

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	166MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/kmpc8241tvr166d

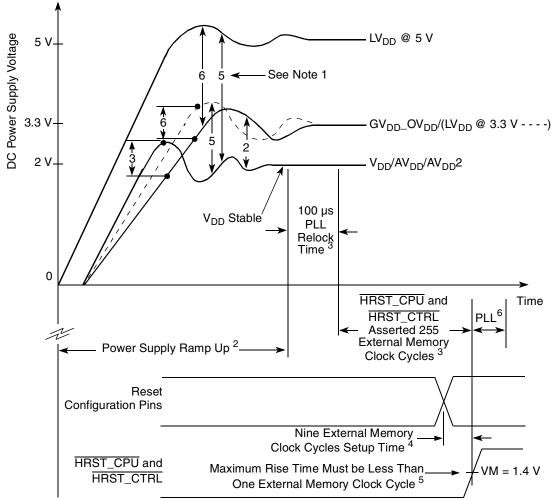
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

- I²C controller with full master/slave support that accepts broadcast messages
- Programmable interrupt controller (PIC)
 - Five hardware interrupts (IRQs) or 16 serial interrupts
 - Four programmable timers with cascade
- Two (dual) universal asynchronous receiver/transmitters (UARTs)
- Integrated PCI bus and SDRAM clock generation
- Programmable PCI bus and memory interface output drivers
- System level performance monitor facility
- Debug features
 - Memory attribute and PCI attribute signals
 - Debug address signals
 - $\overline{\text{MIV}}$ signal—marks valid address and data bus cycles on the memory bus
 - Programmable input and output signals with watchpoint capability
 - Error injection/capture on data path
 - IEEE Std. 1149.1 (JTAG)/test interface

3 General Parameters


The following list summarizes the general parameters of the MPC8241:

Technology	0.25 µm CMOS, five-layer metal
Die size	49.2 mm ²
Transistor count	4.5 million
Logic design	Fully static
Packages	Surface-mount 357 (thick substrate and thick mold cap) plastic ball grid array (PBGA)
Core power supply	1.8 V \pm 100 mV DC (nominal; see Table 2 for details and recommended operating conditions)
I/O power supply	3.0 to 3.6 V DC

NP____

Electrical and Thermal Characteristics

Figure 2 shows supply voltage sequencing and separation cautions.

Notes:

- 1. Numbers associated with waveform separations correspond to caution numbers listed in Table 2.
- 2. See the Cautions section of Table 2 for details on this topic.
- 3. Refer to Table 8 for details on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 10 for details on reset configuration pin setup timing requirements.
- 5. HRST_CPU/HRST_CTRL must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the device to be in the nonreset state.
- 6. PLL_CFG signals must be driven on reset and must be held for at least 25 clock cycles after the negation of HRST_CTRL and HRST_CPU negate in order to be latched.

Figure 2. Supply Voltage Sequencing and Separation Cautions

Figure 3 shows the undershoot and overshoot voltage of the memory interface.

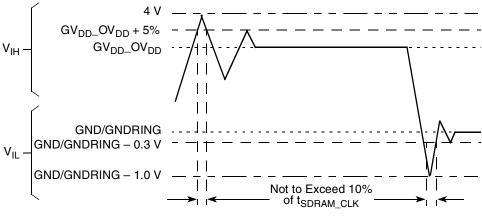


Figure 3. Overshoot/Undershoot Voltage

Figure 4 and Figure 5 show the undershoot and overshoot voltage of the PCI interface for the 3.3- and 5-V signals, respectively.

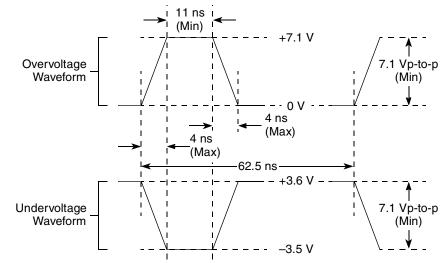


Figure 4. Maximum AC Waveforms for 3.3-V Signaling

Electrical and Thermal Characteristics

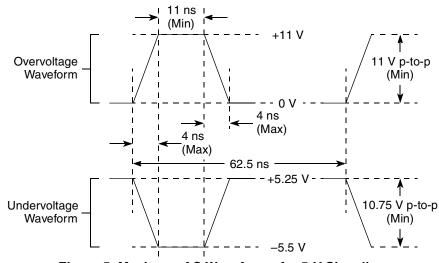


Figure 5. Maximum AC Waveforms for 5-V Signaling

4.2 DC Electrical Characteristics

Table 3 provides the DC electrical characteristics for the MPC8241 at recommended operating conditions.

