

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	C166SV2
Core Size	16-Bit
Speed	40MHz
Connectivity	EBI/EMI, SPI, UART/USART
Peripherals	PWM, WDT
Number of I/O	79
Program Memory Size	128KB (128K × 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.35V ~ 2.7V
Data Converters	A/D 14x8/10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	PG-TQFP-100-5
Purchase URL	https://www.e-xfl.com/product-detail/infineon-technologies/saf-xc164s-16f40f-bb

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 2	Pi	n Definit	tions and Functions					
Symbol	Pin Num.	Input Outp.	Function					
RSTIN	1	I	Reset Input with Schmitt-Trigger characteristics. A low level at this pin while the oscillator is running resets the XC164S. A spike filter suppresses input pulses < 10 ns. Input pulses > 100 ns safely pass the filter. The minimum duration for a safe recognition should be 100 ns + 2 CPU clock cycles.					
			Note: The reset duration must be sufficient to let the hardware configuration signals settle. <u>External</u> circuitry must guarantee low level at the RSTIN pin at least until both power supply voltages have reached the operating range.					
P20.12	2	10	For details, please refer to the description of P20.					
NMI	3	I	Non-Maskable Interrupt Input. A high to low transition at this pin causes the CPU to vector to the NMI trap routine. When the PWRDN (power down) instruction is executed, the NMI pin must be low in order to force the XC164S into power down mode. If NMI is high, when PWRDN is executed, the part will continue to run in normal mode. If not used, pin NMI should be pulled high externally.					
P0H.0- P0H.3	47	10	For details, please refer to the description of PORT0 .					
P9		IO	Port 9 is a 6-bit bidirectional I/O port. Each pin can be programmed for input (output driver in high-impedance state) or output (configurable as push/pull or open drain driver). The input threshold of Port 9 is selectable (standard or special).					
P9.0	10	I/O	CC16IO CAPCOM2: CC16 Capture Inp./Compare Outp., EX7IN East External Interrupt 7 Input (alternate pin B)					
P9.1	11	I/O	CC17IO CAPCOM2: CC17 Capture Inp./Compare Outp., EX6IN Fast External Interrupt 6 Input (alternate pin B)					
P9.2	12	1/O 1	CC18IO CAPCOM2: CC18 Capture Inp./Compare Outp., EX7IN Fast External Interrupt 7 Input (alternate pin A)					
P9.3	13	I/O I	CC19IO CAPCOM2: CC19 Capture Inp./Compare Outp., EX6IN Fast External Interrupt 6 Input (alternate pin A)					
P9.4	14	I/O	CC20IO CAPCOM2: CC20 Capture Inp./Compare Outp.					
P9.5	15	I/O	CC21IO CAPCOM2: CC21 Capture Inp./Compare Outp.					

Table 2	Pir	Definit	ions and Fu	Inctions (cont'd)				
Symbol	Pin Num.	Input Outp.	Function					
P3		10	Port 3 is a	14-bit bidirectional I/O port. Each pin can be				
			programme	ed for input (output driver in high-impedance				
			state) or output (configurable as push/pull or open drain					
			or special)	input threshold of Port 3 is selectable (standard				
			The followi	ng Port 3 pins also serve for alternate functions:				
P3.1	39	0	T6OUT	GPT2 Timer T6 Toggle Latch Output.				
		1/0	RxD1	ASC1 Data Input (Asvnc.) or Inp./Outp. (Svnc.).				
		1	EX1IN	Fast External Interrupt 1 Input (alternate pin A),				
		1	тск	Debug System: JTAG Clock Input				
P3.2	40	1	CAPIN	GPT2 Register CAPREL Capture Input,				
		1	TDI	Debug System: JTAG Data In				
P3.3	41	0	T3OUT	GPT1 Timer T3 Toggle Latch Output,				
		0	TDO	Debug System: JTAG Data Out				
P3.4	42	1	T3EUD	GPT1 Timer T3 External Up/Down Control Input,				
		1	TMS	Debug System: JTAG Test Mode Selection				
P3.5	43	1	T4IN	GPT1 Timer T4 Count/Gate/Reload/Capture Inp				
		0	TxD1	ASC0 Clock/Data Output (Async./Sync.),				
		0	BRKOUT	Debug System: Break Out				
P3.6	44	I	T3IN	GPT1 Timer T3 Count/Gate Input				
P3.7	45	1	T2IN	GPT1 Timer T2 Count/Gate/Reload/Capture Inp				
		1	BRKIN	Debug System: Break In				
P3.8	46	I/O	MRST0	SSC0 Master-Receive/Slave-Transmit In/Out.				
P3.9	47	I/O	MTSR0	SSC0 Master-Transmit/Slave-Receive Out/In.				
P3.10	48	0	TxD0	ASC0 Clock/Data Output (Async./Sync.),				
			EX2IN	Fast External Interrupt 2 Input (alternate pin B)				
P3.11	49	I/O	RxD0	ASC0 Data Input (Async.) or Inp./Outp. (Sync.),				
/-			EX2IN	Fast External Interrupt 2 Input (alternate pin A)				
P3.12	50	0	BHE	External Memory High Byte Enable Signal,				
		0	WRH	External Memory High Byte Write Strobe,				
			EX3IN	Fast External Interrupt 3 Input (alternate pin B)				
P3.13	51	1/0	SCLK0	SSCU Master Clock Output / Slave Clock Input.,				
	50		EX3IN	Fast External Interrupt 3 Input (alternate pin A)				
P3.15	52	0	CLKOUT	System Clock Output (= CPU Clock),				
		0	FOUT	Programmable Frequency Output				

