

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	e200z4, e200z7 (2)
Core Size	32-Bit Tri-Core
Speed	180MHz, 240MHz
Connectivity	CANbus, FlexIO, I ² C, LINbus, SPI, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	-
Program Memory Size	2MB (2M x 8)
Program Memory Type	FLASH
EEPROM Size	64K x 8
RAM Size	1.5M x 8
Voltage - Supply (Vcc/Vdd)	1.19V ~ 5.5V
Data Converters	A/D 16x12b SAR, 4x12 Sigma; D/A 1x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	257-LFBGA
Supplier Device Package	257-LFBGA (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/fs32r274kbk2mmm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- 16 MHz Internal oscillator (IRCOSC)
- Dual system PLL with one frequency modulated phase-locked loop (FMPLL)
- Low-jitter PLL to $\Sigma\Delta$ -ADC and DAC clock generation
- Functional Safety
 - Enables up to ASIL-D applications
 - End to end ECC ensuring full protection of all data accesses throughout the system, from each of the systems masters through the crossbar and into the memories and peripherals
 - FCCU for fault collection and fault handling
 - MEMU for memory error management
 - Safe eDMA controller
 - User selectable Memory BIST (MBIST) can be enabled to run out of various reset conditions or during runtime
 - Self-Test Control Unit (STCU2)
 - Error Injection Module (EIM)
 - On-chip voltage monitoring
 - Clock Monitor Unit (CMU) to support monitoring of critical clocks
- Security
 - Cryptographic Security Engine (CSE2) enabling advanced security management
 - Supports censorship and life-cycle management via Password and Device Security (PASS) module
 - Diary control for tamper detection (TDM)
- Support Modules
 - Global Interrupt controller (INTC) capable of routing interrupts to any CPU
 - Semaphore unit to manage access to shared resources
 - Two CRC computation units with four polynomials
 - 32-channel eDMA controller with multiple transfer request sources using DMAMUX
 - Boot Assist Module (BAM) supports internal flash programming via a serial link (LIN / CAN)
- Timers
 - Two Periodic Interval Timers (PIT) with 32-bit counter resolution
 - Three System Timer Module (STM)
 - Three Software Watchdog Timers (SWT)
 - Two eTimer modules with 6 channels each
 - One FlexPWM module for 12 PWM signals
- Communication Interfaces
 - Two Serial Peripheral interface (SPI) module
 - Two inter-IC communication interface (I2C) modules
 - One LINFlexD module
 - One dual-channel FlexRay module with 128 message buffers

Symbol	Parameter	Conditions	Min	Max	Unit
V _{SS_HV_ADC}	3.3 V ADC supply ground	—	-0.1	0.1	V
TV _{DD}	Supply ramp rate ⁶	—	0.00005	0.1	V/µs
V _{IN_XOSC}	Voltage on XOSC pins with respect to ground	—	-0.3	1.47	V
V _{INA}	Voltage on SAR ADC analog pin with respect to ground (V_{SS_HV_ADCREFx})	—	-0.3	6.0	V
V _{INA_SD}	Voltage on Sigma-Delta ADC analog pin with respect to ground ⁷	Powered up ⁸	-0.3	V _{DD_HV_RAW} + 0.3	V
		Powered down	-0.3	1.47	
V _{IN}	Voltage on any digital pin with respect to ground (Ves HV Iox)	Relative to	-0.3	$V_{DD_HV_IOx} + 0.3$	V
V _{DD LV DPHY}	MIPICSI2 DPHY voltage supply ^{3, 4, 5}		-0.3	1.5	v
V _{SS_LV_DPHY}	MIPICSI2 DPHY supply ground ^{3, 4, 5}	_	-0.3	0.3	V
I _{INJPAD} ¹¹	Injected input current on any pin during overload condition ¹²	—	-10	10 ¹³	mA
I _{INJSUM}	Absolute sum of all injected input currents during overload condition	_	-50	50	mA
T _{STG}	Storage temperature		-55	150	°C

Table 6. Absolute maximum ratings (continued)

1. 5.3 V for 10 hours cumulative over lifetime of device; 3.3 V +10% for time remaining.

