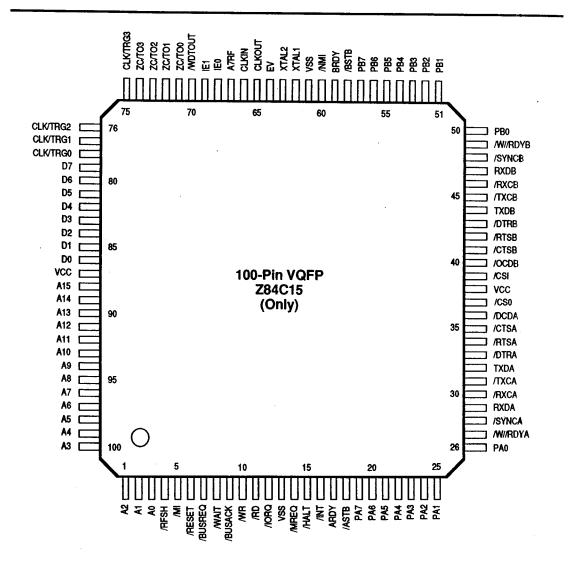


Welcome to **E-XFL.COM**

Understanding Embedded - Microprocessors

Embedded microprocessors are specialized computing chips designed to perform specific tasks within an embedded system. Unlike general-purpose microprocessors found in personal computers, embedded microprocessors are tailored for dedicated functions within larger systems, offering optimized performance, efficiency, and reliability. These microprocessors are integral to the operation of countless electronic devices, providing the computational power necessary for controlling processes, handling data, and managing communications.


Applications of Embedded - Microprocessors

Embedded microprocessors are utilized across a broad spectrum of applications, making them indispensable in

Details	
Product Status	Obsolete
Core Processor	Z80
Number of Cores/Bus Width	1 Core, 8-Bit
Speed	10MHz
Co-Processors/DSP	-
RAM Controllers	-
Graphics Acceleration	No
Display & Interface Controllers	-
Ethernet	-
SATA	-
USB	-
Voltage - I/O	5.0V
Operating Temperature	-40°C ~ 100°C (TA)
Security Features	-
Package / Case	100-LQFP
Supplier Device Package	100-LQFP
Purchase URL	https://www.e-xfl.com/product-detail/zilog/z84c1510aec00tr

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Z84C15 Pin-out Assignments

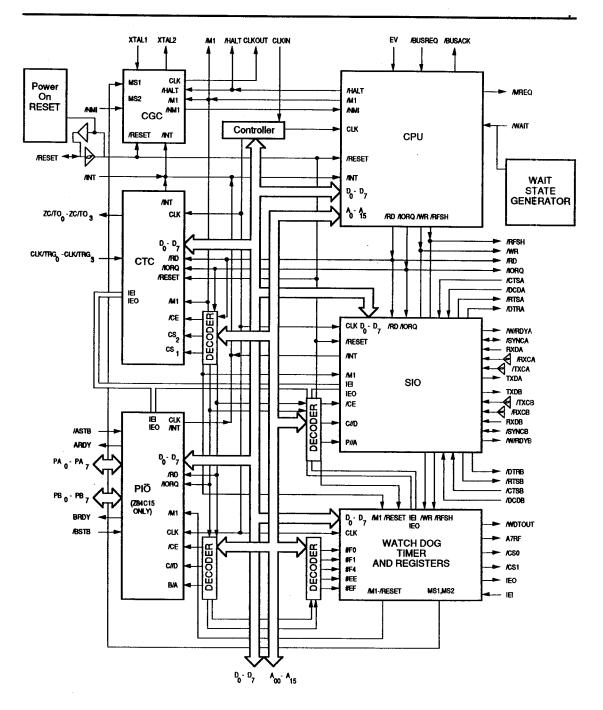


Figure 5(b). Block Diagram for 84C13/C15 IPC

PS018201-0602 305

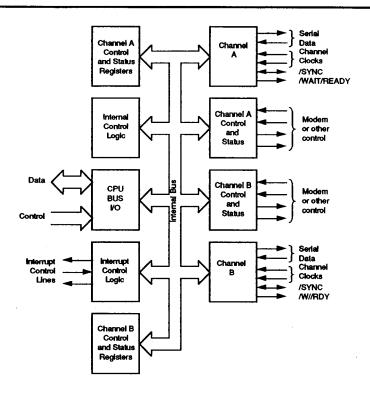


Figure 8. SIO Block Diagram

Watch Dog Timer (WDT) Logic Unit

This logic unit has been superintegrated into the IPC. It detects an operation error, caused by the program runaway, and returns to normal operation. Figure 9, shows the block diagram of the WDT. Upon Power-On Reset, this unit is enabled. If WDT is not required, but /WDTOUT is connected to /RESET or any other circuit, it has to be disabled. During the power-down mode of operation (either IDLE1/2 or Stop), the Watch Dog Timer is halted.

