

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Discontinued at Digi-Key
Core Processor	C166SV2
Core Size	16-Bit
Speed	20MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-16
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc164s-16f20f-bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

XC164S	
Revision History: V1.2, 2006-08	

Previous Version(s): V1.1, 2006-03 V1.0, 2005-01

Page	Subjects (major changes since last revision)
6	New derivatives added.
10	Description of the TRST signal modified.
45	Instructions Set Summary improved.
48	Footnote added about pin XTAL1 belonging to V_{DDI} power domain.
52	Footnote added about amplitude at XTAL1 pin.
71	Thermal Resistance: R_{THA} replaced by $R_{\Theta \text{JC}}$ and $R_{\Theta \text{JL}}$ because R_{THA} strongly depends on the external system (PCB, environment). P_{DISS} removed, because no static parameter, but derived from thermal resistance.
72	Green Package added.

We Listen to Your Comments

Any information within this document that you feel is wrong, unclear or missing at all? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to: mcdocu.comments@infineon.com

16-Bit Single-Chip Microcontroller with C166SV2 Core XC166 Family

1 Summary of Features

- High Performance 16-bit CPU with 5-Stage Pipeline
 - 25 ns Instruction Cycle Time at 40 MHz CPU Clock (Single-Cycle Execution)
 - 1-Cycle Multiplication (16 \times 16 bit), Background Division (32 / 16 bit) in 21 Cycles
 - 1-Cycle Multiply-and-Accumulate (MAC) Instructions
 - Enhanced Boolean Bit Manipulation Facilities
 - Zero-Cycle Jump Execution
 - Additional Instructions to Support HLL and Operating Systems
 - Register-Based Design with Multiple Variable Register Banks
 - Fast Context Switching Support with Two Additional Local Register Banks
 - 16 Mbytes Total Linear Address Space for Code and Data
 - 1024 Bytes On-Chip Special Function Register Area (C166 Family Compatible)
- 16-Priority-Level Interrupt System with up to 75 Sources, Sample-Rate down to 50 ns
- 8-Channel Interrupt-Driven Single-Cycle Data Transfer Facilities via Peripheral Event Controller (PEC), 24-Bit Pointers Cover Total Address Space
- Clock Generation via on-chip PLL (factors 1:0.15 ... 1:10), or via Prescaler (factors 1:1 ... 60:1)
- On-Chip Memory Modules
 - 2 Kbytes On-Chip Dual-Port RAM (DPRAM)
 - 2/4 Kbytes On-Chip Data SRAM (DSRAM)¹⁾
 - 2 Kbytes On-Chip Program/Data SRAM (PSRAM)
 - 64/128 Kbytes On-Chip Program Memory (Flash Memory or Mask ROM)¹⁾
- On-Chip Peripheral Modules
 - 14-Channel A/D Converter with Programmable Resolution (10-bit or 8-bit) and Conversion Time (down to 2.55 μs or 2.15 μs)
 - Two 16-Channel General Purpose Capture/Compare Units (12 Input/Output Pins)
 - Capture/Compare Unit for flexible PWM Signal Generation (CAPCOM6) (3/6 Capture/Compare Channels and 1 Compare Channel)
 - Multi-Functional General Purpose Timer Unit with 5 Timers
 - Two Synchronous/Asynchronous Serial Channels (USARTs)
 - Two High-Speed-Synchronous Serial Channels
 - On-Chip Real Time Clock
- Idle, Sleep, and Power Down Modes with Flexible Power Management
- Programmable Watchdog Timer and Oscillator Watchdog
- Up to 12 Mbytes External Address Space for Code and Data

¹⁾ Depends on the respective derivative. The derivatives are listed in Table 1.

General Device Information

2 General Device Information

2.1 Introduction

The XC164S derivatives are high-performance members of the Infineon XC166 Family of full featured single-chip CMOS microcontrollers. These devices extend the functionality and performance of the C166 Family in terms of instructions (MAC unit), peripherals, and speed. They combine high CPU performance (up to 40 million instructions per second) with high peripheral functionality and enhanced IO-capabilities. They also provide clock generation via PLL and various on-chip memory modules such as program Flash, program RAM, and data RAM.