2. Voltage overshoots during a high-to-low or low-to-high transition must not exceed 10 seconds per instance.

- 3. 1.45 V to 1.5 V allowed for 60 seconds cumulative time at maximum $T_J = 150^{\circ}C$; remaining time as defined in note 5 and note 6.
- 4. 1.375 V to 1.45 V allowed for 10 hours cumulative time at maximum $T_J = 150^{\circ}C$; remaining time as defined in note 6.
- 5. 1.32 V to 1.375 V range allowed periodically for supply with sinusoidal shape and average supply value below 1.275 V at maximum T_J =150°C.
- 6. TV_{DD} is relevant for all external supplies.
- ADC inputs include an overvoltage detect function that detects any voltage higher than 1.2 V with respect to ground on either ADC input and open circuit (disconnect) the input in order to prevent damage to the ADC internal circuitry. The ADC input remains disconnected until the inputs return to the normal operating range.
- 8. SDADC is powered up and overvoltage protection is ON.
- 9. SDADC is powered up and overvoltage protection is OFF.
- 10. Only when $V_{DD_HV_IOx} < 3.63$ V.
- 11. The maximum value limits of injection current and input voltage both must be followed together for proper device operation.
- 12. No input current injection circuitry on AFE pins.
- 13. The maximum value of 10 mA applies to pulse injection only. DC current injection is limited to a maximum of 5 mA.

Symbol	Parameter	Conditions	Min	Тур	Max ¹	Unit					
T _J ¹¹	Junction temperature	_	-40		150	°C					
F _{XTAL}	XOSC Crystal Frequency ¹³	_	—	40	_	MHz					
AFE Bypass Modes Only											
Single-Ended External Clock ¹⁴											
EXTAL _{clk}	EXTAL external clock frequency			40		MHz					
V _{inxoscjit}	EXTAL external clock Cycle to Cycle Jitter (RMS)	—	—	-	2.5 ¹⁵	ps					
Vinxoscclkvil	EXTAL external clock input low voltage		0	-	0.4	V					
Vinxoscclkvih	EXTAL external clock input high voltage		1	-	1.23	V					
t _r /t _f	Rise/fall time of EXTAL external clock input				1	ns					
t _{dc}	Duty Cycle of EXTAL external clock input		47	50	53	%					
	Differe	ntial LVDS External	Clock	•		•					
LVDS _{clk}	LVDS external clock frequency			40		MHz					
LVDSV _{inxoscclk}	LVDS external clock input voltage		0		1.36	V					
LVDSV _{inxoscclk(p-p)}	LVDS external clock input voltage (peak-peak)	Voltage driven, AC coupled Differential	0.45	0.70	1.12	V					
LVDSI _{inxoscclk}	LVDS external clock input current	Current driven, DC coupled.	3.0	3.5	4.0	mA					
LVDSV _{inxoscjit}	LVDS external clock Jitter (RMS) ¹⁵				2.5	ps					
t _r /t _f	Rise/fall time of LVDS external clock input	20% - 80%			1.5	ns					
t _{dcLVDS}	Duty Cycle of LVDS external clock input		47	50	53	%					

Table 7. Device operating conditions (continued)

1. Full functionality cannot be guaranteed when voltages are out of the recommended operating conditions.

- 2. Min voltage takes into account the LVD variation.
- 3. Max voltage takes into account HVD variation.
- 4. Aurora supply must connect to core supply voltage at board level.
- 5. The ground connection for the $V_{DD HV FLA}$ is shared with V_{SS} .
- 6. Supply range does not take into account HVD levels. Full range can be achieved after power-up, if HVD is disabled. See Voltage regulator electrical characteristics section for details.
- 7. Around common mode voltage of 0.7 V. Input voltage cannot exceed 1.4 V prior to AFE start-up completion (VREF and VREGs on and LVDs cleared).
- 8. SDADC input voltage full scale is 1.2 Vpp
- 9. On channels shared between ADC0 and 1, V_{DD_HV_ADCREFx} is the lower of V_{DD_HV_ADCREF0/1}.
- 10. V_{DD_LV_DPHY} supply should be shorted to core supply voltage VDD on board. Refer to AN5251. Contact your NXP sales representative for details.

