NXP USA Inc. - MPC8241TVR166D Datasheet

Welcome to E-XFL.COM

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.

Applications of **Embedded - Microprocessors**

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details

Product Status	Obsolete
Core Processor	PowerPC 603e
Number of Cores/Bus Width	1 Core, 32-Bit
Speed	166MHz
Co-Processors/DSP	-
RAM Controllers	SDRAM
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	3.3V
Operating Temperature	-40°C ~ 105°C (TA)
Security Features	-
Package / Case	357-BBGA
Supplier Device Package	357-PBGA (25x25)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/mpc8241tvr166d

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Overview

4.1.2 Recommended Operating Conditions

Table 2 provides the recommended operating conditions for the MPC8241.

Charao	steristic	Symbol	Recommended Value	Unit	Notes
Supply voltage		V _{DD}	$1.8\pm100~\text{mV}$	V	2
I/O buffer supply for PCI and sta memory bus drivers	GV _{DD} OV _{DD}	3.3 ± 0.3	V	2	
CPU PLL supply voltage	AV _{DD} $1.8 \pm 100 \text{ mV}$			2	
PLL supply voltage—peripheral	AV _{DD} 2	$1.8\pm100~\text{mV}$	V	2	
PCI reference		LV _{DD}	$5.0\pm5\%$	V	4, 5, 6
			3.3 ± 0.3	V	5, 6, 7
Input voltage	put voltage PCI inputs		0 to 3.6 or 5.75	V	4, 7
	All other inputs		0 to 3.6	V	8
Die-junction temperature		Тј	0 to 105	•C	

Table 2. Recommended Operating Conditions ¹

Notes:

1. Freescale has tested these operating conditions and recommends them. Proper device operation outside of these conditions is not guaranteed.

- Caution: GV_{DD}_OV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}/AV_{DD}2 by more than 1.8 V at any time including during power-on reset. Note that GV_{DD}_OV_{DD} pins are all shorted together: This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences. Connections should not be made to individual PWRRING pins.
- Caution: V_{DD}/AV_{DD}/AV_{DD}2 must not exceed GV_{DD}OV_{DD} by more than 0.6 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 4. PCI pins are designed to withstand LV_{DD} + 0.5 V DC when LV_{DD} is connected to a 5.0 V DC power supply.
- 5. Caution: LV_{DD} must not exceed V_{DD}/AV_{DD}/AV_{DD}2 by more than 5.4 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 6. Caution: LV_{DD} must not exceed GV_{DD}OV_{DD} by more than 3.0 V at any time, including during power-on reset. This limit may be exceeded for a maximum of 20 ms during power-on reset and power-down sequences.
- 7. PCI pins are designed to withstand LV_{DD} + 0.5 V DC when LV_{DD} is connected to a 3.3 V DC power supply.
- Caution: Input voltage (V_{in}) must not be greater than the supply voltage (V_{DD}/AV_{DD}/AV_{DD}2) by more than 2.5 V at all times including during power-on reset. Input voltage (V_{in}) must not be greater than GV_{DD}OV_{DD} by more than 0.6 V at all times including during power-on reset.

NP____

Electrical and Thermal Characteristics

Figure 2 shows supply voltage sequencing and separation cautions.

Notes:

- 1. Numbers associated with waveform separations correspond to caution numbers listed in Table 2.
- 2. See the Cautions section of Table 2 for details on this topic.
- 3. Refer to Table 8 for details on PLL relock and reset signal assertion timing requirements.
- 4. Refer to Table 10 for details on reset configuration pin setup timing requirements.
- 5. HRST_CPU/HRST_CTRL must transition from a logic 0 to a logic 1 in less than one SDRAM_SYNC_IN clock cycle for the device to be in the nonreset state.
- 6. PLL_CFG signals must be driven on reset and must be held for at least 25 clock cycles after the negation of HRST_CTRL and HRST_CPU negate in order to be latched.