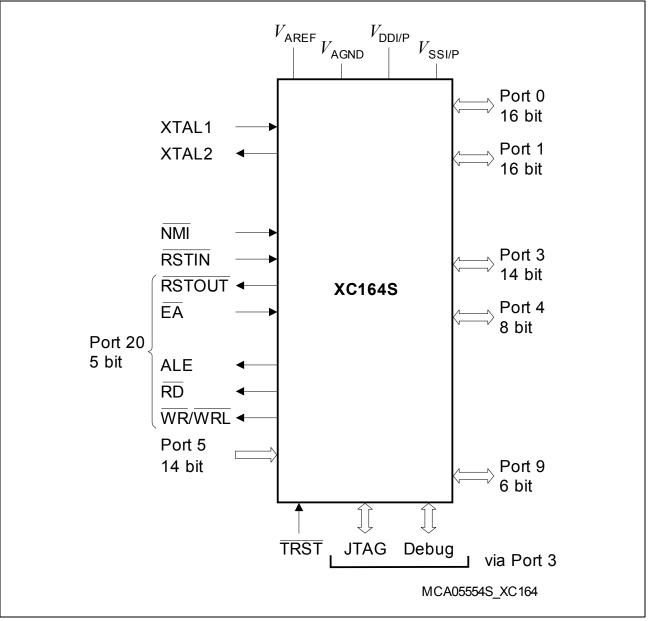


Figure 1 Logic Symbol

General Device Information

Table 2	Pir	n Definit	ions and F	unctions (cont'd)
Symbol	Pin Num.	Input Outp.	Function	
P20		IO	programme state) or ou (standard o	a 5-bit bidirectional I/O port. Each pin can be ed for input (output driver in high-impedance utput. The input threshold of Port 20 is selectable or special). ing Port 20 pins also serve for alternate functions:
P20.0	63	0	RD	External Memory Read Strobe, activated for every external instruction or data read access.
P20.1	64	0	WR/WRL	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus.
P20.4	65	0	ALE	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes.
P20.5	66	1	ĒĀ	External Access Enable pin. A low level at this pin during and after Reset forces the XC164S to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the XC164S to latch the configuration from pins RD, ALE, and WR, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.
P20.12	2	0	RSTOUT	Internal Reset Indication Output. Is activated asynchronously with an external hardware reset. It may also be activated (selectable) synchronously with an internal software or watchdog reset. Is deactivated upon the execution of the EINIT instruction, optionally at the end of reset, or at any time (before EINIT) via user software. 20 pins may input configuration values (see EA).