WDT Output (/WDTOUT pin). When the WDT is used, the "0" level signal is output from the /WDTOUT pin after a duration of time specified in the WDTP or in the WDTMR. The output pulse width is one of the following, depending on the /WDTOUT pin connection.

- The /WDTOUT is connected to the /RESET pin: The "0" level is pulsed for 5TcC (System clock cycles).
- The /WDTOUT is connected to a pin other than the /RESET pin: The "0" level is kept until the Watch Dog timer is cleared by software, or reset by /RESET pin.

CGC Logic Unit. The IPC has CGC (Clock Generator/Controller) unit. This unit is identical to the one with the Z84C01 and the Z84C50, and supports power-down modes of operation. The output from this unit is on the pln called CLKOUT, and is not connected to the system clock internally. The CLKIN pin is the system clock input. The user can connect CLKOUT to CLKIN to utilize this CGC unit, or supply external clock from CLKIN pin.

The CGC unit allows crystal input (XTAL1, XTAL2) or External Clock input on the XTAL1 pin. It has clock divide-by-two circuits and generates a half-speed clock to the input.

Z84C13/C15. The power-down modes of the IPC vary depending upon whether the system clock is fed from the CGC unit (tie CLKOUT to CLKIN) or the external clock source on the CLKIN pin. They also have divide-by-one Mode. If the clock is supplied by this CGC unit, all of the modes in "halt" state are available. When external clock is provided on the CLKIN pin, XTAL1 is not left open (tied to "0" or "1") to avoid meta-stable conditions to minimize power consumption.

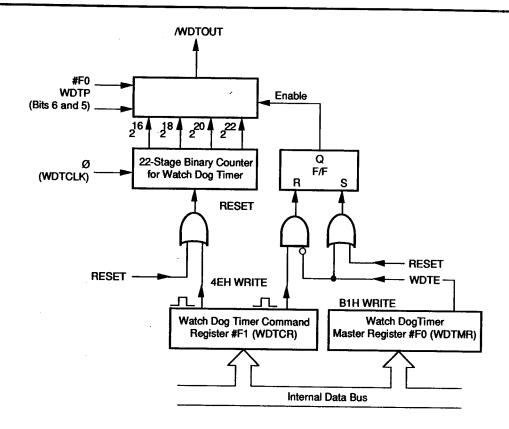


Figure 9. Block Diagram of Watch Dog Timer

Z84013/015 Only. If the system clock is provided on the CLKIN pin, none of the power-down mode (except RUN mode) is supported.

Z84C13/C15 Only. If the system clock is provided on the CLKIN pin, only the IDLE2 mode is applicable. In this mode, if the HALT instruction is executed, internal clock to the CTC is kept on "Continue", but the clock to the other components (CPU, PIO, SIO and Watch Dog Timer) are stopped. The divide-by-two circuit of the CGC unit can be skipped by programming bit D4 of the WDTMR (see "Programming" section). Upon Power-on Reset, it comes up in divide by two mode.

System Clock Generation

The IPC has a built-in oscillator circuit and the required clock can be easily generated by connecting a crystal to the external terminals (XTAL1, XTAL2). Clock output is the same frequency as half the speed of the crystal frequency. Example of oscillator connections are shown in Figure 10.

Z84C13/C15. Clock output is the same, or half, of the external frequency.

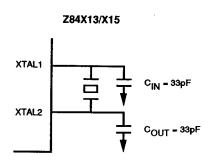


Figure 10. Circuit Configuration For Crystal

Address	Device	Channel	Register
10h	CTC	Ch O	Control Register
11h	CTC	Ch 1	Control Register
12h	CTC	Ch 2	Control Register
13h	CTC	Ch 3	Control Register
18h	SIO	Ch. A	Data Register
19h	SIO	Ch. A	Control Register
1Ah	SIO	Ch. B	Data Register
1Bh	SIO	Ch. B	Control Register
1Ch	PIO	Port A	Data Register (Not with Z84x13)
1Dh	PIO	Port A	Command Register (Not with Z84x13)
1Eh	PIO	Port B	Data Register (Not with Z84x13)
1Fh	PIO	Port B	Command Register (Not with Z84x13)
F0h	Watch-Dog Timer		Master Register (WDTMR)
Fth	Watch-Dog Timer		Control Register (WDTCR)
F4h	Interrupt Priority R	egister	
EEh			System Control Register Pointer (SCRP)
			(Not with Z84013/015)
EFh			System Control Data Port (SCDP) (Not with Z84013/015)
	Through SCRP and	d SCDP	Control Register 00 - Wait State Control register (WCR)
	•		Control Register 01 - Memory Wait state
			Boundary Register (MWBR)
			Control Register 02 - Chip Select Boundary
	•		Register (CSBR)
			Control Register 03 - Misc. Control Register (MCR)

PIO REGISTERS

For more detailed information, please refer to the PIO Technical Manual. These registers are not in the Z84x13.