Figure 2. Supply Voltage Sequencing and Separation Cautions

Table 3. DC Electrical S	pecifications ((continued)

Characteristics	Conditions	Symbol	Min	Мах	Unit	Notes
Capacitance	V _{in} = 0 V, f = 1 MHz	C _{in}	_	16.0	pF	

Notes:

- 1. See Table 16 for pins with internal pull-up resistors.
- 2. All grounded pins are connected together.
- 3. Leakage current is measured on input and output pins in the high-impedance state. The leakage current is measured for nominal GV_{DD}OV_{DD}/LV_{DD} and V_{DD} or both GV_{DD}OV_{DD}/LV_{DD} and V_{DD} must vary in the same direction.
- 4. See Table 4 for the typical drive capability of a specific signal pin based on the type of output driver associated with that pin as listed in Table 16.

4.2.1 Output Driver Characteristics

Table 4 provides information on the characteristics of the output drivers referenced in Table 16. The values are preliminary estimates from an IBIS model and are not tested.

Driver Type	Programmable Output Impedance (Ω)	Supply Voltage	I _{ОН}	I _{OL}	Unit	Notes
DRV_STD_MEM	20 (default)	GV _{DD} _OV _{DD} = 3.3 V	36.6	18.0	mA	2, 4
	40		18.6	9.2	mA	2, 4
DRV_PCI	20		12.0	12.4	mA	1, 3
	40 (default)		6.1	6.3	mA	1, 3
DRV_MEM_CTRL	6 (default)		89.0	42.3	mA	2, 4
DRV_PCI_CLK DRV_MEM_CLK	20		36.6	18.0	mA	2, 4
	40		18.6	9.2	mA	2, 4

Table 4. Drive Capability of MPC8241 Output Pins 5,6

Notes:

- 1. For DRV_PCI, I_{OH} read from the IBIS listing in the pull-up mode, I(Min) column, at the 0.33-V label by interpolating between the 0.3- and 0.4-V table entries current values which corresponds to the PCI $V_{OH} = 2.97 = 0.9 \times GV_{DD} OV_{DD} (GV_{DD} OV_{DD} = 3.3 V)$ where table entry voltage = $GV_{DD} OV_{DD} PCI V_{OH}$.
- 2. For all others with GV_{DD} OV_{DD} = 3.3 V, I_{OH} read from the IBIS listing in the pull-up mode, I(Min) column, at the 0.9-V table entry which corresponds to the V_{OH} = 2.4 V where table entry voltage = GV_{DD} V_{OH} .
- 3. For DRV_PCI, I_{OL} read from the IBIS listing in the pull-down mode, I(Min) column, at 0.33 V = PCI V_{OL} = $0.1 \times GV_{DD}$ _OV_{DD} (GV_{DD}_OV_{DD} = 3.3 V) by interpolating between the 0.3- and 0.4-V table entries.
- 4. For all others with GV_{DD}_OV_{DD} = 3.3 V, I_{OL} read from the IBIS listing in the pull-down mode, I(Min) column, at the 0.4-V table entry.
- 5. See driver bit details for output driver control register (0x73) in the MPC8245 Integrated Processor Reference Manual.
- 6. See Chip Errata No. 19 in the MPC8245/MPC8241 Integrated Processor Chip Errata.

Table 7 provides the operating frequency information for the MPC8241 at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 \text{ V} \pm 0.3 \text{ V}$.

	166 MHz 200 MHz		266	266 MHz			
Characteristic	$V_{DD}/AV_{DD}/AV_{DD}2 = 1.8 \pm 100 \text{ mV}$						Unit
	Min	Max	Min	Max	Min	Max	
Processor frequency (CPU)	100	166	100	200	100	266	MHz
Memory bus frequency	33	83	33	100	33	133	MHz
PCI input frequency		25–66					MHz

Table 7	. Operating	Frequency
---------	-------------	-----------

Caution: The PCI_SYNC_IN frequency and PLL_CFG[0:4] settings must be chosen such that the resulting peripheral logic/memory bus frequency and CPU (core) frequencies do not exceed their respective maximum or minimum operating frequencies. Refer to the PLL_CFG[0:4] signal description in Section 6, "PLL Configuration," for valid PLL_CFG[0:4] settings and PCI_SYNC_IN frequencies.

4.5.1 Clock AC Specifications

Table 8 provides the clock AC timing specifications at recommended operating conditions, as defined in Section 4.5.2, "Input AC Timing Specifications." These specifications are for the default driver strengths indicated in Table 4. Figure 6 shows the PCI_SYNC_IN input clock timing diagram with the labeled number items listed in Table 8.