General Device Information

Table 2	Pir	n Definit	tions and Fu	Inctions (cont'd)				
Symbol	Pin Num.	Input Outp.	Function					
PORT1		10	continued	J				
(cont'd)								
P1H.0	89		CC6POS0	CAPCOM6: Position 0 Input,				
			EX0IN	Fast External Interrupt 0 Input (default pin),				
	00	1/0	<u>CC23IO</u>	CAPCOM2: CC23 Capture Inp./Compare Outp.				
P1H.1	90		CC6POS1	CAPCOM6: Position 1 Input,				
			EX1IN	Fast External Interrupt 1 Input (default pin),				
	01	I/O	MRST1	SSC1 Master-Receive/Slave-Transmit In/Out.				
P1H.2	91		CC6POS2	CAPCOM6: Position 2 Input,				
		1 1/0	EX2IN MTSR1	Fast External Interrupt 2 Input (default pin),				
P1H.3	92	1/0	T7IN	SSC1 Master-Transmit/Slave-Receive Out/Inp. CAPCOM2: Timer T7 Count Input,				
F 111.3	92	1 1/0	SCLK1	SSC1 Master Clock Output / Slave Clock Input,				
		1	EX3IN	Fast External Interrupt 3 Input (default pin),				
			EXOIN	Fast External Interrupt 0 Input (alternate pin A)				
P1H.4	93	1/0	CC24IO	CAPCOM2: CC24 Capture Inp./Compare Outp.,				
1 111.4	00	1	EX4IN	Fast External Interrupt 4 Input (default pin)				
P1H.5	94	I/O	CC25IO					
		1	EX5IN	Fast External Interrupt 5 Input (default pin)				
P1H.6	95	I/O	CC26IO	CAPCOM2: CC26 Capture Inp./Compare Outp.,				
		1	EX6IN	Fast External Interrupt 6 Input (default pin)				
P1H.7	96	I/O	CC27IO	CAPCOM2: CC27 Capture Inp./Compare Outp.,				
		1	EX7IN	Fast External Interrupt 7 Input (default pin)				
XTAL2	99	0	XTAL2:	Output of the oscillator amplifier circuit				
XTAL1	100	I	XTAL1:	Input to the oscillator amplifier and input to the internal clock generator				
			To clock the	e device from an external source, drive XTAL1,				
				g XTAL2 unconnected. Minimum and maximum				
				d rise/fall times specified in the AC				
			•	tics must be observed.				
			Note [.] Input	pin XTAL1 belongs to the core voltage domain.				
				efore, input voltages must be within the range				
				defined for V_{DDI} .				
res	28	_	Pin is reser	ved and connected to V_{DDP}				
res	29	_	Pin is reser	ved and connected to $V_{\rm SSP}$				

example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. Also multiplication and most MAC instructions execute in one single cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: for example, a division algorithm is performed in 18 to 21 CPU cycles, depending on the data and division type. Four cycles are always visible, the rest runs in the background. Another pipeline optimization, the branch target prediction, allows eliminating the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. The global register bank is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active global register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided as a storage for temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient XC164S instruction set which includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Table 4XC164S Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM Register 29	CC2_CC29IC	xx'0110 _H	44 _H / 68 _D
CAPCOM Register 30	 CC2_CC30IC	xx'0114 _H	45 _H / 69 _D
CAPCOM Register 31	 CC2_CC31IC	xx'0118 _H	46 _H / 70 _D
CAPCOM Timer 0	 CC1_T0IC	xx'0080 _H	20 _H / 32 _D
CAPCOM Timer 1	CC1_T1IC	xx'0084 _H	21 _H / 33 _D
CAPCOM Timer 7	 CC2_T7IC	xx'00F4 _H	3D _H / 61 _D
CAPCOM Timer 8	CC2_T8IC	xx'00F8 _H	3E _H / 62 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0088 _H	22 _H / 34 _D
GPT1 Timer 3	GPT12E_T3IC	xx'008C _H	23 _H / 35 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0090 _H	24 _H / 36 _D
GPT2 Timer 5	GPT12E_T5IC	xx'0094 _H	25 _H / 37 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0098 _H	26 _H / 38 _D
GPT2 CAPREL Register	GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
A/D Conversion Complete	ADC_CIC	xx'00A0 _H	28 _H / 40 _D
A/D Overrun Error	ADC_EIC	xx'00A4 _H	29 _H / 41 _D
ASC0 Transmit	ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0 Transmit Buffer	ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0 Receive	ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0 Error	ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0 Autobaud	ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0 Transmit	SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0 Receive	SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0 Error	SSC0_EIC	xx'00BC _H	2F _H / 47 _D
PLL/OWD	PLLIC	xx'010C _H	43 _H / 67 _D
ASC1 Transmit	ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1 Transmit Buffer	ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1 Receive	ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1 Error	ASC1_EIC	xx'0128 _H	4A _H / 74 _D
ASC1 Autobaud	ASC1_ABIC	xx'0108 _H	42 _H / 66 _D
End of PEC Subchannel	EOPIC	xx'0130 _H	4C _H / 76 _D

3.8 General Purpose Timer Unit (GPT12E)

The GPT12E unit represents a very flexible multifunctional timer/counter structure which may be used for many different time related tasks such as event timing and counting, pulse width and duty cycle measurements, pulse generation, or pulse multiplication.