Characteristics	Conditions	Symbol	Min	Мах	Unit	Notes
Input high voltage	PCI only, except PCI_SYNC_IN	V _{IH}	$0.65 \times \text{GV}_{\text{DD}} - \text{OV}_{\text{DD}}$	LV _{DD}	V	1
Input low voltage	PCI only, except PCI_SYNC_IN	V _{IL}	—	$0.3 \times \text{GV}_{\text{DD}}$ OV_{DD}	V	
Input high voltage All other pins, including PCI_SYNC_IN (GV _{DD} _OV _{DD} = 3.3 V)		V _{IH}	2.0	3.3	V	
Input low voltage	ut low voltage All inputs, including PCI_SYNC_IN		GND/GNDRING	0.8	V	2
Input leakage current for pins using DRV_PCI driver	$0.5 V \le V_{in} \le 2.7 V$ @ LV _{DD} = 4.75 V	۱ _L	—	±70	μA	3
Input leakage current all others			—	±10	μA	3
Output high voltage	I_{OH} = driver dependent (GV _{DD} _OV _{DD} = 3.3 V)	V _{OH}	2.4	_	V	4
Output low voltage	Output low voltage I_{OL} = driver dependent $(GV_{DD} - OV_{DD} = 3.3 \text{ V})$		_	0.4	V	4

Table 3. DC Electrical Specifications

NP

Table 8. Clock AC Timing Specifications (continued)

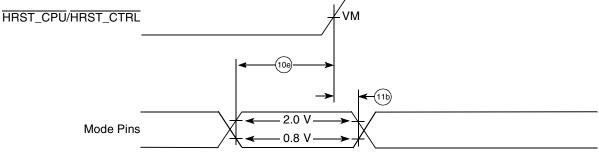
At recommended operating conditions (see Table 2) with LV_{DD} = 3.3 V \pm 0.3 V

Num	Characteristics and Conditions	Min	Мах	Unit	Notes
21	OSC_IN frequency stability	_	100	ppm	

Notes:

- 1. Rise and fall times for the PCI_SYNC_IN input are measured from 0.4 through 2.4 V.
- 2. Specification value at maximum frequency of operation.
- 3. Pin-to-pin skew includes quantifying the additional amount of clock skew (or jitter) from the DLL besides any intentional skew added to the clocking signals from the variable length DLL synchronization feedback loop, that is, the amount of variance between the internal *sys_logic_clk* and the SDRAM_SYNC_IN signal after the DLL is locked. While pin-to-pin skew between SDRAM_CLKs can be measured, the relationship between the internal *sys_logic_clk* and the external SDRAM_SYNC_IN cannot be measured and is guaranteed by design.
- 4. Relock time is guaranteed by design and characterization. Relock time is not tested.
- 5. Relock timing is guaranteed by design. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and PCI_SYNC_IN are reached during the reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRST_CPU/HRST_CTRL must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the reset sequence.
- 6. DLL_EXTEND is bit 7 of the PMC2 register <72>. N is a non-zero integer (see Figure 7 through Figure 10). T_{clk} is the period of one SDRAM_SYNC_OUT clock cycle in ns. T_{loop} is the propagation delay of the DLL synchronization feedback loop (PC board runner) from SDRAM_SYNC_OUT to SDRAM_SYNC_IN in ns; 6.25 inches of loop length (unloaded PC board runner) corresponds to approximately 1 ns of delay. For details about how Figure 7 through Figure 10 may be used, refer to the Freescale application note AN2164, MPC8245/MPC8241 Memory Clock Design Guidelines, for details on MPC8241 memory clock design.
- 7. Rise and fall times for the OSC_IN input are guaranteed by design and characterization. OSC_IN input rise and fall times are not tested.

Figure 6 shows the PCI_SYNC_IN input clock timing diagram, and Figure 7 through Figure 10 show the DLL locking range loop delay versus frequency of operation.



VM = Midpoint Voltage (1.4 V)

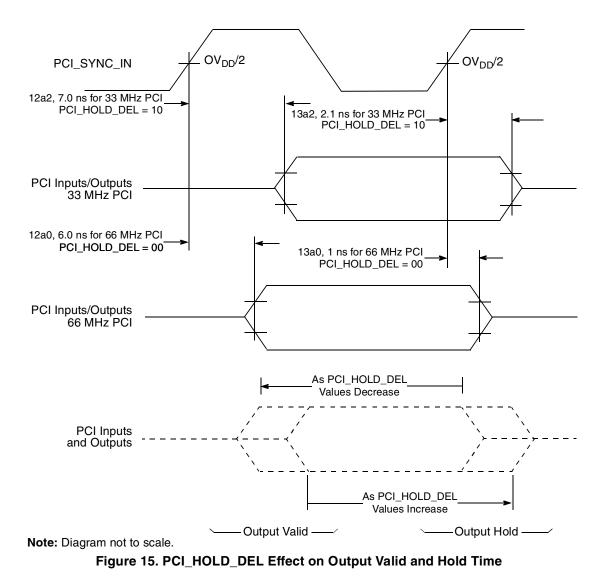
Figure 6. PCI_SYNC_IN Input Clock Timing Diagram

Figure 13 shows the input timing diagram for mode select signals.

VM = Midpoint Voltage (1.4 V)

Figure 13. Input Timing Diagram for Mode Select Signals

4.5.3 Output AC Timing Specification


Table 11 provides the processor bus AC timing specifications for the MPC8241 at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 V \pm 0.3 V$ (see Figure 11). All output timings assume a purely resistive 50- Ω load (see Figure 14). Output timings are measured at the pin; time-of-flight delays must be added for trace lengths, vias, and connectors in the system. These specifications are for the default driver strengths that Table 4 indicates.