Interrupt Vector Word

The PIO logic unit is designed to work with the Z80 CPU in interrupt Mode 2. The interrupt word must be programmed if interrupts are used. Bit D0 must be a zero (Figure 11).

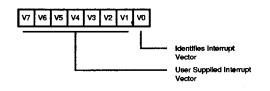


Figure 11. PIO Interrupt Vector Word

PS018201-0602

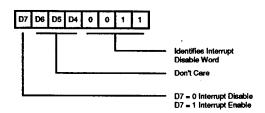


Figure 16. Interrupt Disable Word

CTC CONTROL REGISTERS

For more detailed information, refer to the CTC Technical Manual.

Channel Control Word

This word sets the operating modes and parameters as described below. Bit D0 is a "1" to indicate that this is a Control Word (Figure 17).

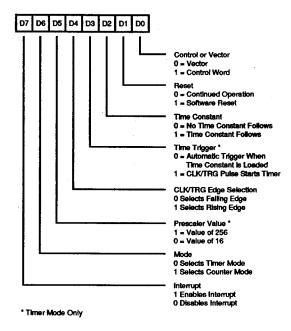


Figure 17. CTC Channel Control Word

Bit D7. Interrupt Enable. This bit enables the interrupt logic so that an internal INT can be generated at zero count. Interrupts are programmed in either mode and may be enabled or disabled at any time.

Bit D6. Mode Bit. This bit selects either Timer Mode or Counter Mode.

Bit D5. Prescalor Factor. This bit selects the prescalor factor for use in the timer mode. Either divide-by-16 or divide-by-256 is available.

Bit D4. Clock/Trigger Edge Selector. This bit selects the active edge of the CLK/TRG input pulses.

Bit D3. Timer Trigger. This bit selects the trigger mode for timer operation. Either automatic or external trigger may be selected.

Bit D2. Time Constant. This bit indicates that the next word programmed is time constant data for the downcounter.

Bit D1. Software Reset. Writing 1 to this bit indicates a software reset operation, which stops counting activities until another time constant word is written.

Time Constant Word

Before a channel starts counting, it must receive a time constant word. The time constant value is anywhere between 1 and 256, with "0" being accepted as a count of 256 (Figure 18).

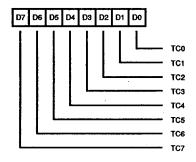


Figure 18. CTC Time Constant Word

Interrupt Vector Word

If one or more of the CTC channels have interrupt enabled, then the Interrupt Vector Word must be programmed. Only the five most significant bits of this word are programmed, and bit D0 must be "0". Bits D2-D1 are automatically modified by the CTC channels when it responds with an interrupt vector (Figure 19).

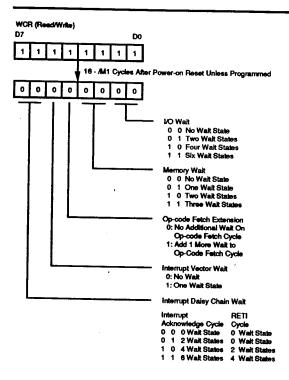


Figure 27. Wait State Control Register

This register has the following fields:

Bit 7-6. Interrupt Daisy Chain Wait. This 2-bit field specifies the number of wait states to be inserted during an Interrupt Daisy Chain settle period of the Interrupt Acknowledge cycle, which is/IORQ falls after the settling period from /M1 going active "0". Also, this field controls the number of wait states inserted during the RETI (Return From Interrupt) cycle. If specified to insert 4 or 6 wait states during Interrupt Acknowledge cycle, the Wait state generator also inserts wait states during RETI fetch sequence. This sequence is formed with two op-code fetch cycles (Op-code is EDh followed by 4Dh). It inserts 1 wait state if op-code followed by EDh is NOT 4Dh, and inserts 2 or 4 wait states, respectively, if the following op-code is 4Dh.