The GPT12E unit incorporates five 16-bit timers which are organized in two separate modules, GPT1 and GPT2. Each timer in each module may operate independently in a number of different modes, or may be concatenated with another timer of the same module.

Each of the three timers T2, T3, T4 of **module GPT1** can be configured individually for one of four basic modes of operation, which are Timer, Gated Timer, Counter, and Incremental Interface Mode. In Timer Mode, the input clock for a timer is derived from the system clock, divided by a programmable prescaler, while Counter Mode allows a timer to be clocked in reference to external events.

Pulse width or duty cycle measurement is supported in Gated Timer Mode, where the operation of a timer is controlled by the 'gate' level on an external input pin. For these purposes, each timer has one associated port pin (TxIN) which serves as gate or clock input. The maximum resolution of the timers in module GPT1 is 4 system clock cycles.

The count direction (up/down) for each timer is programmable by software or may additionally be altered dynamically by an external signal on a port pin (TxEUD) to facilitate e.g. position tracking.

In Incremental Interface Mode the GPT1 timers (T2, T3, T4) can be directly connected to the incremental position sensor signals A and B via their respective inputs TxIN and TxEUD. Direction and count signals are internally derived from these two input signals, so the contents of the respective timer Tx corresponds to the sensor position. The third position sensor signal TOP0 can be connected to an interrupt input.

Timer T3 has an output toggle latch (T3OTL) which changes its state on each timer overflow/underflow. The state of this latch may be output on pin T3OUT e.g. for time out monitoring of external hardware components. It may also be used internally to clock timers T2 and T4 for measuring long time periods with high resolution.

In addition to their basic operating modes, timers T2 and T4 may be configured as reload or capture registers for timer T3. When used as capture or reload registers, timers T2 and T4 are stopped. The contents of timer T3 is captured into T2 or T4 in response to a signal at their associated input pins (TxIN). Timer T3 is reloaded with the contents of T2 or T4 triggered either by an external signal or by a selectable state transition of its toggle latch T3OTL. When both T2 and T4 are configured to alternately reload T3 on opposite state transitions of T3OTL with the low and high times of a PWM signal, this signal can be constantly generated without software intervention.

The RTC module can be used for different purposes:

- System clock to determine the current time and date, optionally during idle mode, sleep mode, and power down mode.
- Cyclic time based interrupt, to provide a system time tick independent of CPU frequency and other resources, e.g. to wake up regularly from idle mode.
- 48-bit timer for long term measurements (maximum timespan is >> 100 years).
- Alarm interrupt for wake-up on a defined time.

3.12 High Speed Synchronous Serial Channels (SSC0/SSC1)

The High Speed Synchronous Serial Channels SSC0/SSC1 support full-duplex and halfduplex synchronous communication. It may be configured so it interfaces with serially linked peripheral components, full SPI functionality is supported.

A dedicated baud rate generator allows to set up all standard baud rates without oscillator tuning. For transmission, reception and error handling three separate interrupt vectors are provided.

The SSC transmits or receives characters of 2 ... 16 bits length synchronously to a shift clock which can be generated by the SSC (master mode) or by an external master (slave mode). The SSC can start shifting with the LSB or with the MSB and allows the selection of shifting and latching clock edges as well as the clock polarity.

A number of optional hardware error detection capabilities has been included to increase the reliability of data transfers. Transmit error and receive error supervise the correct handling of the data buffer. Phase error and baudrate error detect incorrect serial data.

Summary of Features

- Master or Slave mode operation
- Full-duplex or Half-duplex transfers
- Baudrate generation from 20 Mbit/s to 305.18 bit/s (@ 40 MHz)
- Flexible data format
 - Programmable number of data bits: 2 to 16 bits
 - Programmable shift direction: LSB-first or MSB-first
 - Programmable clock polarity: idle low or idle high
 - Programmable clock/data phase: data shift with leading or trailing clock edge
- Loop back option available for testing purposes
- Interrupt generation on transmitter buffer empty condition, receive buffer full condition, error condition (receive, phase, baudrate, transmit error)
- Three pin interface with flexible SSC pin configuration

3.13 Watchdog Timer

The Watchdog Timer represents one of the fail-safe mechanisms which have been implemented to prevent the controller from malfunctioning for longer periods of time.