Table 8.	Clock	AC	Timing	Specifications
----------	-------	----	--------	----------------

At recommended operating conditions (see Table 2) with LV_{DD} = 3.3 V \pm 0.3 V

Num	Characteristics and Conditions	Min	Мах	Unit	Notes
1	Frequency of operation (PCI_SYNC_IN)	25	66	MHz	
2, 3	PCI_SYNC_IN rise and fall times	—	2.0	ns	1
4	PCI_SYNC_IN duty cycle measured at 1.4 V	40	60	%	
5a	PCI_SYNC_IN pulse width high measured at 1.4 V	6	9	ns	2
5b	PCI_SYNC_IN pulse width low measured at 1.4 V	6	9	ns	2
7	PCI_SYNC_IN jitter	—	200	ps	
8a	PCI_CLK[0:4] skew (pin-to-pin)	—	250	ps	
8b	SDRAM_CLK[0:3] skew (pin-to-pin)	—	190	ps	3
10	Internal PLL relock time	—	100	μs	2, 4, 5
15	DLL lock range with DLL_EXTEND = 0 (disabled) and normal tap delay; (default DLL mode)	See Fi	gure 7	ns	6
16	DLL lock range for other modes	See Figure 8 th	rough Figure 10	ns	6
17	Frequency of operation (OSC_IN)	25	66	MHz	
19	OSC_IN rise and fall times	—	5	ns	7
20	OSC_IN duty cycle measured at 1.4 V	40	60	%	

NP

Table 8. Clock AC Timing Specifications (continued)

At recommended operating conditions (see Table 2) with LV_{DD} = 3.3 V \pm 0.3 V

Num	Characteristics and Conditions	Min	Мах	Unit	Notes
21	OSC_IN frequency stability		100	ppm	

Notes:

- 1. Rise and fall times for the PCI_SYNC_IN input are measured from 0.4 through 2.4 V.
- 2. Specification value at maximum frequency of operation.
- 3. Pin-to-pin skew includes quantifying the additional amount of clock skew (or jitter) from the DLL besides any intentional skew added to the clocking signals from the variable length DLL synchronization feedback loop, that is, the amount of variance between the internal *sys_logic_clk* and the SDRAM_SYNC_IN signal after the DLL is locked. While pin-to-pin skew between SDRAM_CLKs can be measured, the relationship between the internal *sys_logic_clk* and the external SDRAM_SYNC_IN cannot be measured and is guaranteed by design.
- 4. Relock time is guaranteed by design and characterization. Relock time is not tested.
- 5. Relock timing is guaranteed by design. PLL-relock time is the maximum amount of time required for PLL lock after a stable V_{DD} and PCI_SYNC_IN are reached during the reset sequence. This specification also applies when the PLL has been disabled and subsequently re-enabled during sleep mode. Also note that HRST_CPU/HRST_CTRL must be held asserted for a minimum of 255 bus clocks after the PLL-relock time during the reset sequence.
- 6. DLL_EXTEND is bit 7 of the PMC2 register <72>. N is a non-zero integer (see Figure 7 through Figure 10). T_{clk} is the period of one SDRAM_SYNC_OUT clock cycle in ns. T_{loop} is the propagation delay of the DLL synchronization feedback loop (PC board runner) from SDRAM_SYNC_OUT to SDRAM_SYNC_IN in ns; 6.25 inches of loop length (unloaded PC board runner) corresponds to approximately 1 ns of delay. For details about how Figure 7 through Figure 10 may be used, refer to the Freescale application note AN2164, MPC8245/MPC8241 Memory Clock Design Guidelines, for details on MPC8241 memory clock design.
- 7. Rise and fall times for the OSC_IN input are guaranteed by design and characterization. OSC_IN input rise and fall times are not tested.

Figure 6 shows the PCI_SYNC_IN input clock timing diagram, and Figure 7 through Figure 10 show the DLL locking range loop delay versus frequency of operation.

VM = Midpoint Voltage (1.4 V)

Figure 6. PCI_SYNC_IN Input Clock Timing Diagram

Register settings that define each DLL mode are shown in Table 9.