Figure 3. Radar AFE External Components Configuration

Table 11.	Radar	AFE	External	Components
-----------	-------	-----	----------	------------

Component	Component Value	Tolerance	Placement Priority of	Placement Priority of	Special notes
C1	0.47.05	+25%	arger cap.	Sindher Cup	
	0.47 μΓ	±33 /o			
C2	0.1 µF	±35%		1	—
C3	1.0 µF	±35%	7		—
C4	1.0 µF	±35%	2	—	—
C5	0.1 µF	±35%	—	4	_
C6	1.0 µF	±35%	8		—
C7	0.1 µF	±35%		6	
C8	1.0 µF	±35%	6	—	—
C9	0.1 µF	±35%		5	—
C10	1.0 µF	±35%	4		_
C11	0.1 µF	±35%		2	_
C12	1.0 µF	±35%	5		_
C13	0.1 µF	±35%		3	_
C14	1.0 µF	±35%	10	—	_
C15	0.1 µF	±35%	—	8	_
C16	1.0 µF	±35%	9	_	
C17	0.1µF	±35%	—	7	

Table continues on the next page...

Component	Component Value	Tolerance	Placement Priority of larger cap. ¹	Placement Priority of smaller cap ¹	Special notes
C18	10 µF	_	1	—	X7R type
C19	220 nF	—	—	—	Sigma Delta ADC input capacitor. See Figure 9
C20	220 nF	—	—	—	Sigma Delta ADC input capacitor. See Figure 9
R1	40.2 kΩ	±0.1%	—		tempco = 25ppm/C
R2	300 Ω	—	—		DAC RI See Table 27
R3	300 Ω	—			DAC RI See Table 27
Crystal	40MHz			_	Connected between XOSC_EXTAL/ XOSC_XTAL, ESR $\leq 30\Omega$

Table 11. Radar AFE External Components (continued)

 All Radar AFE external bypass capacitors should be placed as close as possible to the associated package pin. As shown in Radar AFE External Components Configuration figure, most pins have two values of bypass capacitor. Greater than 0.1 μF is referred to as the larger cap. 0.1 μF is referred to as the smaller cap.

4.5 Electromagnetic Compatibility (EMC) specifications

EMC measurements to IC-level IEC standards are available from NXP on request.

4.6 Electrostatic discharge (ESD) characteristics

Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according to each pin combination. The sample size depends on the number of supply pins in the device (3 parts \times (n + 1) supply pin). This test conforms to the AEC-Q100-002/-003/-011 standard.

NOTE

A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification.

Table 12. ESD ratings

No.	Symbol	Parameter	Conditions ¹	Class	Max value ²	Unit
1	V _{ESD(HBM)}	Electrostatic discharge	T _A = 25 °C	H1C	2000	V
		(Human Body Model)				

Table continues on the next page ...

I/O Parameters

- 1. Measured when pad = 0 V
- 2. Measured when pad = $V_{DD HV IO}$
- 3. Measured when pad is sourcing 2 mA
- 4. Measured when pad is sinking 2 mA
- 5. Ioh/IoI is derived from spice simulations. These values are NOT guaranteed by test.

5.1.1 RGMII pad DC electrical characteristics Table 14. RGMII pad DC electrical specifications

Symbol	Parameter	Value	Unit	
		Min	Мах	
Vih	CMOS Input Buffer High Voltage	0.65 x V _{DD_HV_IO}	$V_{DD_HV_IO} + 0.3$	V
Vil	CMOS Input Buffer Low Voltage	-0.3	$0.35 \times V_{DD_HV_IO}$	V
Pull_loh	Weak Pullup Current ¹	10	55	μA
Pull_lol	Weak Pulldown Current ²	10	55	μA
linact_d	Digital Pad Input Leakage Current (weak pull inactive)	-2.5	2.5	μA
Voh	Output High Voltage ³	0.8 x V _{DD_HV_IO}	—	V
Vol	Output Low Voltage ⁴		0.2 * V _{DD_HV_IO}	V
loh_f	Full drive loh ⁵	8	26	mA
lol_f	Full drive Iol ⁶	8	24	mA

- 1. Measured when pad = 0 V
- 2. Measured when pad = $V_{DD_HV_IO}$
- 3. Measured when pad is sourcing 2 mA
- 4. Measured when pad is sinking 2 mA
- 5. loh_f value is measured with 0.8*VDDE applied to the pad.
- 6. Iol_f is measured when 0.2*VDDE is applied to the pad.

5.2 I/O pad AC specifications

AC Parameters are specified over the full operating junction temperature range of -40°C to +150°C and for the full operating range of the $V_{DD_{HV_{IO}}}$ supply defined in Table 7.