The Watchdog Timer is always enabled after a reset of the chip, and can be disabled until the EINIT instruction has been executed (compatible mode), or it can be disabled and enabled at any time by executing instructions DISWDT and ENWDT (enhanced mode). Thus, the chip's start-up procedure is always monitored. The software has to be designed to restart the Watchdog Timer before it overflows. If, due to hardware or software related failures, the software fails to do so, the Watchdog Timer overflows and generates an internal hardware reset and pulls the RSTOUT pin low in order to allow external hardware components to be reset.

The Watchdog Timer is a 16-bit timer, clocked with the system clock divided by 2/4/128/256. The high byte of the Watchdog Timer register can be set to a prespecified reload value (stored in WDTREL) in order to allow further variation of the monitored time interval. Each time it is serviced by the application software, the high byte of the Watchdog Timer is reloaded and the low byte is cleared. Thus, time intervals between 13 µs and 419 ms can be monitored (@ 40 MHz).

The default Watchdog Timer interval after reset is 3.28 ms (@ 40 MHz).

3.14 Clock Generation

The Clock Generation Unit uses a programmable on-chip PLL with multiple prescalers to generate the clock signals for the XC164S with high flexibility. The master clock f_{MC} is the reference clock signal, and is used for TwinCAN and is output to the external system. The CPU clock f_{CPU} and the system clock f_{SYS} are derived from the master clock either directly (1:1) or via a 2:1 prescaler ($f_{SYS} = f_{CPU} = f_{MC} / 2$). See also Section 4.4.1.

The on-chip oscillator can drive an external crystal or accepts an external clock signal. The oscillator clock frequency can be multiplied by the on-chip PLL (by a programmable factor) or can be divided by a programmable prescaler factor.

If the bypass mode is used (direct drive or prescaler) the PLL can deliver an independent clock to monitor the clock signal generated by the on-chip oscillator. This PLL clock is independent from the XTAL1 clock. When the expected oscillator clock transitions are missing the Oscillator Watchdog (OWD) activates the PLL Unlock/OWD interrupt node and supplies the CPU with an emergency clock, the PLL clock signal. Under these circumstances the PLL will oscillate with its basic frequency.

The oscillator watchdog can be disabled by switching the PLL off. This reduces power consumption, but also no interrupt request will be generated in case of a missing oscillator clock.

Note: At the end of an external reset ($\overline{EA} = '0'$) the oscillator watchdog may be disabled via hardware by (externally) pulling the \overline{RD} line low upon a reset, similar to the standard reset configuration.

3.15 Parallel Ports

The XC164S provides up to 79 I/O lines which are organized into six input/output ports and one input port. All port lines are bit-addressable, and all input/output lines are individually (bit-wise) programmable as inputs or outputs via direction registers. The I/O ports are true bidirectional ports which are switched to high impedance state when configured as inputs. The output drivers of some I/O ports can be configured (pin by pin) for push/pull operation or open-drain operation via control registers. During the internal reset, all port pins are configured as inputs (except for pin RSTOUT).

The edge characteristics (shape) and driver characteristics (output current) of the port drivers can be selected via registers POCONx.

The input threshold of some ports is selectable (TTL or CMOS like), where the special CMOS like input threshold reduces noise sensitivity due to the input hysteresis. The input threshold may be selected individually for each byte of the respective ports.

All port lines have programmable alternate input or output functions associated with them. All port lines that are not used for these alternate functions may be used as general purpose IO lines.