DLL Mode	Bit 2 of Configuration Register at 0x76	Bit 7 of Configuration Register at 0x72
Normal tap delay, No DLL extend	0	0
Normal tap delay, DLL extend	0	1
Max tap delay, No DLL extend	1	0
Max tap delay, DLL extend	1	1

Table 9. DLL Mode Definition

The DLL_MAX_DELAY bit can lengthen the amount of time through the delay line by increasing the time between each of the 128 tap points in the delay line. Although this increased time makes it easier to guarantee that the reference clock is within the DLL lock range, there may be slightly more jitter in the output clock of the DLL if the phase comparator shifts the clock between adjacent tap points. Refer to the Freescale application note AN2164, *MPC8245/MPC8241 Memory Clock Design Guidelines: Part 1*, for details on DLL modes and memory design.

The value of the current tap point after the DLL locks can be determined by reading bits 6–0 (DLL_TAP_COUNT) of the DLL tap count register (DTCR, located at offset 0xE3). These bits store the value (binary 0 through 127) of the current tap point and can indicate whether the DLL advances or decrements as it maintains the DLL lock. Therefore, for evaluation purposes, DTCR can be read for all DLL modes that support the T_{loop} value used for the trace length of SDRAM_SYNC_OUT to SDRAM_SYNC_IN. The DLL mode with the smallest tap point value in the DTCR should be used because the bigger the tap point value, the more jitter that can be expected for clock signals. Keeping a DLL mode locked below tap point decimal 12 is not recommended.

Figure 7. DLL Locking Range Loop Delay versus Frequency of Operation for DLL_Extend=0 and Normal Tap Delay

Figure 10. DLL Locking Range Loop Delay versus Frequency of Operation for DLL_Extend=1 and Max Tap Delay

4.5.2 Input AC Timing Specifications

Table 10 provides the input AC timing specifications at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 V \pm 0.3 V$. See Figure 11 and Figure 12.

Num	Characteristic		Мах	Unit	Notes
10a	PCI input signals valid to PCI_SYNC_IN (input setup)	3.0		ns	1, 3
10b	Memory input signals valid to sys_logic_clk (input setup)				

Table 10. Input AC Timing Specifications

Num	Characteristic	Min	Мах	Unit	Notes
14b	<i>sys_logic_clk</i> to output high impedance (for all others)		4.0	ns	2

Table 11. Output AC Timing Specifications (continued)

Notes:

- 1. All PCI signals are measured from GV_{DD} – OV_{DD} /2 of the rising edge of PCI_SYNC_IN to 0.285 × GV_{DD} – OV_{DD} or 0.615 × GV_{DD} – OV_{DD} of the signal in question for 3.3 V PCI signaling levels. See Figure 12.
- 2. All memory and related interface output signal specifications are specified from the VM = 1.4 V of the rising edge of the memory bus clock, sys_logic_clk to the TTL level (0.8 or 2.0 V) of the signal in question. sys_logic_clk is the same as PCI_SYNC_IN in 1:1 mode, but is twice the frequency in 2:1 mode (processor/memory bus clock rising edges occur on every rising and falling edge of PCI_SYNC_IN). See Figure 11.
- 3. PCI bused signals are composed of the following signals: LOCK, IRDY, C/BE[3:0], PAR, TRDY, FRAME, STOP, DEVSEL, PERR, SERR, AD[31:0], REQ[4:0], GNT[4:0], IDSEL, and INTA.
- 4. To meet minimum output hold specifications relative to PCI_SYNC_IN for both 33- and 66-MHz PCI systems, the MPC8241 has a programmable output hold delay for PCI signals (the PCI_SYNC_IN to output valid timing is also affected). The initial value of the output hold delay is determined by the values on the MCP and CKE reset configuration signals; the values on these two signals are inverted and subsequently stored as the initial settings of PCI_HOLD_DEL = PMCR2[5, 4] (power management configuration register 2 <0x72>), respectively. Because MCP and CKE have internal pull-up resistors, the default value of PCI_HOLD_DEL after reset is 0b00. Additional output hold delay values are available by programming the PCI_HOLD_DEL value of the PMCR2 configuration register. See Figure 15 for PCI_HOLD_DEL effect on output valid and hold time.

Figure 14 provides the AC test load for the MPC8241.