Symbol	Prop. De L>H	Prop. Delay (ns) ¹ Rise/Fall Edge (ns) ² L>H/H>L		Drive Load (pF)	SIUL2_MSCR[SRC]	
	Min	Max	Min	Max		MSB,LSB
pad_sr_hv	2.5/2.5	8.25/7.5	0.7/0.6	3/3	50	11
(output)	6.4/5	19.5/19.5	2.5/2.0	12/12	200	
(output)	2.2/2.5	8/8	0.4/0.3	3.5/3.5	25	10
	2.9/3.5	12.5/11	1.0/0.8	6.5/6.5	50	
	11/8	35/31	6.5/3.0	25/21	200]

 Table 15. Functional Pad electrical characteristics

Table continues on the next page...

6 Peripheral operating requirements and behaviours

6.1 Clocks and PLL Specifications

6.1.1 40 MHz Oscillator (XOSC) electrical characteristics

The device provides an oscillator/resonator driver.

NOTE

XTAL/EXTAL must not be directly used to drive external circuits.

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
XOSC _{fout}	Oscillator frequency			40		MHz
t _{stab}	Oscillator start-up time				2	ms
t _{jitcc}	Cycle to cycle jitter (peak – peak)				2.5 ¹	ps
	Output Duty Cycle		45	50	55	%
Cin	Input Capacitance ²	Extal and Xtal each	3.0	4.0	5.0	pF
R _{inLVDS}	LVDS bypass mode input termination ³	Between Extal and Xtal	75	100	125	ohm
V _{CMLVDS}	LVDS Common Mode Voltage	Vdda/2	0.60	0.70	0.80	V

Table 19. XOSC electrical characteristics

- 1. The number is 3.5 ps when SD-ADC and/or DAC is not used in the device.
- 2. When using a 40 MHz crystal, the recommended load capacitance is 8 pF. Need quiet ground connection on the board and external crystal/load capacitor placement as close to the Extal and Xtal pins as possible to allow good jitter performance.
- 3. The termination resistance is only active when the AFE is powered (VDD_HV_RAW, VDD_HV_DAC and the AFE regulators are powered up) and the XOSC is powered down (default case once device is out of reset) or the XOSC is configured in differential bypass mode.

6.1.2 FMPLL electrical characteristics

Figure 6. PLL integration

Table 20.	PLL0 electrical	characteristics
-----------	-----------------	-----------------

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
f _{PLLOIN}	PLL0 input clock ^{2, 3}	—	14	—	44	MHz
Δ_{PLLOIN}	PLL0 input clock duty cycle ²	_	40	—	60	%
f _{PLL0VCO}	PLL0 VCO frequency	_	600	-	1250	MHz
f _{PLL0PHI0}	PLL0 output clock PHI0	_	4.76	—	625 ⁴	MHz
f _{PLL0PHI1}	PLL0 output clock PHI1	_	20	_	156	MHz
t _{PLL0LOCK}	PLL0 lock time	_	—	-	100	μs
$\Delta_{PLL0LTJ}$	PLL0 long term jitter $f_{PLL0IN} = 8 \text{ MHz}$	f _{PLL0PHI0} = 40 MHz, 1 μs			± 1	ns
	(resonator) ^o	f _{PLL0PHI0} = 40 MHz, 13 μs			± 1	ns
I _{PLL0}	PLL0 consumption		_	_	5	mA

- 1. $V_{DD_LV_PLL0} = 1.25 \text{ V} \pm 5\%$, $T_J = -40 / 150 \text{ °C}$ unless otherwise specified.
- 2. PLLOIN clock retrieved directly from either IRCOSC or external XOSC clock.
- f_{PLL0IN} frequency must be scaled down using PLLDIG_PLL0DV[PREDIV] to ensure the reference clock to the PLL analog loop is in the range 8 MHz-20 MHz
- 4. The maximum clock outputs are limited by the design clock frequency requirements as per recommended operating conditions.
- V_{DD_LV_PLL0} noise due to application in the range V_{DD_LV_PLL0} = 1.25 V±5%, with frequency below PLL bandwidth (40 KHz) will be filtered.

Symbol	Parameter	Conditions ¹	Min	Тур	Мах	Unit
f _{PLL1IN}	PLL1 input clock ²	—	38	—	78	MHz
Δ_{PLL1IN}	PLL1 input clock duty cycle ²	_	35	—	65	%
f _{PLL1VCO}	PLL1 VCO frequency	_	600	—	1250	MHz
f _{PLL1PHI0}	PLL1 output clock PHI0	_	4.76	—	625	MHz
t _{PLL1LOCK}	PLL1 lock time	_		—	100	μs
f _{PLL1MOD}	PLL1 modulation frequency	_		—	250	kHz
Ιδ _{PLL1MOD} Ι	PLL1 modulation depth (when	Center spread	0.25	—	2	%
	enabled)	Down spread	0.5	—	4	%
I _{PLL1}	PLL1 consumption		_	_	6	mA

Table 21. FMPLL1 electrical characteristics

1. $V_{DD LV PLL0} = 1.25 V \pm 5\%$, $T_J = -40 / 150^{\circ}C$ unless otherwise specified.