Table 7	Summary of t	he XC164S's Parallel Ports
Port	Control	Alternate Functions
PORT0	Pad drivers	Address/Data lines or data lines ¹⁾
PORT1	Pad drivers	Address lines ²⁾
		Capture inputs or compare outputs, Serial interface lines, Fast external interrupt inputs
Port 3	Pad drivers, Open drain, Input threshold	Timer control signals, serial interface lines, Optional bus control signal BHE/WRH, System clock output CLKOUT (or FOUT), Debug interface lines
Port 4 Pad drivers,		Segment address lines ³⁾
	Open drain, Input threshold	Optional chip select signals
Port 5	-	Analog input channels to the A/D converter, Timer control signals
Port 9	Pad drivers, Open drain, Input threshold	Capture inputs or compare outputs
Port 20	Pad drivers, Open drain	Bus control signals RD, WR/WRL, ALE, External access enable pin EA, Reset indication output RSTOUT

1) For multiplexed bus cycles.

2) For demultiplexed bus cycles.

3) For more than 64 Kbytes of external resources.

Table 8Instruction Set Summary (cont'd)				
Mnemonic	Description	Bytes		
NOP	Null operation	2		
CoMUL/CoMAC	Multiply (and accumulate)	4		
CoADD/CoSUB	Add/Subtract	4		
Co(A)SHR	(Arithmetic) Shift right	4		
CoSHL	Shift left	4		
CoLOAD/STORE	Load accumulator/Store MAC register	4		
CoCMP	Compare	4		
CoMAX/MIN	Maximum/Minimum	4		
CoABS/CoRND	Absolute value/Round accumulator	4		
CoMOV	Data move	4		
CoNEG/NOP	Negate accumulator/Null operation	4		

Sample time and conversion time of the XC164S's A/D Converter are programmable. In compatibility mode, the above timing can be calculated using **Table 15**. The limit values for f_{BC} must not be exceeded when selecting ADCTC.

ADCON.15 14 (ADCTC)	A/D Converter Basic Clock $f_{\rm BC}$	ADCON.13 12 (ADSTC)	Sample Time <i>t</i> _S
00	<i>f</i> _{SYS} / 4	00	$t_{\rm BC} imes 8$
01	<i>f</i> _{SYS} / 2	01	$t_{\rm BC} imes 16$
10	<i>f</i> _{SYS} / 16	10	$t_{\rm BC} imes 32$
11	f _{SYS} / 8	11	$t_{\rm BC} imes 64$

 Table 15
 A/D Converter Computation Table¹⁾

1) These selections are available in compatibility mode. An improved mechanism to control the ADC input clock can be selected.

Converter Timing Example:

Assumptions:	$f_{\rm SYS}$	= 40 MHz (i.e. <i>t</i> _{SYS} = 25 ns), ADCTC = '01', ADSTC = '00'
Basic clock	$f_{\rm BC}$	= f _{SYS} / 2 = 20 MHz, i.e. t _{BC} = 50 ns
Sample time	t _S	$= t_{\rm BC} \times 8 = 400 \rm ns$
Conversion 10-bi	t:	
With post-calibr.	t _{C10P}	= $52 \times t_{BC}$ + t_{S} + $6 \times t_{SYS}$ = (2600 + 400 + 150) ns = 3.15 µs
Post-calibr. off	<i>t</i> _{C10}	= $40 \times t_{BC}$ + t_{S} + $6 \times t_{SYS}$ = (2000 + 400 + 150) ns = 2.55 µs
Conversion 8-bit:		
With post-calibr.	t _{C8P}	= $44 \times t_{BC} + t_{S} + 6 \times t_{SYS}$ = (2200 + 400 + 150) ns = 2.75 µs
Post-calibr. off	t _{C8}	= $32 \times t_{BC}$ + t_{S} + $6 \times t_{SYS}$ = (1600 + 400 + 150) ns = 2.15 µs

CPU and EBC are clocked with the CPU clock signal f_{CPU} . The CPU clock can have the same frequency as the master clock ($f_{CPU} = f_{MC}$) or can be the master clock divided by two: $f_{CPU} = f_{MC}$ / 2. This factor is selected by bit CPSYS in register SYSCON1.