Table 2	Pir	n Definit	ions and Fu	unctions (cont'd)
Symbol	Pin Num.	Input Outp.	Function	
P20		10	Port 20 is a programme state) or ou (standard o The followi	a 5-bit bidirectional I/O port. Each pin can be ed for input (output driver in high-impedance utput. The input threshold of Port 20 is selectable or special).
P20.0	63	0	RD	External Memory Read Strobe, activated for every external instruction or data read access.
P20.1	64	Ο	WR/WRL	External Memory Write Strobe. In WR-mode this pin is activated for every external data write access. In WRL-mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus.
P20.4	65	0	ALE	Address Latch Enable Output. Can be used for latching the address into external memory or an address latch in the multiplexed bus modes
P20.5	66	1	ĒĀ	 External Access Enable pin. A low level at this pin during and after Reset forces the XC164S to latch the configuration from PORT0 and pin RD, and to begin instruction execution out of external memory. A high level forces the XC164S to latch the configuration from pins RD, ALE, and WR, and to begin instruction execution out of the internal program memory. "ROMless" versions must have this pin tied to '0'.
P20.12	2	Ο	RSTOUT	Internal Reset Indication Output. Is activated asynchronously with an external hardware reset. It may also be activated (selectable) synchronously with an internal software or watchdog reset. Is deactivated upon the execution of the EINIT instruction, optionally at the end of reset, or at any time (before EINIT) via user software. 20 pins may input configuration values (see EA).

Table 2	Pir	n Definit	ions and Functions (cont'd)						
Symbol	Pin Num.	Input Outp.	Function						
PORT0		IO	PORT0 consists of the two 8-bit bidirectional I/O ports P0L and P0H. Each pin can be programmed for input (output						
P0L.0 -	67 -		driver in high-impedance state) or output.						
P0L.7	74		In case of an external bus configuration, PORT0 serves as the address (A) and address/data (AD) bus in multiplexed						
P0H.0 - P0L.3	4 - 7		bus modes and as the data (D) bus in demultiplexed bus modes.						
			Demultiplexed bus modes:						
P0H.4 -	75 -		8-bit data bus: P0H = I/O, P0L = D7 - D0						
P0L.7	78		16-bit data bus: P0H = D15 - D8, P0L = D7 - D0						
			Multiplexed bus modes:						
			8-bit data bus: P0H = A15 - A8, P0L = AD7 - AD0						
			16-bit data bus: P0H = AD15 - AD8, P0L = AD7 - AD0						
			Note: At the end of an external reset (EA = 0) PORT0 also may input configuration values						
PORT1		IO	PORT1 consists of the two 8-bit bidirectional I/O ports P1L and P1H. Each pin can be programmed for input (output driver in high-impedance state) or output. PORT1 is used as the 16-bit address bus (A) in demultiplexed bus modes (also after switching from a demultiplexed to a multiplexed bus mode). The following PORT1 pins also serve for alt_functions:						
P1L.0	79	I/O	CC60 CAPCOM6: Input / Output of Channel 0						
P1L.1	80	0	COUT60 CAPCOM6: Output of Channel 0						
P1L.2	81	I/O	CC61 CAPCOM6: Input / Output of Channel 1						
P1L.3	82	0	COUT61 CAPCOM6: Output of Channel 1						
P1L.4	83	I/O	CC62 CAPCOM6: Input / Output of Channel 2						
P1L.5	84	0	COUT62 CAPCOM6: Output of Channel 2						
P1L.6	85	0	COUT63 Output of 10-bit Compare Channel						
P1L.7	86	1	CTRAP CAPCOM6: Trap Input						
			CTRAP is an input pin with an internal pull-up resistor. A low						
			the logic level defined by software (if enabled)						
		1/0	CC22IO CAPCOM2: CC22 Capture Inp /Compare Outp						
P1H			continued						

3 Functional Description

The architecture of the XC164S combines advantages of RISC, CISC, and DSP processors with an advanced peripheral subsystem in a very well-balanced way. In addition, the on-chip memory blocks allow the design of compact systems-on-silicon with maximum performance (computing, control, communication).