2. PLL1IN clock retrieved directly from either internal PLL0 or external XOSC clock.

Symbol	Parameter	Conditions ¹	Min	Тур	Max	Unit
TUE _{IS1WINJ}	Total unadjusted error for IS1WINJ		-6	—	6	LSB
TUE _{IS1WWINJ}	Total unadjusted error for IS1WWINJ		-6	_	6	LSB
IS1WINJ (pad	(single ADC channel)					
going to one	Max leakage	150 °C	—	—	250	nA
ADC)	Max positive/negative injection		-3	_	3 ⁸	mA
IS1WWINJ	(double ADC channel)					
(pad going to	Max leakage	150 °C	—	—	300	nA
	Max positive/negative injection ⁷	Vref_ad0 - Vref_ad1 < 150 mV	-3.6	_	3.6	mA
SNR	Signal-to-noise ratio	3.3 V reference voltage	67	—	—	dB
THD	Total harmonic distortion	@ 50 KHz	65	—	_	dB
SINAD	Signal-to-noise and distortion	Fin < 50 KHz 6.02 x ENC		ENOB	+ 1.76	dB
ENOB	Effective number of bits	Fin < 50 KHz	10.5		—	bits

Table 25. ADC conversion characteristics (continued)

1. $V_{DD_HV_ADC} = 3.3 \text{ V} -5\%, +10\%, T_J = -40 \text{ to } +150^{\circ}\text{C}$, unless otherwise specified and analog input voltage from V_{AGND} to $V_{DD_HV_ADCREFx}$.

2. AD_CK clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.

During the sample time the input capacitance C_S can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within t_{sample}. After the end of the
sample time t_{sample}, changes of the analog input voltage have no effect on the conversion result. Values for the sample
clock t_{sample} depend on programming.

4. This parameter does not include the sample time t_{sample}, but only the time for determining the digital result and the time to load the result register with the conversion result.

- 5. SeeInput equivalent circuit figure.
- 6. No missing codes.

7. ADC specifications are met only if injection is within these specified limits

8. Max injection current for all ADC IOs is \pm 10 mA

NOTE

The ADC performance specifications are not guaranteed if two ADCs simultaneously sample the same shared channel. Aurora interface along with SAR-ADC would degrade SAR-ADC performance. General Purpose Input (GPI) functionality should not be used on any of the SAR-ADC channels when SARADC is functional.

7.2 Sigma Delta ADC electrical characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
SPS _{SDA}	Sample Rate	After Decimation Filtering	—	10	10	MS/S
L _{SDA}	Latency	@ 10 MS/s, full step input to 50% output. Decimation filter delay not included		—	0.1	μs
RT _{SDA}	Recovery Time	After overload condition	_		0.5	μs
SNR _{SDA_MM_ON} , 1	Signal-to-Noise Ratio Mismatch Shaper on	Input Frequency Range and integration bandwidth are from 20 KHz to 5 MHz (using full-bandwidth decimation filter coefficients). Production test frequencies 449 KHz and 4 MHz. Production test amplitude is -6 dBFS = 0.6 Vpp.	63	67	_	dBFS

Table 26. Sigma Delta ADC Parameters

Table continues on the next page ...