The specification of the external timing (AC Characteristics) depends on the period of the CPU clock, called "TCP".

The other peripherals are supplied with the system clock signal f_{SYS} which has the same frequency as the CPU clock signal f_{CPU} .

Bypass Operation

When bypass operation is configured (PLLCTRL = $0x_B$) the master clock is derived from the internal oscillator (input clock signal XTAL1) through the input- and output-prescalers:

 $f_{MC} = f_{OSC} / ((PLLIDIV+1) \times (PLLODIV+1)).$

If both divider factors are selected as '1' (PLLIDIV = PLLODIV = '0') the frequency of f_{MC} directly follows the frequency of f_{OSC} so the high and low time of f_{MC} is defined by the duty cycle of the input clock f_{OSC} .

The lowest master clock frequency is achieved by selecting the maximum values for both divider factors:

 $f_{\rm MC} = f_{\rm OSC} / ((3 + 1) \times (14 + 1)) = f_{\rm OSC} / 60.$

Phase Locked Loop (PLL)

When PLL operation is configured (PLLCTRL = 11_B) the on-chip phase locked loop is enabled and provides the master clock. The PLL multiplies the input frequency by the factor **F** ($f_{MC} = f_{OSC} \times F$) which results from the input divider, the multiplication factor, and the output divider (**F** = PLLMUL+1 / (PLLIDIV+1 × PLLODIV+1)). The PLL circuit synchronizes the master clock to the input clock. This synchronization is done smoothly, i.e. the master clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of $f_{\rm MC}$ is constantly adjusted so it is locked to $f_{\rm OSC}$. The slight variation causes a jitter of $f_{\rm MC}$ which also affects the duration of individual TCMs.

The timing listed in the AC Characteristics refers to TCPs. Because $f_{\rm CPU}$ is derived from $f_{\rm MC}$, the timing must be calculated using the minimum TCP possible under the respective circumstances.

The actual minimum value for TCP depends on the jitter of the PLL. As the PLL is constantly adjusting its output frequency so it corresponds to the applied input frequency (crystal or oscillator) the relative deviation for periods of more than one TCP is lower than for one single TCP (see formula and **Figure 15**).

This is especially important for bus cycles using waitstates and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train

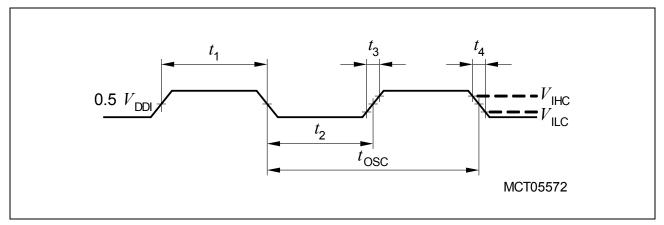

4.4.3 External Clock Drive XTAL1

Table 19External Clock Drive Characteristics (Operating Conditions apply)

Parameter	Symbol		Limit Values		Unit
			Min.	Max.	
Oscillator period	t _{OSC}	SR	25	250 ¹⁾	ns
High time ²⁾	t ₁	SR	6	_	ns
Low time ²⁾	t ₂	SR	6	_	ns
Rise time ²⁾	t ₃	SR	_	8	ns
Fall time ²⁾	t ₄	SR	_	8	ns

1) The maximum limit is only relevant for PLL operation to ensure the minimum input frequency for the PLL.

2) The clock input signal must reach the defined levels $V_{\rm ILC}$ and $V_{\rm IHC}$.

Figure 16 External Clock Drive XTAL1

Note: If the on-chip oscillator is used together with a crystal or a ceramic resonator, the oscillator frequency is limited to a range of 4 MHz to 16 MHz.

It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimum parameters for the oscillator operation. Please refer to the limits specified by the crystal supplier.

When driven by an external clock signal it will accept the specified frequency range. Operation at lower input frequencies is possible but is verified by design only (not subject to production test).