Interrupt Acknowledge	RETI cycle
00 - No Wait states	No Wait states
01 - 2 Wait states	No Wait states
10 - 4 Wait states	2 Wait states
11 - 6 Wait states	4 Wait states

For fifteen /M1 cycles from Power-on Reset, bits 7-6 are set to "11". They clear to "00" on the trailing edge of the 16th /M1 signal unless programmed.

Bit 5. Interrupt Vector Wait. While this bit is set to one, the wait state generator inserts one wait state after the /IORQ signal goes active during the Interrupt acknowledge cycle. This gives more time for the vector read cycle. While this bit is cleared to zero, no wait state is inserted (standard timing). For fifteen /M1 cycles from Power-on Reset, this bit is set to "1", then cleared to "0" on the trailing edge of the 16th /M1 signal, unless programmed.

Bit 4. Opcode Fetch Extension. If this bit is set to "1", one additional wait state is inserted during the Op-code fetch cycle in addition to the number of wait states programmed in the Memory Wait field. For fifteen /M1 cycles from Poweron Reset, this bit is set to "1", then cleared to "0" on the trailing edge of the 16th /M1 signal, unless programmed.

Bit 3-2. *Memory Wait States.* This 2-bit field specifies the number of wait states to be inserted during memory Read/Write transactions.

00 - No Wait states

01 - 1 Wait states

10 - 2 Wait states

11 - 3 Wait states

For fifteen /M1 cycles from Power-on Reset, these bits are set to "11", then cleared to "00" on the trailing edge of the 16th /M1 signal, unless programmed.

Bit 1-0. I/O Wait states. This 2-bit field specifies the number of wait states to be inserted during I/O transactions.

00 - No Wait states

01 - 2 Wait states

10 - 4 Wait states

11 - 6 Wait states

For fifteen /M1 cycles from Power-on Reset, these bits are set to "11", then cleared to "00" on the trailing adge of the 16th /M1 signal, unless programmed. For the accesses to the on-chip I/O registers, no Wait states are inserted regardless of the programming of this field.

Memory Wait Boundary Register (MWBR, Control Register 01h)

This register specifies the address range to insert memory wait states. When accessed memory addresses are within this range, the Memory Wait State generator inserts Memory Wait States specified in the Memory Wait field of WCR (Figure 28).

When receiving /NMI or /INT signals, the stopped internal system clock starts to feed. In IDLE1 Mode, the IPC starts clock output on CLKOUT at the same time.

The operation stop of CPU in IDLE2 mode is taking place at "0" level during T4 state in the halt instruction op-code fetch cycle. Therefore, after being restarted by the interrupt signal, CPU executes one NOP instruction and samples an interrupt signal at the rise of T4 state during the execution of this NOP instruction, and executes the interrupt process from next cycle.

If no interrupt signal is accepted during the execution of the first NOP instruction after the internal system clock is restarted, CPU is not released from the halt state. It is placed in IDLE1/2 Mode again at "0" level during T4 state of the NOP instruction, stopping the internal system clock. If /INT signal is not at "0" level at the rise of T4 state, no interrupt request is accepted.

The halt release operation resets the IPC in IDLE1 Mode (Figure 38a) and in IDLE2 Mode (Figure 38b).

Figure 38. Halt Release Operation Timing By Reset in IDLE1/2 Mode

Z84C13/C15 Only. The /RESET pulse is stretched to a minimum of 16 cycles and driven out of the Z84C13/C15 on the /RESET pin if Reset output is enabled (bit D3 of MCR is cleared to "0"). Setting bit D3 disables the driving out of

/RESET. The values in the control registers (WDTMR, SCRP, WCR, MWBR, CSBR and MCR) are initialized to the default value on /RESET.

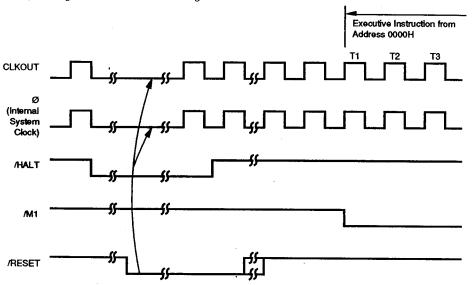


Figure 40. Halt Release Operation Timing
By Reset in STOP Mode

Start-up Time at Time of Restart (STOP Mode). When the MPU is released from the halt state by accepting an interrupt request, it executes an interrupt service routine. Therefore, when an interrupt request is accepted, it starts generating clock on the CLKOUT pin, after a start-up time, by the internal counter [(2¹⁴+2.5) TcC (TcC:Clock Cycle)]. This obtains a stabilized oscillation for operation.

Further, in case of restart by the /RESET signal, the internal counter does not operate.