Num	Characteristic	Min	Мах	Unit	Notes
12a	PCI_SYNC_IN to output valid, see Figure 15			4	
12a0	Tap 0, PCI_HOLD_DEL = 00, [MCP,CKE] = 11, 66 MHz PCI (default)	_	6.0	ns	1, 3
12a1	Tap 1, PCI_HOLD_DEL = 01, [MCP,CKE] = 10	—	6.5		
12a2	Tap 2, PCI_HOLD_DEL = 10, [MCP,CKE] = 01, 33 MHz PCI	—	7.0		
12a3	Tap 3, PCI_HOLD_DEL = 11, [MCP,CKE] = 00	—	7.5		
12b	<i>sys_logic_clk</i> to output valid (memory address, control, and data signals)	—	4.5	ns	2
12c	<i>sys_logic_clk</i> to output valid (for all others)	—	7.0	ns	2
12d	<i>sys_logic_clk</i> to output valid (for I ² C)	—	5.0	ns	2
12e	<i>sys_logic_clk</i> to output valid (ROM/Flash/Port X)	—	6.0	ns	2
13a	Output hold (PCI), see Figure 15				
13a0	Tap 0, PCI_HOLD_DEL = 00, [MCP,CKE] = 11, 66 MHz PCI (default)	2.0		ns	1, 3, 4
13a1	Tap 1, PCI_HOLD_DEL = 01, [MCP,CKE] = 10	2.5	_		
13a2	Tap 2, PCI_HOLD_DEL = 10, [MCP,CKE] = 01, 33 MHz PCI	3.0	_		
13a3	Tap 3, PCI_HOLD_DEL = 11, [MCP,CKE] = 00	3.5			
13b	Output hold (all others)	1.0		ns	2
14a	PCI_SYNC_IN to output high impedance (for PCI)	—	14.0	ns	1, 3

Table 11. Output AC Timing Specifications

Electrical and Thermal Characteristics

4.6 I^2C

This section describes the DC and AC electrical characteristics for the I²C interfaces of the MPC8241.

4.6.1 I²C DC Electrical Characteristics

Table 12 provides the DC electrical characteristics for the I²C interfaces.

Table 12. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Parameter	Symbol	Min	Мах	Unit	Notes
Input high voltage level	V _{IH}	$0.7 imes OV_{DD}$	OV _{DD} + 0.3	V	
Input low voltage level	V _{IL}	-0.3	$0.3 imes OV_{DD}$	V	
Low level output voltage	V _{OL}	0	$0.2 \times \text{OV}_{\text{DD}}$	V	1

Electrical and Thermal Characteristics

Table 12. I²C DC Electrical Characteristics

At recommended operating conditions with OV_{DD} of 3.3 V \pm 5%.

Pulse width of spikes which must be suppressed by the input filter	t _{i2KHKL}	0	50	ns	2
Input current each I/O pin (input voltage is between $0.1 \times \text{OV}_{DD}$ and $0.9 \times \text{OV}_{DD}(\text{max})$	I _I	-10	10	μA	3
Capacitance for each I/O pin	Cl	_	10	pF	

Notes:

1. Output voltage (open drain or open collector) condition = 3 mA sink current.

2. Refer to the MPC8245 Integrated Processor Reference Manual for information on the digital filter used.

3. I/O pins obstruct the SDA and SCL lines if the OV_{DD} is switched off.

4.6.2 I²C AC Electrical Specifications

Table 13 provides the AC timing parameters for the I^2C interfaces.

Table 13. I²C AC Electrical Specifications

All values refer to $V_{IH}\left(min\right)$ and $V_{IL}\left(max\right)$ levels (see Table 12).

Parameter	Symbol ¹	Min	Мах	Unit
SCL clock frequency	f _{I2C}	0	400	kHz
Low period of the SCL clock	t _{I2CL} ⁴	1.3	_	μs
High period of the SCL clock	t _{I2CH} 4	0.6	_	μs
Setup time for a repeated START condition	t _{I2SVKH} 4	0.6	_	μs
Hold time (repeated) START condition (after this period, the first clock pulse is generated)	t _{I2SXKL} 4	0.6	_	μs
Data setup time	t _{I2DVKH} 4	100	—	ns
Data input hold time: CBUS compatible masters I ² C bus devices	t _{i2DXKL}	0 ^{_2}		μs
Data output delay time:	t _{I2OVKL}	—	0.9 ³	
Set-up time for STOP condition	t _{I2PVKH}	0.6	_	μs
Bus free time between a STOP and START condition	t _{I2KHDX}	1.3	_	μs
Noise margin at the LOW level for each connected device (including hysteresis)	V _{NL}	$0.1 \times OV_{DD}$	_	V

Figure 25 shows the top surface, side profile, and pinout of the MPC8241, 357 PBGA ZQ and VR packages.