Table 22 External Bus Cycle Timing (Operating Conditions apply)

Symbol		Lim	Unit		
		Min.	Max.	7	
<i>tc</i> ₁₀	CC	1	13	ns	
<i>tc</i> ₁₁	СС	-1	7	ns	
<i>tc</i> ₁₂	CC	1	16	ns	
<i>tc</i> ₁₃	CC	3	16	ns	
<i>tc</i> ₁₄	CC	1	14	ns	
<i>tc</i> ₁₅	СС	3	17	ns	
<i>tc</i> ₁₆	СС	3	17	ns	
<i>tc</i> ₂₀	СС	-3	3	ns	
<i>tc</i> ₂₁	СС	0	8	ns	
<i>tc</i> ₂₃	СС	1	13	ns	
<i>tc</i> ₂₄	СС	-3	3	ns	
<i>tc</i> ₂₅	CC	1	13	ns	
<i>tc</i> ₃₀	SR	24	-	ns	
<i>tc</i> ₃₁	SR	-5	-	ns	
	$\begin{array}{c} tc_{10} \\ tc_{11} \\ tc_{12} \\ tc_{12} \\ tc_{13} \\ tc_{14} \\ tc_{15} \\ tc_{16} \\ tc_{20} \\ tc_{21} \\ tc_{23} \\ tc_{23} \\ tc_{24} \\ tc_{25} \\ tc_{30} \\ \end{array}$	tc_{10} CC tc_{11} CC tc_{12} CC tc_{13} CC tc_{14} CC tc_{15} CC tc_{20} CC tc_{21} CC tc_{23} CC tc_{24} CC tc_{25} CC tc_{30} SR	Min. tc_{10} CC 1 tc_{11} CC -1 tc_{12} CC 1 tc_{12} CC 1 tc_{13} CC 3 tc_{14} CC 1 tc_{15} CC 3 tc_{16} CC 3 tc_{20} CC -3 tc_{21} CC 1 tc_{23} CC 1 tc_{24} CC -3 tc_{25} CC 1 tc_{30} SR 24	Min. Max. tc_{10} CC 1 13 tc_{11} CC -1 7 tc_{12} CC 1 16 tc_{12} CC 1 16 tc_{12} CC 1 14 tc_{13} CC 3 16 tc_{14} CC 1 14 tc_{15} CC 3 17 tc_{16} CC 3 17 tc_{20} CC -3 3 tc_{21} CC 0 8 tc_{23} CC 1 13 tc_{24} CC -3 3 tc_{25} CC 1 13 tc_{30} SR 24 -	

 Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can be removed after the rising edge of RD.

Note: The shaded parameters have been verified by characterization. They are not subject to production test.

Package and Reliability

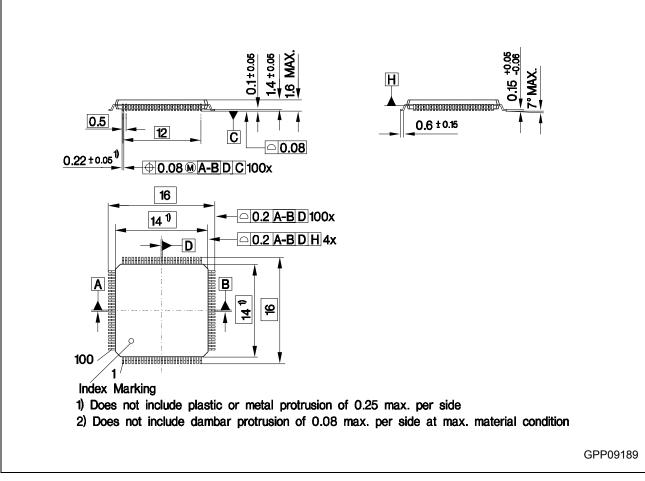


Figure 23 P-TQFP-100-16 (Plastic Thin Quad Flat Package)

You can find all of our packages, sorts of packing and others in our Infineon Internet Page "Products": http://www.infineon.com/products. Dimensions in mm

www.infineon.com