Symbol	Parameter	Condition	Min	Тур	Max	Unit
OEV	Offset Variation	t = 50 ms, T = constant, data averaged in 1 ms increments	-0.07	—	0.07	mV
V _{cm}	Common Mode Voltage ²	SDADC switched on	—	vdda/2 – 30 mV	—	V
xtalk	Crosstalk (from any ADC to the other ADCs)	Processing a full scale signal.	_	—	-40	dB
Zin	Input Impedance	Maximum input impedance occurs for input signals at 20 KHz and minimum input impedance occurs at input frequencies greater than 1 MHz ³	7.3	_	33.5	kΩ
R _{cm}	Resistance from each SDADC input to V _{cm} (see Figure 9)	-	27.3	32.2	37.0	kΩ
R_SDADC	Resistance from each SDADC input pin to differential amplifier input (see Figure 9)	-	9.0	10.75	12.5	kΩ
C_SDADC	SDADC integrator capacitors (see Figure 9)	-	0.636	0.684	0.732	pF
C _{in} parasitic	parasitic input capacitance from ADC input to ground	-	2.0	3.9	4.9	pF
DT	Analog Delay Variation	(ADCx to ADCy)		_	1	ns
AA	Alias Suppression	ADC input frequency between 315 and 325 MHz	50	—	—	dB
STFoob	ADC out of band Signal Transfer Function peaking	Out of band Signal Transfer function peaking from 20 MHz to 40 MHz	0	2	3	dB
PR	passband ripple	From 20 KHz to 4 MHz (default decimation filter coefficients must be used)	-0.5	0.0	0.5	dB
OOBA ⁴	Out Of Band Attenuation	Default decimation filter coefficients must be used	-4.5	_	_	dB
		5 MHz	-10			
		6 MHz	-20			
		7 MHz	-40			
		10 MHz	-60			
		15 MHz				

Table 26.	Sigma Delta ADC Parameters	(continued))
			,

1. Derate specification by 2 dBFS for T_i less than 0°C.

2. vdda is an internally regulated and trimmed $1.45V \pm 10mV$ voltage.

- 3. The input structure of the ADC is an active RC integrator which has a frequency dependent input impedance as indicated in ADC input equivalent circuit.
- 4. All attenuation values are relative to 0 dB in the ADC passband.

Num	Description	Min.	Max.	Unit
RMII8	RMII_CLK to TXD[1:0], TXEN valid		15	ns

Figure 12. RMII transmit signal timing diagram

Figure 13. RMII receive signal timing diagram

9.1.3 RGMII signal switching specifications

The RGMII interface works at 3.3 V compatible levels as mentioned in RGMII pad DC electrical characteristics.

The following timing specs meet the requirements for RGMII style interfaces for a range of transceiver devices.

• Measurements are with input transition of 0.750 ns and output load of 10 pF.

Symbol	Description	Min	Тур	Max	Unit	Notes
—	Input Duty cycle (Clock from external PHY)	48	—	52	%	
Тсус	Clock cycle duration	7.2	8.0	8.8	ns	1
TskewT	Data to clock output skew at transmitter	-500	0	500	ps	2
TskewR	Data to clock input skew at receiver	1	1.8	2.6	ns	2

Table 35. RGMII signal switching specifications

Table continues on the next page...

9.1.4 MII/RMII Serial Management channel timing (MDC/MDIO)

The MDC/MDIO interface works at 3.3V compatible levels as mentioned in CMOS input (vih/vil/voh/vol/)values in I/O pad DC electrical characteristics .

Ethernet works with maximum frequency of MDC at 2.5 MHz. Output pads configured with SRC=11. MDIO pin must have external pull-up. Measurements are with input transition of 1.0 ns and output load of 50 pF.

Num	Description	Min.	Max.	Unit
MDC00	MDC clock frequency	—	2.5	MHz
MDC10	MDC falling edge to MDIO output invalid (minimum propagation delay)	(-0.8 + (ENET_MSCR[HOLDTIME] +1)*(PBRIDGE_n_CLK period in ns))	_	ns
MDC11	MDC falling edge to MDIO output valid (maximum propagation delay)		(13 + (ENET_MSCR[HOLDTIME] +1)*(PBRIDGE_n_CLK period in ns))	ns
MDC12	MDIO (input) to MDC rising edge setup	13	_	ns
MDC13	MDIO (input) to MDC rising edge hold	0	_	ns
MDC14	MDC pulse width high	40%	60%	MDC Period
MDC15	MDC pulse width low	40%	60%	MDC Period

Table 36.	Ethernet MDIO	timing table
		unning table

Figure 16. RMII/MII serial management channel timing diagram

Figure 23. Rise/fall time

9.3.2 LFAST interface electrical characteristics

NOTE

While LFAST is operating and 'Ready' (nex_rdy_b) signal is used by the debugger on PAD_132, the recommended SRE settings are '00' and '01'. TCK should be used with low frequency (preferably less than 10 MHz).

Symbol	Parameter	Conditions ¹	Value			Unit
			Min	Тур	Мах	
		Data Rate				
DATARATE	Data rate	—	—	312/320	Typ+0.1%	Mbps
STARTUP						
T _{STRT_BIAS}	Bias startup time ²	—	—	0.5	3	μs

Table 42.	LFAST	electrical	characteristics
-----------	-------	------------	-----------------

Table continues on the next page ...