The on-chip memory blocks (program code-memory and SRAM, dual-port RAM, data SRAM) and the set of generic peripherals are connected to the CPU via separate buses. Another bus, the LXBus, connects additional on-chip resources as well as external resources (see Figure 3).

This bus structure enhances the overall system performance by enabling the concurrent operation of several subsystems of the XC164S.

The following block diagram gives an overview of the different on-chip components and of the advanced, high bandwidth internal bus structure of the XC164S.

Figure 3 Block Diagram

3.1 Memory Subsystem and Organization

The memory space of the XC164S is configured in a Von Neumann architecture, which means that all internal and external resources, such as code memory, data memory, registers and I/O ports, are organized within the same linear address space. This common memory space includes 16 Mbytes and is arranged as 256 segments of 64 Kbytes each, where each segment consists of four data pages of 16 Kbytes each. The entire memory space can be accessed bytewise or wordwise. Portions of the on-chip DPRAM and the register spaces (E/SFR) have additionally been made directly bitaddressable.

The internal data memory areas and the Special Function Register areas (SFR and ESFR) are mapped into segment 0, the system segment.

The Program Management Unit (PMU) handles all code fetches and, therefore, controls accesses to the program memories, such as Flash memory, and PSRAM.

The Data Management Unit (DMU) handles all data transfers and, therefore, controls accesses to the DSRAM and the on-chip peripherals.

Both units (PMU and DMU) are connected via the high-speed system bus to exchange data. This is required if operands are read from program memory, code or data is written to the PSRAM, code is fetched from external memory, or data is read from or written to external resources, including peripherals on the LXBus (such as TwinCAN). The system bus allows concurrent two-way communication for maximum transfer performance.

64/128 Kbytes¹⁾ **of on-chip Flash memory or mask-programmable ROM** store code or constant data. The on-chip Flash memory is organized as four 8-Kbyte sectors, one 32-Kbyte sector, and one 64-Kbyte sector. Each sector can be separately write protected²⁾, erased and programmed (in blocks of 128 Bytes). The complete Flash or ROM area can be read-protected. A password sequence temporarily unlocks protected areas. The Flash module combines very fast 64-bit one-cycle read accesses with protected and efficient writing algorithms for programming and erasing. Thus, program execution out of the internal Flash results in maximum performance. Dynamic error correction provides extremely high read data security for all read accesses. For timing characteristics, please refer to Section 4.4.2.

2 Kbytes of on-chip Program SRAM (PSRAM) are provided to store user code or data.

The PSRAM is accessed via the PMU and is therefore optimized for code fetches.

2/4 Kbytes¹⁾ **of on-chip Data SRAM (DSRAM)** are provided as a storage for general user data. The DSRAM is accessed via the DMU and is therefore optimized for data accesses.

2 Kbytes of on-chip Dual-Port RAM (DPRAM) are provided as a storage for user defined variables, for the system stack, and general purpose register banks. A register

¹⁾ Depends on the respective derivative. The derivatives are listed in Table 1.

²⁾ Each two 8-Kbyte sectors are combined for write-protection purposes.

example, shift and rotate instructions are always processed during one machine cycle independent of the number of bits to be shifted. Also multiplication and most MAC instructions execute in one single cycle. All multiple-cycle instructions have been optimized so that they can be executed very fast as well: for example, a division algorithm is performed in 18 to 21 CPU cycles, depending on the data and division type. Four cycles are always visible, the rest runs in the background. Another pipeline optimization, the branch target prediction, allows eliminating the execution time of branch instructions if the prediction was correct.

The CPU has a register context consisting of up to three register banks with 16 wordwide GPRs each at its disposal. The global register bank is physically allocated within the on-chip DPRAM area. A Context Pointer (CP) register determines the base address of the active global register bank to be accessed by the CPU at any time. The number of register banks is only restricted by the available internal RAM space. For easy parameter passing, a register bank may overlap others.

A system stack of up to 32 Kwords is provided as a storage for temporary data. The system stack can be allocated to any location within the address space (preferably in the on-chip RAM area), and it is accessed by the CPU via the stack pointer (SP) register. Two separate SFRs, STKOV and STKUN, are implicitly compared against the stack pointer value upon each stack access for the detection of a stack overflow or underflow.