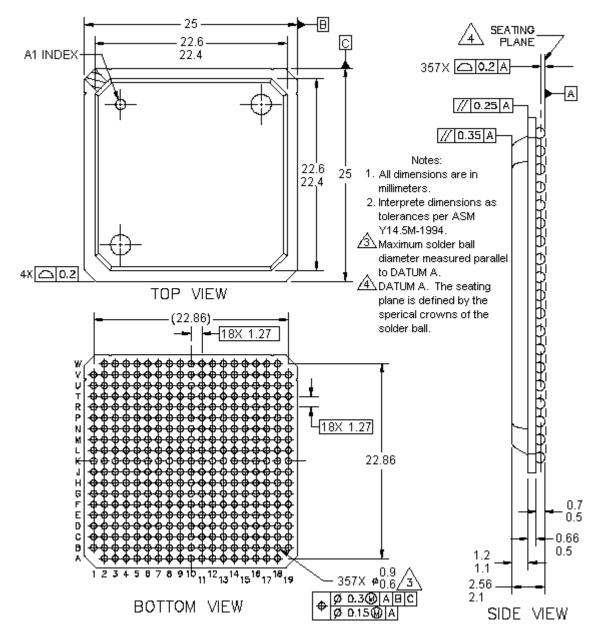


Figure 25. MPC8241 Package Dimensions and Pinout Assignments (ZQ and VR Packages)

Signal Name	Package Pin Number	Pin Type	Power Supply	Output Driver Type	Notes
RCS1	В9	Output	GV _{DD} OV _{DD}	DRV_MEM_CTRL	
RCS2/TRIG_IN	P18	I/O	GV _{DD} OV _{DD}	—	5, 12
RCS3/TRIG_OUT	N18	Output	GV _{DD} _OV _{DD}	DRV_STD_MEM	5
SDMA[1:0]	A15 B15	I/O	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	1, 10, 11
SDMA[11:2]	A11 B12 A12 C12 B13 C13 D12 A14 C14 B14	Output	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	1
DRDY	P1	Input	$GV_{DD}OV_{DD}$	—	12, 13
SDMA12/SRESET	L3	I/O	$\text{GV}_{\text{DD}} - \text{OV}_{\text{DD}}$	DRV_MEM_CTRL	5, 12
SDMA13/TBEN	КЗ	I/O	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	5, 12
SDMA14/CHKSTOP_IN	К2	I/O	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	5, 12
SDBA1	C11	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_MEM_CTRL	_
SDBA0	B11	Output	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	_
PAR[0:7]	E19 C19 D5 D6 E16 F17 B2 C1	I/O	GV_{DD} OV_{DD}	DRV_STD_MEM	1
SDRAS	B19	Output	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_MEM_CTRL	10
SDCAS	D16	Output	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	10
CKE	C6	Output	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	10, 11
WE	B16	Output	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	_
AS	A16	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_MEM_CTRL	10, 11
	PIC Con	trol Signals			-
IRQ0/S_INT	P4	Input	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	—	
IRQ1/S_CLK	R2	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	_
IRQ2/S_RST	U19	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	_
IRQ3/S_FRAME	P15	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	_
IRQ4/L_INT	P2	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	
	l ² C Con	trol Signals			
SDA	P17	I/O	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_STD_MEM	8, 12
SCL	R19	I/O	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_STD_MEM	8, 12
	DUART Co	ontrol Signa	Is		
SOUT1/PCI_CLK0	T16	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_MEM_CTRL	5, 14
SIN1/PCI_CLK1	U16	I/O	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_MEM_CTRL	5, 14, 24
SOUT2/RTS1/PCI_CLK2	W18	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_MEM_CTRL	5, 14
SIN2/CTS1/PCI_CLK3	V19	I	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_MEM_CTRL	5, 14, 24
	Clock-C	Out Signals			
PCI_CLK0/SOUT1	T16	Output	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_PCI_CLK	5, 14

Table 16. MPC8241 Pinout Listing (continued)

Signal Name	Package Pin Number	Pin Type	Power Supply	Output Driver Type	Notes							
TMS	T18	Input	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	_	6, 13							
TRST	R16	Input	$GV_{DD}OV_{DD}$	—	6, 13							
	Power and	Ground Sign	als									
GNDRING/GND	F07 F08 F09 F10 F11 F12 F13 G07 G08 G09 G10 G11 G12 G13 H07 H08 H09 H10 H11 H12 H13 J07 J08 J09 J10 J11 J12 J13 K07 K08 K09 K10 K11 K12 K13 L07 L08 L09 L10 L11 L12 L13 M07 M08 M09 M10 M11 M12 M13 N07 N08 N09 N10 N11 N12 N13 P08 P09 P10 P11 P12 P13 R15	Ground	_	_	17							
LV _{DD}	R18 U18 T1 U4 T6 W11 T14	Reference voltage 3.3 V, 5.0 V	LV _{DD}	_	_							
GV _{DD} _OV _{DD} /PWRRING	D09 D10 D11 E06 E07 E08 E09 E10 E11 E12 E13 E14 F06 F14 G06 G14 H06 H14 J06 J14 K06 K14 L06 L14 M06 M14 N06 N14 P06 P07 P14 R08 R09 R10 R11 R12	Power for memory drivers and PCI/Stnd 3.3 V	GV _{DD} OV _{DD}	_	18							
V _{DD}	F03 H3 L5 N4 P5 V5 U8 W12 W16 R13 P19 L19 H19 F19 F15 C15 A13 A8 B5 A2	Power for core 1.8 V	V _{DD}	_	_							
No Connect	N5 W2 B1	—	—	—	—							
AV _{DD}	M5	Power for PLL (CPU core logic) 1.8 V	AV _{DD}	_	_							
AV _{DD} 2	R14	Power for PLL (peripheral logic) 1.8 V	AV _{DD} 2	_	_							
	Debug/Man	ufacturing P	ins		1							
DA0/QACK	A3	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_STD_MEM	5, 11, 12							
DA1/CKO	L1	Output	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	DRV_STD_MEM	5							
DA2	R5	Output	$GV_{DD}OV_{DD}$	DRV_PCI	19							
DA3/PCI_CLK4	V17	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_PCI_CLK	5							
DA4/REQ4	W13	I/O	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	_	5, 6							
DA5/GNT4	T11	Output	GV _{DD} OV _{DD}	DRV_PCI	2, 4, 5							