Evaluation operation. Each of the CPU signals (A15-0, D7-0, /MREQ, /IORQ, /RD, WR, /HALT, /M1, /RFSH) can be 3-stated by activating the EV pin. The Z84C13/C15 enhances the counter part by eliminating the requirement of /BUSREQ to go active.

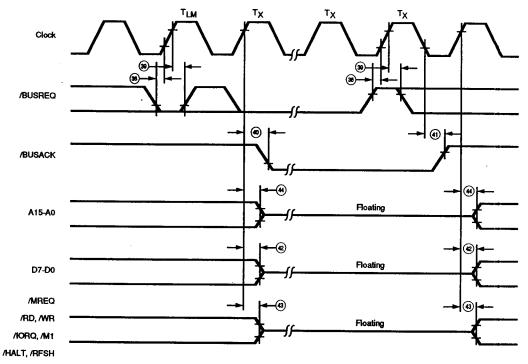
Instruction set. The instruction set of the IPC is the same for the Z84C00. For details, refer to the data sheet of the Z84C00 Technical Manual.

AC TIMING

The following section describes the timing of the IPC. The numbers appearing in the figures refer to the parameters on Table A - F.

CPU Timing

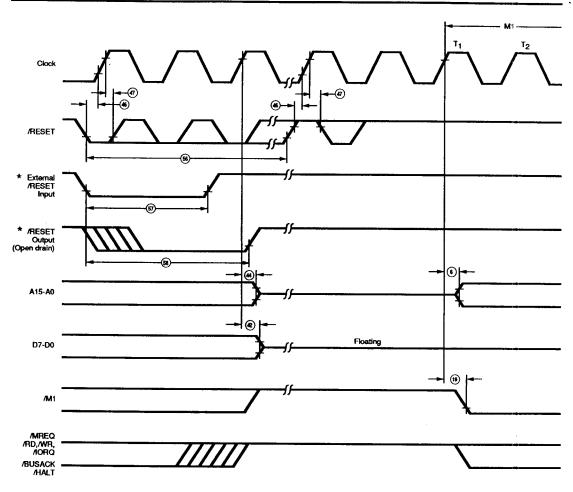
Parameters referenced in Figure 41 through Figure 48 appear in Table A.


The IPC's CPU executes instructions by proceeding through the following specific sequence of operations:

Memory read or write I/O device read or write Interrupt acknowledge

The basic clock period is referred to as a Time or Cycle and three or more T cycles make up a machine cycle (e.g., M1, M2 or M3). Machine cycles are extended either by the CPU automatically inserting one or more Wait states or by the insertion of one or more Wait states by the user.

Bus Request/Acknowledge Cycle. The CPU samples /BUSREQ with the rising edge of the last clock period of any machine cycle (Figure 46). If /BUSREQ is active, the CPU sets its address, data, and /MREQ to Inputs, and /IORQ, /RD and /WR lines set to an input for on-chip


peripheral access from an external bus master with the rising edge of the next clock pulse. At that time, any external device can take control of these lines, usually to transfer data between memory and I/O devices.

Notes: 1) T_{LM} = Last state of any M cycle

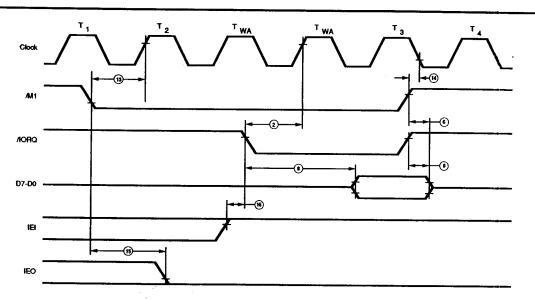
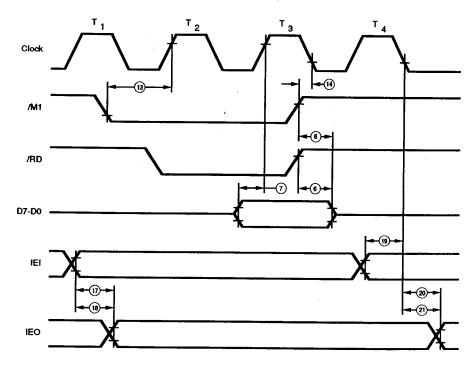

2) T_X = An arbitrary clock cycle used by requesting device

Figure 46. BUS Request/Acknowledge Cycle (See Table A)



* 84C13/15 Only Reset Output is Enabled

Figure 48. Reset Cycle (See Table A)

(b) Interrupt Acknowledge Cycle Timing for On-chip peripheral from External Bus master (See Table C)

(c) Op-code fetch Cycle Timing for On-chip peripheral from External Bus master (See Table C)

Figure 53. On-chip Peripheral Timing from External Bus master (Continued)

PIO timing (Not applicable on Z84x13) Figure 54 shows the timing for on-chip PIO.