Figure 14. AC Test Load for the MPC8241

Figure 18. PIC Serial Interrupt Mode Output Timing Diagram

Figure 19. PIC Serial Interrupt Mode Input Timing Diagram

4.7.1 IEEE 1149.1 (JTAG) AC Timing Specifications

Table 15 provides the JTAG AC timing specifications for the MPC8241 while in the JTAG operating mode at recommended operating conditions (see Table 2) with $LV_{DD} = 3.3 V \pm 0.3 V$. Timings are independent of the system clock (PCI_SYNC_IN).

Num	Characteristic	Min	Мах	Unit	Notes
	TCK frequency of operation	0	25	MHz	_
1	TCK cycle time	40	-	ns	
2	TCK clock pulse width measured at 1.5 V	20	-	ns	
3	TCK rise and fall times	0	3	ns	
4	TRST setup time to TCK falling edge	10	_	ns	1
5	TRST assert time	10	_	ns	_
6	Input data setup time	5	_	ns	2
7	Input data hold time	15	_	ns	2
8	TCK to output data valid	0	30	ns	3
9	TCK to output high impedance	0	30	ns	3
10	TMS, TDI data setup time	5	—	ns	_

Table 15. JTAG AC Timing Specification (Independent of PCI_SYNC_IN)

Num	Characteristic	Min	Мах	Unit	Notes
11	TMS, TDI data hold time	15	_	ns	_
12	TCK to TDO data valid	0	15	ns	—
13	TCK to TDO high impedance	0	15	ns	_

Table 15. JTAG AC Timing Specification (Independent of PCI_SYNC_IN)

Notes:

1. TRST is an asynchronous signal. The setup time is for test purposes only.

2. Nontest (other than TDI and TMS) signal input timing with respect to TCK.

3. Nontest (other than TDO) signal output timing with respect to TCK.

Figure 20 through Figure 23 show the different timing diagrams for JTAG.

Figure 23. Test Access Port Timing Diagram

5 Package Description

This section details package parameters, pin assignments, and dimensions.

5.1 Package Parameters for the MPC8241

The MPC8241 uses a 25 mm \times 25 mm, cavity up, 357-pin plastic ball grid array (PBGA) package. The package parameters are as follows.

Package outline	$25 \text{ mm} \times 25 \text{ mm}$
Interconnects	357
Pitch	1.27 mm
Solder balls	ZP (PBGA)—62 Sn/36 Pb/2 Ag—available only in Rev B parts ZQ (Thick substrate thick mold cap PBGA)—62 Sn/36 Pb/2 Ag VR (Lead free version of package)—95.5 Sn/4.0 Ag/0.5 Cu
Solder ball diameter	0.75 mm
Maximum module height	2.52 mm
Co-planarity specification	0.15 mm
Maximum force	6.0 lbs. total, uniformly distributed over package (8 grams/ball)

Package Description

5.3 Pinout Listings

Table 16 provides the pinout listing for the MPC8241, 357 PBGA package.