Table 16. MPC8241 Pinout Listing (continued)

6 PLL Configuration

The PLL_CFG[0:4] are configured by the internal PLLs. For a specific PCI_SYNC_IN (PCI bus) frequency, the PLL configuration signals set both the peripheral logic/memory bus PLL (VCO) frequency of operation for the PCI-to-memory frequency multiplying and the MPC603e CPU PLL (VCO) frequency of operation for memory-to-CPU frequency multiplying. The PLL configurations are shown in Table 17 and Table 18.

		16	66 MHz-Part	2	2	200-MHz Part ²			Multipliers		
Ref ²	PLL_CFG [0:4] ¹	PCI Clock Input (PCI_ SYNC_IN) Range ³ (MHz)	Peripheral Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI Clock Input (PCI_ SYNC_IN) Range ³ (MHz)	Peripheral Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to- Mem (Mem VCO)	Mem-to- CPU (CPU VCO)		
0	00000	I	Not available		25-26 ⁵	75-78	188-195	3 (2)	2.5 (2)		
2	00010	34 ⁴ –37 ⁵	34–37	153–166	34 ⁴ -44 ⁵	34–44	153–200	1 (4)	4.5 (2)		
3	00011 ⁶	50 ⁷ –66 ³	50–66	100–132	50 ⁷ –66 ³	50–66	100–132	1 (Bypass)	2 (4)		
4	00100	25–41 ⁵	50–82	100–164	25–44 ^{8,10}	50–88	100–176	2 (4)	2 (4)		
6	00110 ⁹		Bypass			Bypass		Bypass	Bypass		
7 Rev. B	00111 ⁶	50 ⁴ –55 ⁵	50–55	150–166	50 ⁴ –66 ³	50–66	150–198	1 (Bypass)	3 (2)		
7 Rev. D	00111		•		Nota	available		•			
8	01000	50 ⁴ –55 ⁵	50–55	150–166	50 ⁴ –66 ³	50–66	150–198	1 (4)	3 (2)		
9	01001	38 ⁴ –41 ^{5,11}	76–82	152–164	38 ⁴ –50 ^{5,12}	76–100	152–200	2 (2)	2 (2)		
В	01011	I	Not available		44 ⁵	66	198	2(2)	2.5(2)		
С	01100	30 ⁴ –33 ⁵	60–66	150–165	30 ⁴ -40 ⁵	60–80	150–200	2 (4)	2.5 (2)		
E	01110	25–27 ⁵	50–54	150–162	25–33 ⁵	60–66	150–198	2 (4)	3 (2)		
10	10000	25–27 ^{5,11}	75–83	150–166	25–33 ^{5,12}	75–100	150–200	3 (2)	2 (2)		
12	10010	50 ⁴ –55 ^{5,11}	75–83	150–166	50 ⁴ –66 ³	75–99	150–198	1.5 (2)	2 (2)		
14	10100		Not available		25–28 ⁵	50–56	175–196	2 (4)	3.5 (2)		
16	10110				25 ⁵	50	200	2(4)	4(2)		
17	10111				25 ⁵	100	200	4(2)	2(2)		
19	11001	33 ^{5,13}	66	165	33 ¹³ –40 ⁵	66–80	165–200	2(2)	2.5(2)		
1A	11010	37 ⁴ –41 ⁵	37–41	150–166	37 ⁴ –50 ⁵	37–50	150–200	1 (4)	4 (2)		
1B	11011		Not available	•	33 ^{5,13}	66	198	2(2)	3(2)		
1C	11100]			44 ^{5,13}	66	198	1.5(2)	3(2)		
1D	11101	44 ^{5,13}	66	166	44 ¹³ –53 ⁵	66–80	165–200	1.5 (2)	2.5 (2)		

Table 17. PLL Configurations (166- and 200-MHz)

	166 MHz-Part ²			200-MHz Part ²			Multipliers		
Ref ²	PLL_CFG [0:4] ¹	PCI Clock Input (PCI_ SYNC_IN) Range ³ (MHz)	Peripheral Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI Clock Input (PCI_ SYNC_IN) Range ³ (MHz)	Peripheral Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to- Mem (Mem VCO)	Mem-to- CPU (CPU VCO)
1E	11110 ¹⁴	Not usable		Not usable			Off	Off	
1F	11111 ¹⁴	Not usable			Not usable			Off	

Notes:

