 5. SRESET functions as output SDMA12 in extended ROM mode.
- 6. CHKSTOP_IN functions as output SDMA14 in extended ROM mode.
- 7. The COP port and target board should be able to independently assert HRESET and TRST to the processor to fully control the processor as shown.
- 8. If the JTAG interface is implemented, connect $\overline{\text{HRESET}}$ from the target source to $\overline{\text{TRST}}$ from the COP <u>header through an AND gate to $\overline{\text{TRST}}$ of the part. If the JTAG interface is not implemented, connect $\overline{\text{HRESET}}$ from the target source to $\overline{\text{TRST}}$ of the part through a 0- Ω isolation resistor.</u>

Figure 27. COP Connector Diagram

Document Revision History

Table 20. Part Numbers Addressed by MPC8241TXXPNS Series (Document No. MPC8241ECS01AD))

MPC	nnnn	т	XX	nnn	X	
MPC	8241	T = Extended temperature spec. -40° to 105°C	ZQ = thick substrate and thick mold cap PBGA (two layers)	166, 200 @ 1.8 V ± 100 mV	D:1.4 = Rev. ID:0x14	0x80811014

Notes:

1. See Section 5, "Package Description," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by hardware specifications addendums may support other maximum core frequencies.

8.3 Part Marking

Parts are marked as the example shown in Figure 32.

Notes:

MMMMM is the 5-digit mask number. ATWLYYWW is traceability code. CCCCC is the country code.

Figure 32. Part Marking for MPC8241 Device

9 Document Revision History

Table 21 provides a revision history for this hardware specification.

Table 21. Revision History Table

Revision	Date	Substantive Change(s)	
10	02/2009	In Table 16, "MPC8241 Pinout Listing," added footnote 10 to PMAA[2]. In Table 16, "MPC8241 Pinout Listing," removed footnote 12 for second listing of RCS3/TRIG_OUT.	
9	09/2007	Completely replaced Section 4.6 with compliant I ² C specifications as with other related integrated processor devices. Section 7.6, "JTAG Configuration Signals" Reworded paragraph beginning "The arrangement shown in Figure 27"	

Table 21.	Revision	History	Table ((continued))
	1101101011	11101019	10010	0011011000	

Revision	Date	Substantive Change(s)
8	12/19/2005	Document—Imported new template and made minor editoral corrections. Section 4.3.1—Before Figure 7, added paragraph for using DLL mode that provides lowest locked tap point read in 0xE3. Section 4.3.2—After Figure 12, added a sentence to introduce Figure 13. Section 4.3.3—After Table 11, added a sentence to introduce Figure 14. Section 4.3.4—After Table 13, added to the sentence to introduce Figures 16 thru 19. Section 4.3.6—After Table 16, added a sentence to introduce Figures 22 thru 25. Section 5.3—Updated the driver and I/O assignment information for the multiplexed PCI clock and DUART signals. Added note for HRST_CPU and HRST_CTRL, which had been mentioned only in Figure 2. Section 9.2—Updated the part ordering specifications for the extended temperature parts. Also updated Section 9.2 to reflect what we offer for new orders. Updated Figure 34 to match with current part marking format. Section 8.3—Added new section for part marking information.
7	05/11/2004	Section 4.1.4 — Table 4: Changed the default for drive strength of DRV_STD_MEM. Section 4.3.1 — Table 8: Changed the wording for item 15 description. Section 4.3.4 — Table 10: Changed T_{os} range and wording in note 7; Figure 11: changed wording for SDRAM_SYNC_IN description relative to T_{OS} .
6.1	_	Section 4.3.1 — Table 9: Corrected last row to state the correct description for the bit setting: Max tap delay, DLL extend. Figure 8: Corrected the label name for the DLL graph to state "DLL Locking Range Loop Delay vs. Frequency of Operation for DLL_Extend=1 and Normal Tap Delay"
6		Section 4.1.2 — Figure 2: Added note 6 and related label for latching of the PLL_CFG signals. Section 4.1.3 — Updated specifications for the input high and input low voltages of PCI_SYNC_IN. Section 4.3.1 — Table 8: Corrected typo for first number 1 a to 1; Updated characteristics for the DLL lock range for the default and remaining three DLL locking modes; Reworded note description for note 6. Replaced contents of Table 9 with bit descriptions for the four DLL locking modes. In Figures 7 through 10, updated the DLL locking mode graphs. Section 4.3.2 — Table 10: Changed the name of references for timing parameters from SDRAM_SYNC_IN to <i>sys_logic_clk</i> to be consistent with Figure 11. Followed the same change for note 2. Section 4.3.3 — Table 11: Changed the name of references for timing parameters from SDRAM_SYNC_IN to <i>sys_logic_clk</i> to be consistent with Figure 11. Followed the same change for note 2. Section 5.3 — Table 17: Removed extra listing of DRDY in test/configuration signal list and updated relevant notes for signal in memory Interface signal listing. Updated note #20. Added note 24 for the signals of the UART interface. Section 7.6 — Added relevant notes to this section and updated Figure 29.
5		Section 5.1— Updated package information to include all package offerings. Section 5.2— Included package case outline for ZP (Rev. B) packaging parts. Section 9— Updated Part markings for the offerings of the MPC8241. All sections— Nontechnical reformatting