Signal Name	Package Pin Number	Pin Type	Power Supply	Output Driver Type	Notes	
PCI Interface Signals						
C/BE[3:0]	V11 V7 W3 R3	I/O	GV _{DD} OV _{DD}	DRV_PCI	1, 2	
DEVSEL	U6	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	2, 3	
FRAME	Т8	I/O	GV _{DD} OV _{DD}	DRV_PCI	2, 3	
IRDY	U7	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	2, 3	
LOCK	V6	Input	$GV_{DD}OV_{DD}$	—	3	
AD[31:0]	U13 V13 U11 W14 V14 U12 W10 T10 V10 U9 V9 W9 W8 T9 W7 V8 V4 W4 V3 V2 T5 R6 V1 T2 U3 P3 T4 R1 T3 R4 U2 U1	I/O	GV _{DD} _OV _{DD}	DRV_PCI	1, 2	
PAR	R7	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	2	
<u>GNT</u> [3:0]	W15 U15 W17 V12	Output	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_PCI	1, 2	
GNT4/DA5	T11	Output	$GV_{DD}OV_{DD}$	DRV_PCI	2, 4, 5	
REQ[3:0]	V16 U14 T15 V15	Input	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	—	1, 6	
REQ4/DA4	W13	I/O	$\mathrm{GV}_{\mathrm{DD}}\mathrm{-}\mathrm{OV}_{\mathrm{DD}}$	—	5, 6	
PERR	Τ7	I/O	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	DRV_PCI	2, 3, 7	
SERR	U5	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	2, 3, 8	
STOP	W5	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	2, 3	
TRDY	W6	I/O	$GV_{DD}OV_{DD}$	DRV_PCI	2, 3	
INTA	T12	Output	$GV_{DD}OV_{DD}$	DRV_PCI	2, 8	
IDSEL	U10	Input	$\rm GV_{\rm DD} - \rm OV_{\rm DD}$	_		
	Memory Int	erface Sign	als			
MDL[0:31]	M19 M17 L16 L17 K18 J18 K17 K16 J15 J17 H18 F16 H16 H15 G17 D19 B3 C4 C2 D3 G5 E1 H5 E2 F1 F2 G2 J5 H1 H4 J4 J1	I/O	GV _{DD} _OV _{DD}	DRV_STD_MEM	1, 9	
MDH[0:31]	M18 L18 L15 K19 K15 J19 J16 H17 G19 G18 G16 D18 F18 E18 G15 E15 C3 D4 E5 F5 D1 E4 D2 E3 F4 G3 G4 G1 H2 J3 J2 K5	I/O	GV _{DD} _OV _{DD}	DRV_STD_MEM	1	
DQM[0:7]	A18 B18 A6 C7 D15 D14 A9 B8	Output	$GV_{DD}OV_{DD}$	DRV_MEM_CTRL	1	
<u>CS</u> [0:7]	A17 B17 C16 C17 C9 C8 A10 B10	Output	GV _{DD} _OV _{DD}	DRV_MEM_CTRL	1	
FOE	A7	I/O	GV _{DD} OV _{DD}	DRV_MEM_CTRL	10, 11	
RCS0	C10	Output	GV _{DD} _OV _{DD}	DRV_MEM_CTRL	10, 11	

Table 16. MPC8241 Pinout Listing

		166 MHz-Part ²		200-MHz Part ²			Multipliers		
Ref ²	PLL_CFG [0:4] ¹	PCI Clock Input (PCI_ SYNC_IN) Range ³ (MHz)	Peripheral Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI Clock Input (PCI_ SYNC_IN) Range ³ (MHz)	Peripheral Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to- Mem (Mem VCO)	Mem-to- CPU (CPU VCO)
1E	11110 ¹⁴	Not usable			Not usable		Off	Off	
1F	11111 ¹⁴	Not usable			Not usable		Off	Off	

Notes:

- 1. PLL_CFG[0:4] settings not listed are reserved. Bits 7–4 of register offset <0xE2> contain the PLL_CFG[0:4] setting value. Note the impact of the relevant revisions for mode 7.
- 2. Range values are shown rounded down to the nearest whole number (decimal place accuracy removed) for clarity.
- 3. Limited by maximum PCI input frequency (66 MHz).
- 4. Limited by minimum CPU VCO frequency (300 MHz).
- 5. Limited by maximum CPU operating frequency.
- 6. In PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal processor directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI:Mem) mode operation. This mode is intended for hardware modeling. The AC timing specifications in this document do not apply in PLL bypass mode.
- 7. Limited by minimum CPU operating frequency (100 MHz).
- 8. Limited due to maximum memory VCO frequency (352 MHz).
- 9. In dual PLL bypass mode, the PCI_SYNC_IN input signal clocks the internal peripheral logic directly, the peripheral logic PLL is disabled, and the bus mode is set for 1:1 (PCI_SYNC_IN:Mem) mode operation. In this mode, the OSC_IN input signal clocks the internal processor directly in 1:1 (OSC_IN:CPU) mode operation, and the processor PLL is disabled. The PCI_SYNC_IN and OSC_IN input clocks must be externally synchronized. This mode is intended for hardware modeling. The AC timing specifications in this document do not apply in dual PLL bypass mode.
- 10.Limited by maximum CPU VCO frequency (704 MHz).

11.Limited by maximum system memory interface operating frequency (83 MHz @ 166 MHz CPU bus speed).