- 1. PLL_CFG[0:4] settings not listed are reserved. Bits 7–4 of register offset <0xE2> contain the PLL_CFG[0:4] setting value. Note the impact of the relevant revisions for mode 7.
- 2. Range values are shown rounded down to the nearest whole number (decimal place accuracy removed) for clarity.
- 3. Limited by maximum PCI input frequency (66 MHz).
- 4. Limited by minimum CPU VCO frequency (300 MHz).
- 5. Limited by maximum CPU operating frequency.
- 6. In PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal processor directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI:Mem) mode operation. This mode is intended for hardware modeling. The AC timing specifications in this document do not apply in PLL bypass mode.
- 7. Limited by minimum CPU operating frequency (100 MHz).
- 8. Limited due to maximum memory VCO frequency (352 MHz).
- 9. In dual PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal peripheral logic directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI_SYNC_IN:Mem) mode operation. In this mode, the OSC_IN input signal clocks the internal processor directly in 1:1 (OSC_IN:CPU) mode operation, and the processor PLL is disabled. The PCI_SYNC_IN and OSC_IN input clocks must be externally synchronized. This mode is intended for hardware modeling. The AC timing specifications in this document do not apply in dual PLL bypass mode.
- 10.Limited by maximum CPU VCO frequency (704 MHz).

11.Limited by maximum system memory interface operating frequency (83 MHz @ 166 MHz CPU bus speed).

- 12.Limited by maximum system memory interface operating frequency (100 MHz @ 200 MHz CPU bus speed).
- 13.Limited by minimum memory VCO frequency (132 MHz).

14.In clock off mode, no clocking occurs inside the MPC8241, regardless of the PCI_SYNC_IN input.

	PLL_ CFG[0:4] ^{10,11}	266-MHz Part ⁹			Multipliers		
Ref ²		PCI Clock Input (PCI_SYNC_IN) Range ¹ (MHz)	Periph Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to-Mem (Mem VCO)	Mem-to-CPU (CPU VCO)	
0	00000	25–35 ⁵	75–105	188–263	3 (2)	2.5 (2)	
1	00001	25–29 ⁵	75–88	225–264	3 (2)	3 (2)	
2	00010	50 ¹⁵ –59 ⁵	50–59	225–266	1 (4)	4.5 (2)	
3	00011 ¹²	50 ¹⁴ –66 ¹	50–66	100–133	1 (Bypass)	2 (4)	
4	00100	25–44 ⁴	50–88	100–176	2 (4)	2 (4)	

Table 18. PLL Configurations (266-MHz Parts)

	PLL_ CFG[0:4] ^{10,11}	:	266-MHz Part ⁹	Multipliers		
Ref ²		PCI Clock Input (PCI_SYNC_IN) Range ¹ (MHz)	Periph Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to-Mem (Mem VCO)	Mem-to-CPU (CPU VCO)
6	00110 ¹³	Bypass			Bypass	
7 (Rev. B)	00111 ¹²	50 ⁶ –66 ¹	50–66	150–198	1 (Bypass)	3 (2)
7 (Rev. D)	00111 ¹⁴		, ,	Not Available		
8	01000	50 ⁶ –66 ¹	50–66	150–198	1 (4)	3 (2)
9	01001	38 ⁶ –66 ¹	76–132	152–264	2 (2)	2 (2)
А	01010	25–29 ⁵	50–58	225–261	2 (4)	4.5 (2)
В	01011	45 ³ –59 ⁵	68–88	204–264	1.5 (2)	3 (2)
С	01100	30 ⁶ –44 ⁴	60–88	150–220	2 (4)	2.5 (2)
D	01101	45 ³ –50 ⁵	68–75	238–263	1.5 (2)	3.5 (2)
Е	01110	25–44 ⁵	50–88	150–264	2 (4)	3 (2)
F	01111	25 ⁵	75	263	3 (2)	3.5 (2)
10	10000	25–44 ⁵	75–132	150–264	3 (2)	2 (2)
11	10001	25–26 ⁵	100–106	250–266	4 (2)	2.5 (2)
12	10010	50 ⁶ –66 ¹	75–99	150–198	1.5 (2)	2 (2)
13	10011		Not available		4 (2)	3 (2)
14	10100	25–38 ⁵	50–76	175–266	2 (4)	3.5 (2)
15	10101		Not available		2.5 (2)	4 (2)
16	10110	25–33 ⁵	50–66	200–264	2 (4)	4 (2)
17	10111	25–33 ⁵	100–132	200–264	4 (2)	2 (2)
18	11000	27 ³ –35 ⁵	68–88	204–264	2.5 (2)	3 (2)
19	11001	33 ³ –53 ⁵	66–106	165–265	2 (2)	2.5 (2)
1A	11010	50 ¹⁸ –66 ¹	50–66	200–264	1 (4)	4 (2)
1B	11011	34 ³ –44 ⁵	68–88	204–264	2 (2)	3 (2)
1C	11100	44 ³ –59 ⁵	66–88	198–264	1.5 (2)	3 (2)
1D	11101	44 ³ –66 ¹	66–99	165–248	1.5 (2)	2.5 (2)
1E (Rev. B)	11110 ⁸		Not usable		Off	Off
1E (Rev. D)	11110	33 ³ -38 ⁵	66-76	231-266	2(2)	3.5(2)

Table 18. PLL Configurations	(266-MHz Parts) (continued)
------------------------------	-----------------------------