The high performance offered by the hardware implementation of the CPU can efficiently be utilized by a programmer via the highly efficient XC164S instruction set which includes the following instruction classes:

- Standard Arithmetic Instructions
- DSP-Oriented Arithmetic Instructions
- Logical Instructions
- Boolean Bit Manipulation Instructions
- Compare and Loop Control Instructions
- Shift and Rotate Instructions
- Prioritize Instruction
- Data Movement Instructions
- System Stack Instructions
- Jump and Call Instructions
- Return Instructions
- System Control Instructions
- Miscellaneous Instructions

The basic instruction length is either 2 or 4 bytes. Possible operand types are bits, bytes and words. A variety of direct, indirect or immediate addressing modes are provided to specify the required operands.

Table 4XC164S Interrupt Nodes (cont'd)

Source of Interrupt or PEC	Control	Vector	Trap
Service Request	Register	Location ¹⁾	Number
CAPCOM Register 29	CC2_CC29IC	xx'0110 _H	44 _H / 68 _D
CAPCOM Register 30	CC2_CC30IC	xx'0114 _H	45 _H / 69 _D
CAPCOM Register 31	CC2_CC31IC	xx'0118 _H	46 _H / 70 _D
CAPCOM Timer 0	CC1_T0IC	xx'0080 _H	20 _H / 32 _D
CAPCOM Timer 1	CC1_T1IC	xx'0084 _H	21 _H / 33 _D
CAPCOM Timer 7	CC2_T7IC	xx'00F4 _H	3D _H / 61 _D
CAPCOM Timer 8	CC2_T8IC	xx'00F8 _H	3E _H / 62 _D
GPT1 Timer 2	GPT12E_T2IC	xx'0088 _H	22 _H / 34 _D
GPT1 Timer 3	GPT12E_T3IC	xx'008C _H	23 _H / 35 _D
GPT1 Timer 4	GPT12E_T4IC	xx'0090 _H	24 _H / 36 _D
GPT2 Timer 5	GPT12E_T5IC	xx'0094 _H	25 _H / 37 _D
GPT2 Timer 6	GPT12E_T6IC	xx'0098 _H	26 _H / 38 _D
GPT2 CAPREL Register	GPT12E_CRIC	xx'009C _H	27 _H / 39 _D
A/D Conversion Complete	ADC_CIC	xx'00A0 _H	28 _H / 40 _D
A/D Overrun Error	ADC_EIC	xx'00A4 _H	29 _H / 41 _D
ASC0 Transmit	ASC0_TIC	xx'00A8 _H	2A _H / 42 _D
ASC0 Transmit Buffer	ASC0_TBIC	xx'011C _H	47 _H / 71 _D
ASC0 Receive	ASC0_RIC	xx'00AC _H	2B _H / 43 _D
ASC0 Error	ASC0_EIC	xx'00B0 _H	2C _H / 44 _D
ASC0 Autobaud	ASC0_ABIC	xx'017C _H	5F _H / 95 _D
SSC0 Transmit	SSC0_TIC	xx'00B4 _H	2D _H / 45 _D
SSC0 Receive	SSC0_RIC	xx'00B8 _H	2E _H / 46 _D
SSC0 Error	SSC0_EIC	xx'00BC _H	2F _H / 47 _D
PLL/OWD	PLLIC	xx'010C _H	43 _H / 67 _D
ASC1 Transmit	ASC1_TIC	xx'0120 _H	48 _H / 72 _D
ASC1 Transmit Buffer	ASC1_TBIC	xx'0178 _H	5E _H / 94 _D
ASC1 Receive	ASC1_RIC	xx'0124 _H	49 _H / 73 _D
ASC1 Error	ASC1_EIC	xx'0128 _H	4A _H / 74 _D
ASC1 Autobaud	ASC1_ABIC	xx'0108 _H	42 _H / 66 _D
End of PEC Subchannel	EOPIC	xx'0130 _H	4C _H / 76 _D

Table 4XC164S Interrupt Nodes (cont'd)