- 12.Limited by maximum system memory interface operating frequency (100 MHz @ 200 MHz CPU bus speed).
- 13.Limited by minimum memory VCO frequency (132 MHz).

14.In clock off mode, no clocking occurs inside the MPC8241, regardless of the PCI_SYNC_IN input.

		2	266-MHz Part ⁹	Multipliers		
Ref ²	PLL_ CFG[0:4] ^{10,11}	PCI Clock Input (PCI_SYNC_IN) Range ¹ (MHz)	Periph Logic/ Mem Bus Clock Range (MHz)	CPU Clock Range (MHz)	PCI-to-Mem (Mem VCO)	Mem-to-CPU (CPU VCO)
0	00000	25–35 ⁵	75–105	188–263	3 (2)	2.5 (2)
1	00001	25–29 ⁵	75–88	225–264	3 (2)	3 (2)
2	00010	50 ¹⁵ –59 ⁵	50–59	225–266	1 (4)	4.5 (2)
3	00011 ¹²	50 ¹⁴ –66 ¹	50–66	100–133	1 (Bypass)	2 (4)
4	00100	25–44 ⁴	50–88	100–176	2 (4)	2 (4)

Table 18. PLL Configurations (266-MHz Parts)

7.7 Thermal Management

This section provides thermal management information for the plastic ball grid array (PBGA) package for air-cooled applications. Depending on the application environment and the operating frequency, a heat sink may be required to maintain junction temperature within specifications. Proper thermal control design primarily depends on the system-level design: heat sink, airflow, and thermal interface material. To reduce the die-junction temperature, heat sinks can be attached to the package by several methods: adhesive, spring clip to holes in the printed-circuit board or package, or mounting clip and screw assembly (see Figure 28).

Figure 28. Package Exploded Cross-Sectional View with Several Heat Sink Options

Figure 29 depicts the die junction-to-ambient thermal resistance for four typical cases:

- A heat sink is not attached to the PBGA package and a high board-level thermal loading from adjacent components exists (label used—1s).
- A heat sink is not attached to the PBGA package and a low board-level thermal loading from adjacent components exists (label used—2s2p).
- A large heat sink (cross cut extrusion, $38 \times 38 \times 16.5$ mm) is attached to the PBGA package and a high board-level thermal loading from adjacent components exists (label used—1s/sink).
- A large heat sink (cross cut extrusion, $38 \times 38 \times 16.5$ mm) is attached to the PBGA package and a low board-level thermal loading from adjacent components exists (label used—2s2p/sink).

7.7.1 Internal Package Conduction Resistance

For the PBGA, die-up, packaging technology, shown in Figure 28, the intrinsic conduction thermal resistance paths are as follows:

- The die junction-to-case thermal resistance
- The die junction-to-ball thermal resistance

Figure 30 depicts the primary heat transfer path for a package with an attached heat sink mounted to a printed-circuit board.

⁽Note the internal versus external package resistance)

Figure 30. PBGA Package with Heat Sink Mounted to a Printed-Circuit Board

For this die-up, wire-bond PBGA package, heat generated on the active side of the chip is conducted mainly through the mold cap, the heat sink attach material (or thermal interface material), and finally through the heat sink where forced-air convection removes it.

7.7.2 Adhesives and Thermal Interface Materials

A thermal interface material should be used between the top of the mold cap and the bottom of the heat sink minimizes thermal contact resistance. For applications that attach the heat sink by a spring clip mechanism, Figure 31 shows the thermal performance of three thin-sheet thermal-interface materials (silicone, graphite/oil, floroether oil), a bare joint, and a joint with thermal grease as a function of contact pressure. As shown, the performance of these thermal interface materials improves with increasing contact pressure. Thermal grease significantly reduces the interface thermal resistance. That is, the bare joint offers a thermal resistance approximately seven times greater than the thermal grease joint.

A spring clip attaches heat sinks to holes in the printed-circuit board (see Figure 28). Therefore, the synthetic grease offers the best thermal performance, considering the low interface pressure. The selection of any thermal interface material depends on factors such as thermal performance requirements, manufacturability, service temperature, dielectric properties, and cost.