	266-MHz Part ⁹			Multipliers		
Ref ²	PLL_ CFG[0:4] ^{10,11}	PCI Clock Input (PCI_SYNC_IN) Range ¹ (MHz)	Periph Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to-Mem (Mem VCO)	Mem-to-CPU (CPU VCO)
1F	11111 ⁸	Not usable		Off	Off	

Table 18. PLL Configurations (266-MHz Parts) (continued)

Notes:

- 1. Limited by maximum PCI input frequency (66 MHz).
- 2. Note the impact of the relevant revisions for modes 7 and 1E.
- 3. Limited by minimum memory VCO frequency (132 MHz).
- 4. Limited due to maximum memory VCO frequency (352 MHz).
- 5. Limited by maximum CPU operating frequency.
- 6. Limited by minimum CPU VCO frequency (300 MHz).
- 7. Limited by maximum CPU VCO frequency (704 MHz).
- 8. In clock off mode, no clocking occurs inside the MPC8241, regardless of the PCI_SYNC_IN input.
- 9. Range values are shown rounded down to the nearest whole number (decimal place accuracy removed) for clarity.
- 10.PLL_CFG[0:4] settings that are not listed are reserved.
- 11.Bits 7-4 of register offset <0xE2> contain the PLL_CFG[0:4] setting value.
- 12.In PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal processor directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI:Mem) mode operation. This mode is intended for hardware modeling. The AC timing specifications in this document do not apply in PLL bypass mode.
- 13.In dual PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal peripheral logic directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI_SYNC_IN:Mem) mode operation. In this mode, the OSC_IN input signal clocks the internal processor directly in 1:1 (OSC_IN:CPU) mode operation and the processor PLL is disabled. The PCI_SYNC_IN and OSC_IN input clocks must be externally synchronized. This mode is intended for hardware modeling. The AC timing specifications in this document do not apply in dual PLL bypass mode.
- 14.Limited by minimum CPU operating frequency (100 MHz).
- 15.Limited by minimum memory bus frequency (50 MHz).

7 System Design Information

This section provides electrical and thermal design recommendations for successful application of the MPC8241.

7.1 PLL Power Supply Filtering

The AV_{DD} and AV_{DD}2 power signals on the MPC8241 provide power to the peripheral logic/memory bus PLL and the MPC603e processor PLL. To ensure stability of the internal clocks, the power supplied to the AV_{DD} and AV_{DD}2 input signals should be filtered of any noise in the 500 kHz to 10 MHz resonant frequency range of the PLLs. Two separate circuits similar to the one shown in Figure 26 using surface mount capacitors with minimum effective series inductance (ESL) is recommended for AV_{DD} and AV_{DD}2 power signal pins. In *High Speed Digital Design: A Handbook of Black Magic* (Prentice Hall, 1993), Dr. Howard Johnson recommends using multiple small capacitors of equal value instead of multiple values.

Place the circuits as closely as possible to the respective input signal pins to minimize noise coupled from nearby circuits. Routing from the capacitors to the input signal pins should be as direct as possible with minimal inductance of vias.

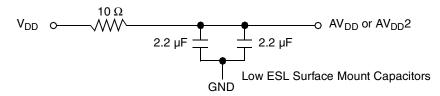


Figure 26. PLL Power Supply Filter Circuit

7.2 Decoupling Recommendations

Dynamic power management, large address and data buses, and high operating frequencies enable the MPC8241 to generate transient power surges and high frequency noise in its power supply, especially while driving large capacitive loads. This noise must be prevented from reaching other components in the MPC8241 system, and the MPC8241 itself requires a clean, tightly regulated source of power. Therefore, place at least one decoupling capacitor at each V_{DD} , GV_{DD} – OV_{DD} , and LV_{DD} pin. These decoupling capacitors receive their power from dedicated power planes in the PCB, using short traces to minimize inductance. These capacitors should have a value of 0.1 µF. To minimize lead inductance, use only ceramic SMT (surface mount technology) capacitors, preferably 0508 or 0603, on which connections are made along the length of the part.

In addition, distribute several bulk storage capacitors around the PCB to feed the V_{DD} , GV_{DD} – OV_{DD} , and LV_{DD} planes and enable quick recharging of the smaller chip capacitors. These bulk capacitors should have a low ESR (equivalent series resistance) rating to ensure the necessary quick response time, and should be connected to the power and ground planes through two vias to minimize inductance. Freescale recommends using bulk capacitors: 100–330 μ F (AVX TPS tantalum or Sanyo OSCON).

7.3 Connection Recommendations

To ensure reliable operation, connect unused inputs to an appropriate signal level. Tie unused active-low inputs to OV_{DD} . Connect unused active-high inputs to GND. All no connect (NC) signals must remain unconnected.

Power and ground connections must be made to all external V_{DD}, GV_{DD}, GV_{DD}, LV_{DD}, and GND pins.

The PCI_SYNC_OUT signal is to be routed halfway out to the PCI devices and then returned to the PCI_SYNC_IN input.

The SDRAM_SYNC_OUT signal is to be routed halfway out to the SDRAM devices and then returned to the SDRAM_SYNC_IN input of the MPC8241. The trace length can be used to skew or adjust the timing window as needed. See the Tundra *Tsi107TM Design Guide* (AN1849) and Freescale application notes AN2164/D, *MPC8245/MPC8241 Memory Clock Design Guidelines: Part 1* and AN2746, *MPC8245/MPC8241 Memory Clock Design Guidelines: Part 2* for more details. Note the SDRAM_SYNC_IN to PCI_SYNC_IN time requirement (see Table 10).