Source of Interrupt or PEC Service Request	Control Register	Vector Location ¹⁾	Trap Number
CAPCOM6 Timer T12	CCU6_T12IC	xx'0134 _H	4D _H / 77 _D
CAPCOM6 Timer T13	CCU6_T13IC	xx'0138 _H	4E _H / 78 _D
CAPCOM6 Emergency	CCU6_EIC	xx'013C _H	4F _H / 79 _D
CAPCOM6	CCU6_IC	xx'0140 _H	50 _H / 80 _D
SSC1 Transmit	SSC1_TIC	xx'0144 _H	51 _H / 81 _D
SSC1 Receive	SSC1_RIC	xx'0148 _H	52 _H / 82 _D
SSC1 Error	SSC1_EIC	xx'014C _H	53 _H / 83 _D
Unassigned node	_	xx'0150 _H	54 _H / 84 _D
Unassigned node	-	xx'0154 _H	55 _H / 85 _D
Unassigned node	-	xx'0158 _H	56 _H / 86 _D
Unassigned node	-	xx'015C _H	57 _H / 87 _D
Unassigned node	-	xx'0164 _H	59 _H / 89 _D
Unassigned node	-	xx'0168 _H	5A _H / 90 _D
Unassigned node	-	xx'016C _H	5B _H / 91 _D
Unassigned node	-	xx'0170 _H	5C _H / 92 _D
Unassigned node	_	xx'0174 _H	5D _H / 93 _D
Unassigned node	-	xx'0100 _H	40 _H / 64 _D
Unassigned node	-	xx'0104 _H	41 _H / 65 _D
Unassigned node	-	xx'012C _H	4B _H / 75 _D
Unassigned node	-	xx'00FC _H	3F _H / 63 _D
Unassigned node	-	xx'0160 _H	58 _H / 88 _D

1) Register VECSEG defines the segment where the vector table is located to.

Bitfield VECSC in register CPUCON1 defines the distance between two adjacent vectors. This table represents the default setting, with a distance of 4 (two words) between two vectors.

The XC164S also provides an excellent mechanism to identify and to process exceptions or error conditions that arise during run-time, so-called 'Hardware Traps'. Hardware traps cause immediate non-maskable system reaction which is similar to a standard interrupt service (branching to a dedicated vector table location). The occurrence of a hardware trap is additionally signified by an individual bit in the trap flag register (TFR). Except when another higher prioritized trap service is in progress, a hardware trap will interrupt any actual program execution. In turn, hardware trap services can normally not be interrupted by standard or PEC interrupts.

Table 5 shows all of the possible exceptions or error conditions that can arise during runtime:

Exception Condition	Trap Flag	Trap Vector	Vector Location ¹⁾	Trap Number	Trap Priorit y	
 Reset Functions: Hardware Reset Software Reset Watchdog Timer Overflow 	_	RESET RESET RESET	xx'0000 _H xx'0000 _H xx'0000 _H	00 _H 00 _H 00 _H	 	
 Class A Hardware Traps: Non-Maskable Interrupt Stack Overflow Stack Underflow Software Break 	NMI STKOF STKUF SOFTBRK	NMITRAP STOTRAP STUTRAP SBRKTRAP	xx'0008 _H xx'0010 _H xx'0018 _H xx'0020 _H	02 _н 04 _н 06 _н 08 _н	 	
 Class B Hardware Traps: Undefined Opcode PMI Access Error Protected Instruction Fault Illegal Word Operand Access 	UNDOPC PACER PRTFLT ILLOPA	BTRAP BTRAP BTRAP BTRAP	xx'0028 _H xx'0028 _H xx'0028 _H xx'0028 _H	0A _H 0A _H 0A _H 0A _H	 	
Reserved	-	_	[2C _H - 3C _H]	[0B _H - 0F _H]	-	
Software Traps TRAP Instruction 	_	_	Any [xx'0000 _H - xx'01FC _H] in steps of 4 _H	Any [00 _н - 7F _н]	Current CPU Priority	

Table 5Hardware Trap Summary

1) Register VECSEG defines the segment where the vector table is located to.

compare function.

12 registers of the CAPCOM2 module have each one port pin associated with it which serves as an input pin for triggering the capture function, or as an output pin to indicate the occurrence of a compare event.

Compare Modes	Function
Mode 0	Interrupt-only compare mode; several compare interrupts per timer period are possible
Mode 1	Pin toggles on each compare match; several compare events per timer period are possible
Mode 2	Interrupt-only compare mode; only one compare interrupt per timer period is generated
Mode 3	Pin set '1' on match; pin reset '0' on compare timer overflow; only one compare event per timer period is generated
Double Register Mode	Two registers operate on one pin; pin toggles on each compare match; several compare events per timer period are possible
Single Event Mode	Generates single edges or pulses; can be used with any compare mode

Table 6Compare Modes (CAPCOM1/2)

When a capture/compare register has been selected for capture mode, the current contents of the allocated timer will be latched ('captured') into the capture/compare register in response to an external event at the port pin which is associated with this register. In addition, a specific interrupt request for this capture/compare register is generated. Either a positive, a negative, or both a positive and a negative external signal transition at the pin can be selected as the triggering event.

The contents of all registers which have been selected for one of the five compare modes are continuously compared with the contents of the allocated timers.

When a match occurs between the timer value and the value in a capture/compare register, specific actions will be taken based on the selected compare mode.