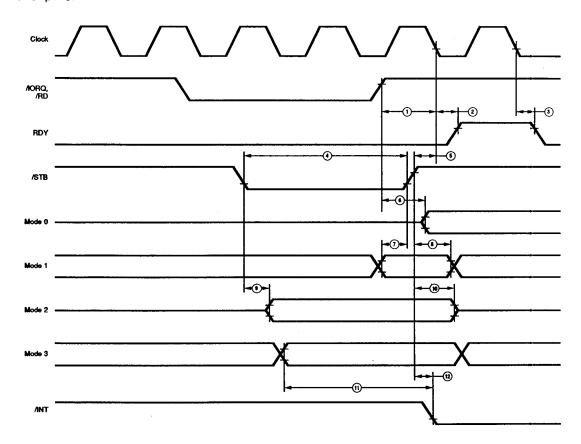


Figure 54. PIO Timing (See Table D)

SIO Timing
Figure 56 shows the timing for on-chip SIO.

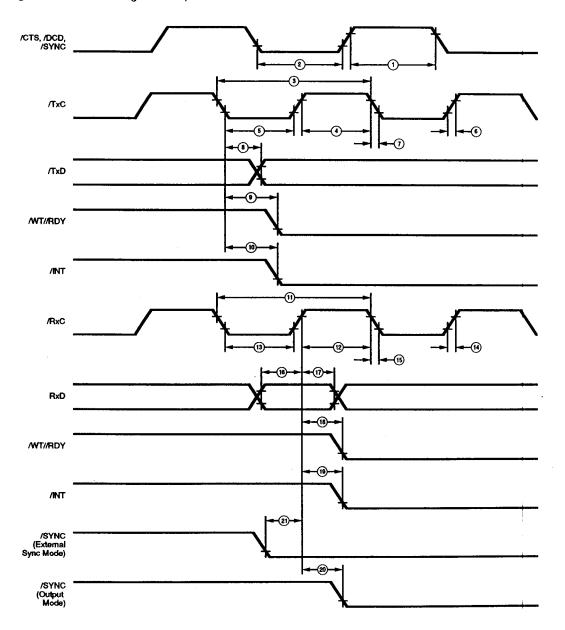


Figure 56. SIO Timing (See Table F)

AC CHARACTERISTICS (Continued)

Table A. CPU Timing (Continued)

M-	Combal		Z84X Z84X	1506	Z84X Z84X	1510	Z84C Z84C	1316* 1516		******
NO —	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	Note
41	TdCf(BUSACKr)	Clock Fall to /BASACK Rise Delay		90		75		40	ns	
42	TdCr(Dz)	Clock Rise to Data Float Delay		80		65		40	ns	
43	TdCr(CTz)	Clock Rise to Control Outputs Float Delay								
		(/MREQ, /IORQ, /RD and /WR)		70		65		40	ns	
44	TdCr(Az)	Clock Rise to Address Float Delay		80		75		40	ns	
45	TdCTr(A)	Address Hold Time from	35**		20**	**		0	ns	
		/MREQ, /IORQ, /RD or /WR								
46	TsRESET(Cr)	/RESET to Clock Rise Setup Time	60		40		15		ns	
47	ThRESET(Cr)	/RESET to Clock Rise Hold Time	10		10		10		ns	
48	TsINTf(Cr)	/INT Fall to Clock Rise Setup Time	70		50		15		ns	
49	ThINTr(Cr)	/INT Rise to Clock Rise Hold Time	10		10	~	10		ns	+
50	TdM1f(IORQf)	/M1 Fall to /IORQ Fall Delay	359**		220**	•	100		ns	
51	TdCf(IORQf)	Clock Fall to /IORQ Fall Delay		70		55		45	ns	
52	TdCf(IORQr)	Clock Rise to /IORQ Rise Delay		70		55		45	ns	
53	TdCf(D)	Clock Fall to Data Valid Delay		130		110		75	ns	
54	TRDf(D)	/RD Fall to Output Data Valid		TBD		60		40	ns	•
55 56	TdIORQ(D) Twreset	/IORQ Fall to Output Data Valid /RESET Pulse Width		TBD		70		4 5	ns	
	·····coc··	013/015, or C13/C15 with RESET Output Disabled	3TcC		3TcC		3TcC		ns	
57	TwRESEToe	/RESET Pulse Width				*******				
		RESET Output Enabled	2TcC		2TcC		2TcC		ns	
58	TwRESETdo	/RESET Drive Duration	_,,,,		2100		2100		119	
		RESET Output Enabled	16Tc(;	16Tc0	1	16TcC		ns	
59	TwRESETpor	/RESET drive duration on	10100	•	10100	,	10166		113	
	r ·	Power-On Sequence	10	75	10	75	10	75	ms	

Notes:

* 16 MHz Timings are preliminary and subject to change. Only C version

** For clock period other than the minimum shown, calculate parameters using the formula on Table H.

[A1] These parameters apply to the external Clock input on CLKIN pin. For the cases where external Clock is fed from XTAL1, please refer to Table B.