Communication modules

No.	Symbol	Parameter	Conditions	Min	Мах	Unit
			Master (MTFE = 1, CPHA = 0) ⁹	-2 + N x SPI IPG clock period ¹⁰	_	
			Master (MTFE = 1, CPHA = 1)	-2	_	
11	t _{SUO}	Data valid (after SCK edge)	Master (MTFE = 0)	—	7 ¹¹	ns
			Slave	—	23	
			Master (MTFE = 1, CPHA = 0) ¹²	_	7 + SPI IPG Clock Period	
			Master (MTFE = 1, CPHA = 1)	—	7	
12	t _{HO}	Data hold time for outputs	Master (MTFE = 0)	-4 ¹¹	_	ns
			Slave	3.8	_	
			Master (MTFE = 1, CPHA = 0) ¹²	-4 + SPI IPG Clock Period	_	
			Master (MTFE = 1, CPHA = 1)	-4		

Table 43. SPI timing (continued)

- 1. Slave Receive Only mode can operate at a maximum frequency of 60 MHz. In this mode, the SPI can receive data on SIN, but no valid data is transmitted on SOUT.
- For SPI_CTARn[PCSSCK] 'PCS to SCK Delay Prescaler' configuration is '3' (01h) and SPI_CTARn[CSSCK] 'PCS to SCK Delay Scaler' configuration is '2' (0000h).
- For SPI_CTARn[PASC] 'After SCK Delay Prescaler' configuration is '3' (01h) and SPI_CTARn[ASC] 'After SCK Delay Scaler' configuration is '2' (0000h).
- 4. The numbers are valid when SPI is configured for 50/50. Refer the Reference manual for the mapping of the duty cycle to each configuration. A change in duty cycle changes the parameter here. For example, a configuration providing duty cycle of 33/66 at SPI translates to min tSCK/3 1.5 ns and max tSCK/3 + 1.5 ns.
- 5. The slave mode parameters (t_{SUI}, t_HI, t_{SUO} and t_{HO}) assume 50% duty cycle on SCK input. Any change in SCK duty cycle input must be taken care during the board design or by the master timing.
- 6. The slave receive only mode parameters (t_{SUI} and t_{HI}) assume 50% duty cycle on SCK input. Any change in SCK duty cycle input must be taken care during the board design or by the master timing. However, there is additional restriction in the slave receive only mode that the duty cycle at the slave input should not go below $t_{sdc}(min)$ corresponding to the $t_{sdc}(min)$ for the slave receive mode.
- 7. In the master mode, this is governed by t_{PCSSCK}. Refer the SPI chapter in the Reference Manual for details. The minimum spec is valid only for SPI_CTARn[PCSSCK]= '0b01' (PCS to SCK delay prescalar of 3) or higher.
- In the master mode, this is governed by t_{PASC}. Refer the SPI chapter in the Reference Manual for details. The minimum spec is valid only for SPI_CTARn[PASC]= '0b01' (after SCK delay prescalar of 3) or higher.
- 9. For SPI_CTARn[BR] 'Baud Rate Scaler' configuration is >= 4.
- 10. N = Configured sampling point value in MTFE=1 Mode.
- 11. Same value is applicable for PCS timing in continuous SCK mode.
- 12. SPI_MCR[SMPL_PT] should be set to 1.

NOTE

For numbers shown in the following figures, see Table 43.

9.5 LINFlexD timing specifications

The maximum bit rate is 1.875 MBit/s.

9.6 I²C timing

Table 44. I²C SCL and SDA input timing specifications

Number	Symbol	Parameter	Value		Unit
			Min	Max	
1	I_tHD:STA	Start Condition hold time	2	-	
2	I_t_LOW	Clock low time	8	-	Peripheral clock
3	I_tHD:DAT	Data hold time	2	-	
4	I_tHIGH	Clock high time	4	-	
5	I_tSU:DAT	Data setup time	4	-	
6	I_tSU:STA	Start condition setup time (for repeated start condition only)	2	-	
7	I_tSU:STOP	Stop condition setup time	2	-	