The RTC module can be used for different purposes:

- System clock to determine the current time and date, optionally during idle mode, sleep mode, and power down mode.
- Cyclic time based interrupt, to provide a system time tick independent of CPU frequency and other resources, e.g. to wake up regularly from idle mode.
- 48-bit timer for long term measurements (maximum timespan is >> 100 years).
- Alarm interrupt for wake-up on a defined time.

Table 8 In	struction Set Summary (cont'd)	
Mnemonic	Description	Bytes
ROL/ROR	Rotate left/right direct word GPR	2
ASHR	Arithmetic (sign bit) shift right direct word GPR	2
MOV(B)	Move word (byte) data	2/4
MOVBS/Z	Move byte operand to word op. with sign/zero extension	2/4
JMPA/I/R	Jump absolute/indirect/relative if condition is met	4
JMPS	Jump absolute to a code segment	4
JB(C)	Jump relative if direct bit is set (and clear bit)	4
JNB(S)	Jump relative if direct bit is not set (and set bit)	4
CALLA/I/R	Call absolute/indirect/relative subroutine if condition is met	4
CALLS	Call absolute subroutine in any code segment	4
PCALL	Push direct word register onto system stack and call absolute subroutine	4
TRAP	Call interrupt service routine via immediate trap number	2
PUSH/POP	Push/pop direct word register onto/from system stack	2
SCXT	Push direct word register onto system stack and update register with word operand	4
RET(P)	Return from intra-segment subroutine (and pop direct word register from system stack)	2
RETS	Return from inter-segment subroutine	2
RETI	Return from interrupt service subroutine	2
SBRK	Software Break	2
SRST	Software Reset	4
IDLE	Enter Idle Mode	4
PWRDN	Enter Power Down Mode (supposes NMI-pin being low)	4
SRVWDT	Service Watchdog Timer	4
DISWDT/ENWE	DT Disable/Enable Watchdog Timer	4
EINIT	End-of-Initialization Register Lock	4
ATOMIC	Begin ATOMIC sequence	2
EXTR	Begin EXTended Register sequence	2
EXTP(R)	Begin EXTended Page (and Register) sequence	2/4
EXTS(R)	Begin EXTended Segment (and Register) sequence	2/4

Operating Conditions

The following operating conditions must not be exceeded to ensure correct operation of the XC164S. All parameters specified in the following sections refer to these operating conditions, unless otherwise noticed.

Parameter	Symbol	Limit Values		Unit	Notes	
		Min.	Max.			
Digital supply voltage for the core	V _{DDI}	2.35	2.7	V	Active mode, $f_{CPU} = f_{CPUmax}^{1)2)}$	
Digital supply voltage for IO pads	V_{DDP}	4.4	5.5	V	Active mode ²⁾³⁾	
Supply Voltage Difference	$\Delta V_{\rm DD}$	-0.5	_	V	$V_{\rm DDP}$ - $V_{\rm DDI}^{4)}$	
Digital ground voltage	V _{SS}	()	V	Reference voltage	
Overload current	I _{OV}	-5	5	mA	Per IO pin ⁵⁾⁶⁾	
		-2	5	mA	Per analog input pin ⁵⁾⁶⁾	
Overload current coupling	K _{OVA}	-	1.0 × 10 ⁻⁴	-	<i>I</i> _{OV} > 0	
factor for analog inputs ⁷		_	1.5 × 10 ⁻³	-	<i>I</i> _{OV} < 0	
Overload current coupling	K _{OVD}	-	$5.0 imes 10^{-3}$	-	<i>I</i> _{OV} > 0	
factor for digital I/O pins ⁷		_	1.0 × 10 ⁻²	-	<i>I</i> _{OV} < 0	
Absolute sum of overload currents	$\Sigma I_{OV} $	-	50	mA	6)	
External Load Capacitance	CL	-	50	pF	Pin drivers in default mode ⁸⁾	
Ambient temperature	T _A	_	_	°C	see Table 1	

Table 10 Operating Condition Parameters

1) f_{CPUmax} = 40 MHz for devices marked ... 40F, f_{CPUmax} = 20 MHz for devices marked ... 20F.

2) External circuitry must guarantee low-level at the RSTIN pin at least until both power supply voltages have reached the operating range.

- 3) The specified voltage range is allowed for operation. The range limits may be reached under extreme operating conditions. However, specified parameters, such as leakage currents, refer to the standard operating voltage range of V_{DDP} = 4.75 V to 5.25 V.
- 4) This limitation must be fulfilled under all operating conditions including power-ramp-up, power-ramp-down, and power-save modes.

1) An output current above $|I_{OXnom}|$ may be drawn from up to three pins at the same time. For any group of 16 neighboring port output pins the total output current in each direction (ΣI_{OL} and $\Sigma - I_{OH}$) must remain below 50 mA.