System Design Information

Shin-Etsu MicroSi, Inc.888-642-767410028 S. 51st St.888-642-7674Phoenix, AZ 850441Internet: www.microsi.com888-246-9050Thermagon Inc.888-246-90504707 Detroit Ave.2Cleveland, OH 441021Internet: www.thermagon.com1

7.7.3 Heat Sink Usage

An estimation of the chip junction temperature, T_J, can be obtained from the equation:

$$T_J = T_A + (R_{\theta JA} \times P_D)$$

where:

 T_A = ambient temperature for the package (°C) $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W) P_D = power dissipation in the package (W)

The junction-to-ambient thermal resistance is an industry-standard value that provides a quick and easy estimation of thermal performance. Unfortunately, two values are in common usage: the value determined on a single-layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single-layer board is appropriate for the tightly packed printed-circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed as the sum of a junction-to-case thermal resistance and a case-to-ambient thermal resistance:

$$R_{\theta JA} = R_{\theta JC} + R_{\theta CA}$$

where:

 $R_{\theta JA}$ = junction-to-ambient thermal resistance (°C/W) $R_{\theta JC}$ = junction-to-case thermal resistance (°C/W) $R_{\theta CA}$ = case-to-ambient thermal resistance (°C/W)

 $R_{\theta JC}$ is device-related and cannot be influenced by the user. The user controls the thermal environment to change the case-to-ambient thermal resistance, $R_{\theta CA}$. For instance, the user can change the size of the heat sink, the airflow around the device, the interface material, the mounting arrangement on the printed-circuit board, or the thermal dissipation on the printed-circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the thermal characterization parameter (ψ_{JT}) measures the temperature at the top center of the package case using the following equation:

$$T_J = T_T + (\psi_{JT} \times P_D)$$

Ordering Information

where:

 T_T = thermocouple temperature atop the package (°C) ψ_{JT} = thermal characterization parameter (°C/W) P_D = power dissipation in package (W)

The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

When a heat sink is used, the junction temperature is determined from a thermocouple inserted at the interface between the case of the package and the interface material. A clearance slot or hole is normally required in the heat sink. Minimizing the size of the clearance minimizes the change in thermal performance that is caused by removing part of the thermal interface to the heat sink. Considering the experimental difficulties with this technique, many engineers measure the heat sink temperature and then back calculate the case temperature using a separate measurement of the thermal resistance of the interface. From this case temperature, the junction temperature is determined from the junction-to-case thermal resistance.

In many cases, it is appropriate to simulate the system environment using a computational fluid dynamics thermal simulation tool. In such a tool, the simplest thermal model of a package that has demonstrated reasonable accuracy (about 20%) is a two-resistor model consisting of a junction-to-board and a junction-to-case thermal resistance. The junction-to-case covers the situation where a heat sink is used or a substantial amount of heat is dissipated from the top of the package. The junction-to-board thermal resistance describes the thermal performance when most of the heat is conducted to the printed-circuit board.

7.8 References

Semiconductor Equipment and Materials International 805 East Middlefield Rd. Mountain View, CA 94043 (415) 964-5111

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the web at http://www.jedec.org.

8 Ordering Information

Ordering information for the parts that this document fully covers is provided in Section 8.1, "Part Numbers Fully Addressed by This Document." Section 8.2, "Part Numbers Not Fully Addressed by This Document," lists the part numbers which do not fully conform to the specifications of this document. These special part numbers require an additional document called a hardware specifications addendum.

Document Revision History

Table 20. Part Numbers Addressed by MPC8241TXXPNS Series (Document No. MPC8241ECS01AD))

MPC	nnnn	т	XX	nnn	X	
MPC	8241	T = Extended temperature spec. -40° to 105°C	ZQ = thick substrate and thick mold cap PBGA (two layers)	166, 200 @ 1.8 V ± 100 mV	D:1.4 = Rev. ID:0x14	0x80811014

Notes:

1. See Section 5, "Package Description," for more information on available package types.

2. Processor core frequencies supported by parts addressed by this specification only. Not all parts described in this specification support all core frequencies. Additionally, parts addressed by hardware specifications addendums may support other maximum core frequencies.

8.3 Part Marking

Parts are marked as the example shown in Figure 32.

Notes:

MMMMM is the 5-digit mask number. ATWLYYWW is traceability code. CCCCC is the country code.

Figure 32. Part Marking for MPC8241 Device

9 Document Revision History

Table 21 provides a revision history for this hardware specification.

Table 21. Revision History Table

Revision	Date	Substantive Change(s)
10	02/2009	In Table 16, "MPC8241 Pinout Listing," added footnote 10 to PMAA[2]. In Table 16, "MPC8241 Pinout Listing," removed footnote 12 for second listing of RCS3/TRIG_OUT.
9	09/2007	Completely replaced Section 4.6 with compliant I ² C specifications as with other related integrated processor devices. Section 7.6, "JTAG Configuration Signals" Reworded paragraph beginning "The arrangement shown in Figure 27"