Table 45. I²C SCL and SDA output timing specifications

Number	Symbol	Parameter	Value		Unit
			Min	Max	
1	O_tHD:STA	Start condition hold time ¹	6	-	
2	O_t_LOW	Clock low time ¹	10	-	
3	O_tHD:DAT	Data hold time ¹	7	-	Peripheral clock
4	O_t_HIGH	Clock high time ¹	10	-	
5	O_tSU:DAT	Data setup time ¹	2	-	
6	O_tSU:STA	Start condition setup time (for repeated start condition only) ¹	20	-	
7	O_tSU:STOP	Stop condition setup time ¹	10	-	
8	O_tr	SCL/SDA rise time ²	-	99.6	ns
9	O_tf	SCL/SDA fall time ¹	-	99.6	

- Programming IBFD (I²C Bus Frequency Divider Register) with the maximum frequency results in the minimum output timings listed. The I²C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IBDR (I²C Bus Data I/O Register).
- 2. Serial data (SDA) and Serial clock (SCL) reaches peak level depending upon the external signal capacitance and pull up resistor values as SDA and SCL are open-drain type outputs which are only actively driven low by the I²C module.

Figure 33. JTAG test access port timing

Figure 34. JTAG JCOMP timing

#	Symbol	Characteristic	Min	Max	Unit
9	S _O	Differential output skew	—	20	ps
10	S _{MO}	Lane to lane output skew	—	1000	ps
11	OUI	Aurora lane Unit Interval	800	800	ps

 Table 47. Nexus Aurora debug port timing (continued)

Figure 36. Nexus Aurora timings

11 WKUP/NMI timing specifications Table 48. WKUP/NMI glitch filter

Symbol	Parameter	Min	Тур	Max	Unit
W _{FNMI}	NMI pulse width that is rejected	—	—	20	ns
W _{NFNMI}	NMI pulse width that is passed	400			ns

14.1.5 Data to clock timing

Figure 41. Definition

 Table 54.
 Data to clock timing specifications

Symbol	Parameter	Min	Тур	Max	Unit
T _{CLKP}	Clock Period	40	-	500	MHz
UI _{INST}	UI Instantaneuous	1	-	12.5	ns
T _{SETUP}	Data to Clock Setup Time	0.15	-	-	UIINST
T _{HOLD}	Clock to Data Hold Time	0.15	-	-	UIINST

14.2 MIPICSI2 Disclaimer

The material contained herein is not a license, either expressly or impliedly, to any IPR owned or controlled by any of the authors or developers of this material or MIPI®. The material contained herein is provided on an "AS IS" basis and to the maximum extent permitted by applicable law, this material is provided AS IS AND WITH ALL FAULTS, and the authors and developers of this material and MIPI hereby disclaim all other warranties and conditions, either express, implied or statutory, including, but not limited to, any (if any) implied warranties, duties or conditions of merchantability, of fitness for a particular purpose, of accuracy or completeness of responses, of results, of workmanlike effort, of lack of viruses, and of lack of negligence.

15 Thermal Specifications

15.1 Thermal characteristics

Table 55. 257MAPBGA package thermal characteristics

Symbol	Parameter	Conditions	257MAPBGA	Unit
R _{θJA}	Thermal resistance, junction-to-ambient natural	Single layer board - 1s	41.8	°C/W
	convection ^{1, 2}	Four layer board - 2s2p ³	22.3	
R _{0JMA}	Thermal resistance, junction-to-ambient forced	Single layer board - 1s	29.8	°C/W
	convection at 200 ft/min ^{1, 3}	Four layer board - 2s2p	17.7	
R _{θJB}	Thermal resistance junction-to-board ⁴	_	7.6	°C/W
R _{θJC}	Thermal resistance junction-to-case ⁵	—	5.2	°C/W
Ψ _{JT}	Junction-to-package-top natural convection ⁶	—	0.2	°C/W

- 1. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
- 2. Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
- 3. Per JEDEC JESD51-6 with the board horizontal.
- 4. Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package. Board temperature is measured on the top surface of the board near the package.
- 5. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
- 6. Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2.

15.1.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J, can be obtained from this equation:

 $T_{\rm J} = T_{\rm A} + (R_{\rm \theta JA} \times P_{\rm D})$

 $T_{J} = T_{BRD} + (R_{\theta JB} \times P_{D})$

where:

- T_A = ambient temperature for the package (°C)
- $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)
- $R_{\Theta IB}$ = junction to board thermal resistance (°C/W)
- $T_{\theta BRD}$ = average board temperature just outside the package periphery (°C)
- P_D = power dissipation in the package (W)