Table 13	Power Consumption	XC164S ((Operating	Conditions	apply)
			operating	Conditions	appiy

Parameter	Sym-	Limit Values		Unit	Test Condition	
	bol	Min.	Max.			
Power supply current (active) with all peripherals active	I _{DDI}	-	15 + 2.6 × f _{CPU}	mA	$f_{\rm CPU}$ in [MHz] ¹⁾²⁾	
Pad supply current	$I_{\rm DDP}$	-	5	mA	3)	
Idle mode supply current with all peripherals active	I _{IDX}	-	15 + 1.2 × f _{CPU}	mA	$f_{\rm CPU}$ in [MHz] ²⁾	
Sleep and Power down mode supply current caused by leakage ⁴⁾	<i>I</i> _{PDL} ⁵⁾	-	128,000 × e ^{-α}	mA	$V_{\rm DDI} = V_{\rm DDImax}^{6)}$ $T_{\rm J}$ in [°C] $\alpha =$ 4670 / (273 + $T_{\rm J}$)	
Sleep and Power down mode supply current caused by leakage and the RTC running, clocked by the main oscillator ⁴⁾	I _{PDM} ⁷⁾	_	0.6 + 0.02 × f_{OSC} + I_{PDL}	mA	$V_{\rm DDI}$ = $V_{\rm DDImax}$ $f_{\rm OSC}$ in [MHz]	

1) During Flash programming or erase operations the supply current is increased by max. 5 mA.

2) The supply current is a function of the operating frequency. This dependency is illustrated in Figure 10. These parameters are tested at V_{DDImax} and maximum CPU clock frequency with all outputs disconnected and all inputs at V_{IL} or V_{IH}.

- 3) The pad supply voltage pins (V_{DDP}) mainly provides the current consumed by the pin output drivers. A small amount of current is consumed even though no outputs are driven, because the drivers' input stages are switched and also the Flash module draws some power from the V_{DDP} supply.
- 4) The total supply current in Sleep and Power down mode is the sum of the temperature dependent leakage current and the frequency dependent current for RTC and main oscillator (if active).
- 5) This parameter is determined mainly by the transistor leakage currents. This current heavily depends on the junction temperature (see Figure 12). The junction temperature T_J is the same as the ambient temperature T_A if no current flows through the port output drivers. Otherwise, the resulting temperature difference must be taken into account.
- 6) All inputs (including pins configured as inputs) at 0 V to 0.1 V or at V_{DDP} 0.1 V to V_{DDP} , all outputs (including pins configured as outputs) disconnected. This parameter is tested at 25 °C and is valid for $T_{\text{J}} \ge$ 25 °C.
- 7) This parameter is determined mainly by the current consumed by the oscillator switched to low gain mode (see Figure 11). This current, however, is influenced by the external oscillator circuitry (crystal, capacitors). The given values refer to a typical circuitry and may change in case of a not optimized external oscillator circuitry.

4.3 Analog/Digital Converter Parameters

Table 14 A/D Converter Characteristics (0	Operating Conditions apply)
---	-----------------------------

Parameter	Symbol		Limit	Values	Unit	Test	
			Min.	Max.		Condition	
Analog reference supply	V _{AREF}	SR	4.5	V _{DDP} + 0.1	V	1)	
Analog reference ground	V_{AGND}	SR	V _{SS} - 0.1	V _{SS} + 0.1	V	_	
Analog input voltage range	V_{AIN}	SR	V_{AGND}	V_{AREF}	V	2)	
Basic clock frequency	$f_{\sf BC}$		0.5	20	MHz	3)	
Conversion time for 10-bit	t _{C10P}	CC	$52 \times t_{\rm BC}$ + $t_{\rm S}$ + $6 \times t_{\rm SYS}$		_	Post-calibr. on	
result ⁴⁾	<i>t</i> _{C10}	CC	$40 \times t_{\rm BC}$ + $t_{\rm S}$ + $6 \times t_{\rm SYS}$		_	Post-calibr. off	
Conversion time for 8-bit	t _{C8P}	CC	$44 \times t_{\rm BC} + t_{\rm S} + 6 \times t_{\rm SYS}$		_	Post-calibr. on	
result ⁴⁾	t _{C8}	CC	$32 \times t_{\rm BC}$ + $t_{\rm S}$ + $6 \times t_{\rm SYS}$		_	Post-calibr. off	
Calibration time after reset	t _{CAL}	CC	484	11,696	t _{BC}	5)	
Total unadjusted error	TUE	CC	_	±2	LSB	1)	
Total capacitance of an analog input	C_{AINT}	CC	-	15	pF	6)	
Switched capacitance of an analog input	C_{AINS}	CC	_	10	pF	6)	
Resistance of the analog input path	R _{AIN}	CC	_	2	kΩ	6)	
Total capacitance of the reference input	C_{AREFT}	CC	_	20	pF	6)	
Switched capacitance of the reference input	C_{AREFS}	CC	-	15	pF	6)	
Resistance of the reference input path	R _{AREF}	CC	_	1	kΩ	6)	

1) TUE is tested at $V_{AREF} = V_{DDP} + 0.1 \text{ V}$, $V_{AGND} = 0 \text{ V}$. It is verified by design for all other voltages within the defined voltage range.