Revision	Date	Substantive Change(s)
1		Updated document template. Section 1.4.1.5—Updated driver type names in Table 4 so that they are consistent with the driver types referred to in the <i>MPC8245 Integrated Processor Reference Manual</i> . Added notes 5 and 6 to Table 4. Section 1.4.3.1—Added reference to AN2164 in note 7. Labeled N value in Figures 5 through 8. Section 1.4.3.2—Updated Figure 9 to show T _{os} . Table 9—Changed default for 0x77 bits 5:4 to 0b10. Section 1.4.3.3—Added item 12e to Table 10 for SDRAM_SYNC_IN to Output Valid Timing. Updated Figure 13 to state GV _{DD} _OV _{DD} instead of OV _{DD} . Section 1.5.3—Updated driver type names to match those used in Table 4. Updated notes for the following signals: DRDY, SDRAM_CLK[0:3], MIV, RTC, TDO, and DA[11]. Section 1.6—Updated PLL table and notes. Removed old Section 1.7.2 on voltage sequencing requirements. Added cautions regarding voltage sequencing to the end of Table 2 in Section 1.4.1.2. Section 1.7.3—Changed sentence recommendation regarding decoupling capacitors. Section 1.7.6—Added reference to AN2164. Section 1.7.6—Added sentence regarding the PLL_CFG signals. Removed old Section 1.7.8 since the MPC8241 cannot be used as a drop in replacement for the MPC8240 because of pin compatibility issues. Section 1.7.8—Updated TRST information in this section and Figure 26. Section 1.7.9—Updated Isf for heat sink and thermal interface vendors. Section 1.9—Changed format of ordering information section. Added tables to reflect part number specifications also available. Added Sections 1.9.2 and 1.9.3.
0.3	_	Corrected solder ball information in Section 1.5.1 to 62 Sn/36 Pb/2 Ag. Section 1.4.3.1—Corrected DLL_EXTEND labeling in Figures 5 through 8. Removed note for pin TRIG_OUT/RCS3 in Table 16, as well as from the list of pins needing to be pulled up to IV_{DD} in Section 1.7.6. Corrected order information labeling in Section 1.9 to MPC8241XZPXXXX. Also corrected label description of ZU = PBGA to ZP = PBGA.
0.2	_	Table 16—Corrected pin number for PLL_CFG0/DA10 to N3. The pin was already correctly listed for DA10/PLL_CFG0. Updated note 1 to reflect pin assignments for the MPC8241. Updated footnotes throughout document. Section 1.4.3.3—Updated note 4 to correct bit values of PCI_HOLD_DEL in PMCR2. Section 1.6—Updated notes in Table 17. Included memory VCO minimum and maximum numbers. Section 1.7.8—Updated description of bits PCI_HOLD_DEL in PMCR2. Section 1.7.10.3—Replaced thermal characterization parameter (YJT) with correct thermal characterization parameter (ψ_{JT}). Changed ψ_{π} symbol to ψ_{JT} .
0.1	_	Updated Features list in Section 1.2. Corrected pin assignments in Table 16 for DA[15] and DQM[3] signals. Added vendor (Cool Innovations, Inc.) to list of heat sink vendors.
0		Initial release.