System Design Information

Figure 31. Thermal Performance of Select Thermal Interface Material

The board designer can choose among several types of thermal interface. Heat sink adhesive materials are selected on the basis of high conductivity and adequate mechanical strength to meet equipment shock/vibration requirements. Several commercially-available thermal interfaces and adhesive materials are provided by the following vendors:

The Bergquist Company 18930 West 78 th St	800-347-4572
Chanhassen, MN 55317	
Internet: www.bergquistcompany.com	
Chomerics, Inc.	781-935-4850
77 Dragon Ct.	
Woburn, MA 01888-4014	
Internet: www.chomerics.com	
Dow-Corning Corporation	800-248-2481
Dow-Corning Electronic Materials	
2200 W. Salzburg Rd.	
Midland, MI 48686-0997	
Internet: www.dow.com	

Revision	Date	Substantive Change(s)
4		Section 1.4.1.2—Table 2: Changed note 1. Figure 2: Updated note 2 and removed 'voltage regulator delay' label since Section 1.7.2 is being deleted this revision. Also, updated Table 5, note 1 to reflect deletion of Section 1.7.2. Section 1.4.1.3—Table 3: Updated the maximum input capacitance from 15 to 16 pF based on characterization data. Section 1.4.3.1—Updated PCI_SYNC_IN jitter specifications to 200 ps. Section 1.4.3.3—Table 11, item 12b: added the word 'address' to help clarify which signals the spec applies to. Figure 15: edited timing for items 12a0 and 12a2 to correspond with Table 11. Section 1.5.2—Changed some dimension values for the side view of package. Section 1.5.3—Updated notes for the QACK/DA0 signal because this signal has been found to have no internal pull resistor. Section 1.6—Updated note numbering list for Table 19. Removed mode 5 from PLL tables since that mode is no longer supported. Section 1.7.2 —This section was removed as it was not necessary since the power information is covered in Section 1.4.1.5. Section 1.7.4—Added the words 'the clamping voltage' to describe LV _{DD} in the sixth paragraph. Changed the QACK/DA0 signal from the list of signals having an internal pull-up resistor to the list of signals needing a weak pull-up resistor to OV _{DD} . Section 1.9.1—Table 21: Added processor version register value column.
3	_	Section 1.4.1.2—Changed recommended value in Table 2 for I/O buffer supply to 3.3 ± 0.3 V. Changed wording referencing Figure 4 to refer to the MPC8241. Section 1.4.2—Table 6: Updated values for thermal characterization data as per the new packaging and 266-MHz part. Added note 7 for the difference between the 166-/200-MHz and the 266-MHz packaging. Section 1.4.3—Corrected the voltage listing for the 266-MHz part to 1.8 ± 0.1 V in Table 7. Section 1.5—Changed package parameters and illustration based on new packaging. Section 1.6—Table 18: Modified PLL configuration for 166- and 200-MHz parts for mode 7 to specify that this mode is not available for Rev. D of the part. Added sentence to note 1 referencing update for mode 7. Table 19: Made several range updates for various modes to accommodate VCO limits. Added mode 7 and 1E updates for Rev. D. Updated VCO limits listed in notes 4, 6, and 7.
2	_	Section 1.4.1.2—Updated note 1 to include 266-MHz part. Added a line to cautions 2 and 3 in the notes section of Table 2. Added Figures 4 and 5 to show the overshoot and undershoot requirements for the PCI interface. Section 1.4.1.3—Table 3: Updated minimum value for input high voltage, and maximum value for capacitance. Section 1.4.3.2—Appended Figures 9 and 10. Section 1.4.3.4—Added a column to Table 13 to include 133-MHz memory bus speed for 266-MHz part. Section 1.5.2—Changed Figure 24 to accommodate new package offerings. Section 1.6—Added Table 19 for PLL of the 266-MHz part. Section 1.7.7—Corrected note numbering in COP connector diagram. Section 1.9.1—Updated package description in part marking nomenclature.

Table 21. Revision History Table (continued)

How to Reach Us:

Home Page: www.freescale.com

Web Support: http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405 Denver, Colorado 80217 1-800 441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor @hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other countries. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org. IEEE 1149.1 is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc. (IEEE). This product is not endorsed or approved by the IEEE.

© Freescale Semiconductor, Inc., 2009. All rights reserved.

Document Number: MPC8241EC Rev. 10 02/2009