If the analog reference supply voltage drops below 4.5 V (i.e. $V_{AREF} \ge 4.0$ V) or exceeds the power supply voltage by up to 0.2 V (i.e. $V_{AREF} = V_{DDP} + 0.2$ V) the maximum TUE is increased to ±3 LSB. This range is not subject to production test.

The specified TUE is guaranteed only, if the absolute sum of input overload currents on Port 5 pins (see I_{OV} specification) does not exceed 10 mA, and if V_{AREF} and V_{AGND} remain stable during the respective period of time. During the reset calibration sequence the maximum TUE may be ±4 LSB.

V_{AIN} may exceed V_{AGND} or V_{AREF} up to the absolute maximum ratings. However, the conversion result in these cases will be X000_H or X3FF_H, respectively.

- 3) The limit values for f_{BC} must not be exceeded when selecting the peripheral frequency and the ADCTC setting.
- 4) This parameter includes the sample time t_S, the time for determining the digital result and the time to load the result register with the conversion result (t_{SYS} = 1/f_{SYS}). Values for the basic clock t_{BC} depend on programming and can be taken from Table 15. When the post-calibration is switched off, the conversion time is reduced by 12 × t_{BC}.
- 5) The actual duration of the reset calibration depends on the noise on the reference signal. Conversions executed during the reset calibration increase the calibration time. The TUE for those conversions may be increased.
- 6) Not subject to production test verified by design/characterization. The given parameter values cover the complete operating range. Under relaxed operating conditions (temperature, supply voltage) reduced values can be used for calculations. At room temperature and nominal supply voltage the following typical values can be used:

 C_{AINTtyp} = 12 pF, C_{AINStyp} = 7 pF, R_{AINtyp} = 1.5 k Ω , C_{AREFTtyp} = 15 pF, C_{AREFStyp} = 13 pF, R_{AREFtyp} = 0.7 k Ω .

Figure 13 Equivalent Circuitry for Analog Inputs

4.4.4 Testing Waveforms

Figure 17 Input Output Waveforms

Figure 18 Float Waveforms

Table 22 External Bus Cycle Timing (Operating Conditions apply)

Parameter	Symbol		Lim	Unit	
			Min.	Min. Max.	
Output valid delay for: RD, WR(L/H)	<i>tc</i> ₁₀	CC	1	13	ns
Output valid delay for: BHE, ALE	<i>tc</i> ₁₁	CC	-1	7	ns
Output valid delay for: A23 … A16, A15 … A0 (on PORT1)	<i>tc</i> ₁₂	CC	1	16	ns
Output valid delay for: A15 A0 (on PORT0)	<i>tc</i> ₁₃	CC	3	16	ns
Output valid delay for: CS	<i>tc</i> ₁₄	СС	1	14	ns
Output valid delay for: D15 D0 (write data, MUX-mode)	<i>tc</i> ₁₅	CC	3	17	ns
Output valid delay for: D15 … D0 (write data, DEMUX-mode)	<i>tc</i> ₁₆	CC	3	17	ns
Output hold time for: RD, WR(L/H)	<i>tc</i> ₂₀	CC	-3	3	ns
Output hold time for: BHE, ALE	<i>tc</i> ₂₁	CC	0	8	ns
Output hold time for: A23 A16, A15 A0 (on PORT0)	<i>tc</i> ₂₃	CC	1	13	ns
Output hold time for: CS	<i>tc</i> ₂₄	CC	-3	3	ns
Output hold time for: D15 … D0 (write data)	<i>tc</i> ₂₅	СС	1	13	ns
Input setup time for: D15 … D0 (read data)	<i>tc</i> ₃₀	SR	24	-	ns
Input hold time D15 … D0 (read data) ¹⁾	<i>tc</i> ₃₁	SR	-5	-	ns

 Read data are latched with the same (internal) clock edge that triggers the address change and the rising edge of RD. Therefore address changes before the end of RD have no impact on (demultiplexed) read cycles. Read data can be removed after the rising edge of RD.

Note: The shaded parameters have been verified by characterization. They are not subject to production test.

Package and Reliability

Package Outlines

Figure 22 PG-TQFP-100-5 (Plastic Green Thin Quad Flat Package)