[A2] For loading >= 50 pF, decrease width by 10 ns for each additional 50 pF.

		Table H. Footnote t	o Table A.		
No	Symbol	Parameter	Z84X1306 Z84X1506	Z84X1310 Z84X1510	Z84C1316* Z84C1516
1	TcC	TwCh + TwCl + TrC + TfC			
7	TdA(MREQf)	TwCh + TfC	-50	-50	-45
10	TwMREQh	TwCh + TfC	-20	-20	-20
11	TwMREQI	TcC	-30	-25	-25
26	TdA(IORQf)	TcC	-55	-50	-50
29	TdD(WRf)	TcC	-140	-60	-60
31	TwWR	TcC	-30	-25	-25
33	TdD(WRf)	TwCl + TrC	-140	-60	-60
35	TdWRr(D)	TwCl + TrC	-55	-40	-25
45	TdCTr(A)	TwCl + TrC	-50	-30	-30
50	TdM1f(IÓRQf)	2TcC + TwCh + TfC	-50	-30	-30

AC CHARACTERISTICS (Continued)

Table B. CGC Timing (See Figure 49 to 52)

No	Symbol	Parameter	Z84C1 Z84C1 M in			1310 1510 Max	Z840 Z840 Min	1316* 1516 M ax	Unit	Not
1	TRST(INT)S	Clock Restart Time by /INT (STOP Mode)	(Тур)21	+2.5TcC	(Typ)21	4+2.5TcC	(Typ)2	4+2.5TcC	ns	
2	TRST(MNI)S	Clock Restart Time by /NMI (STOP Mode)	(Тур)214	+2.5TcC	(Typ)2 ¹	42.5TcC	(Typ)2	4+2.5TcC	ns	
3	TRST(INT)I	Clock Restart Time by /INT (IDLE Mode)	2.5TcT		2.5TcT		2.5TcT		ns	
4	TRST(Nmi)I	Clock Restart Time by /NMI (IDLE Mode)	2.5TcT		2.5TcT		2.5TcT		ns	
5	TRST(RESET)I	Clock Restart Time by /RESET (IDLE Mode)	1TcC		1TcC		1TcC		ns	
6	TICLKOUT	CLKOUT Rise Time		15		10		6	ns	
7	TrCLKOUT	CLKOUT Fall time		15		10		6	ns	
8	TcX1	XTAL1 Cycle Time (for External Clock Input on XTAL1)								
		Divide-by-Two Mode	81		50			31	ns	
		Divide-by-One Mode	162		100			61	ns	
9	TwlX1	XTAL1 Low Pulse Width (for External Clock Input on XTAL1)								
		Divide-by-Two Mode	35		15			10	ns	
		Divide-by-One Mode	65		40			25	ns	
10	TwhX1	XTAL1 High Pulse Width (for External Clock input on XTAL1)								
		Divide-by-Two mode	35		15			10	ns	
	•	Divide-by-One mode	65		40			25	ns	
11	TrX1	XTAL1 Rise Time (for External Clock Input on XTAL1)		25		25		15	ns	(B1
12	TfX1	XTAL1 Fall Time (for External Clock Input on XTAL1)		25		25		15	ns	(B1

Note: [B1] If parameters 8 and 9 are not met, adjust parameters 11 and 12 to satisfy parameters 8 and 9.

AC CHARACTERISTICS (Continued)

Table D. PIO Timing (Z84x15 only) (See Figure 54)

			Z84C	1506	Z84C	1510	Z84C	1516*		
No	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	Note
1	TslOr(Cr)	/IORQ Rise to Clock Fall Setup Time								
		(To Activate RDY on Next Clock Cycle)	100		100		100		ns	
2	TdCf(RDYr)	Clock Fall to RDY Rise Delay		100		115	.00	30	ns	[D2]
3	TdCf(RDYf)	Clock Fall to RDY Fall Delay		100		115		30	ns	[D2]
4	TwSTB	/STB Pulse Width	100		80		50	00	ns	[D2]
5	TsSTBr(Cr)	/STB Rise to Clock Fall Setup Time					u			
		(To Activate RDY on Next Clock Cycle)	100		100		70		ns	[D2]
6	TdlOr(PD)	/IORQ Rise to Port Data Stable Delay (Mode 0)		140		120		100	ns	[D2]
7	TsPD(STBr)	Port Data to /STB Rise Setup Time (Mode 1)	140		75	0	30	100	ns	[UZ]
8	ThPD(STBr)	Port Data to /STB Rise Hold Time (Mode 1)	15		15		15		ns	
9	TdSTBf(PD)	/STB Fall to Port Data Stable (Mode 2)		150		120		30	ns	[D2]
10	TdSTBr(PDz)	/STB Rise to Port Data Float Delay (Mode 2)		140		120		50	ns	(52)
11	TdPD(INTf)	Port Data Match to /INT Fall Delay (Mode 3)		250		200		40	ns	
12	TdSTBr(INTf)	/STB Rise to /INT Fall Delay		290		220		75	ns	

[D1] For Mode 2: TwSTB >TsPD(STB).
[D2] Increase these values by 2 ns for 10 pF increase in loading up to 100 pF Max.

Table E. CTC Timing (Figure 55)

A 1-	0		Z84C1:	506	Z84C1: Z84C1:	510	Z84C1: Z84C1:	516		
No —	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	Note
1 2	TdCr(INTf) TsCTR(Cc)	Clock Rise to /INT Fall Delay CLK/TRG to Clock Rise		(TcC+100)		(TcC+80)		(TcC+30)		[E1]
	. ,	Setup Time for Immediate Count	90		90		40		ns	[E2]
3	TsCTR(Ct)	CLK/TRG to Clock Rise								
	, ,	Setup Time for Enabling of Prescalor on Following Clock Rise	90		90		40		ns	[E1]
4	TdCTR(INTf)	CLK/TRG to /INT Fall Delay				VI //-				
		TsCTR(C) Satisfied		(1)+(3)		(1)+(3)		(1)+(3)	ns	[E2]
		TsCTR(C) not Satisfied		TcC+(1)+(3)		TcC+(1)+(3)		TcC+(1)+(3)	ns	[E2]
5	TcCTR	CLK/TRG Cycle time	(2TcC)	DC	(2TcC)	DC	(2TcC)	DC	ns	[E3]
6	TwCTRh	CLK/TRG Width (Low)	90	DC	90 ′	DC	25	DC	ns	
7	TwCTRf	CLK/TRG Width (High)	90	DC	90	DC	25	DC	ns	
8	TrCTR	CLK/TRG Rise Time		30		30		15	ns	
9	TfCTR	CLK/TRG Fall Time		30		30		15	ns	
10	TdCr(ZCr)	Clock Rise to ZC/TO Rise Delay		80		80		25	ns	
11	TdCf(ZCf)	Clock Fall to ZC/TO Fall Delay		80		80		25	ns	

Notes:

Notes:
[E1] Timer Mode.
[E2] Counter Mode.
[E3] Counter Mode only; when using a cycle time less than 3TcC, parameter #2 must be met.

Table F. SIO Timing (See Figures 53(a) and 56)

			Z84C Z84C		Z84C Z84C		Z84C Z84C	1316°		
No	Symbol	Parameter	Min	Max	Min	Max	Min	Max	Unit	Note
1	TwPh	Pulse Width (High)	150		120		80		ns	
2	TwPl	Pulse Width (Low)	150		120		80		ns	
3	TcTxC	/TxC Cycle Time	250		200		120		ns	[F1]
4	TwTxCH	/TxC Width (High)	85		80		55		ns	
5	TwTxCL	/TxC Width (Low)	8 5		80		55		ns	
6	TrTxC	/TxC Rise Time		60		60		60	ns	
7	TfTxC	/TxC Fall Time		60		60		60	ns	
8	TdTxCf(TxD)	/TxC Fall to TxD Delay		160		120		40	ns	
9	TdTxCf(W/RRf) (Ready Mode)	/TxC Fall to /W//RDY Fall Delay	5	9	5	9	5	8	TcC	
10	TdTxCf(INTf)	/TxC Fall to /INT Fall Delay	5	9	5	9	5	9	TcC	
11	TcRxC	/RxC Cycle Time	250		200		120		ns	[F1]
12	TwRxCh	/RxC Width (High)	85		80		55		ns	
13	TwRxCl	/RxC Width (Low)	85		80		55		ns	
14	TrRxC	/RxC Rise Time		60		60		60	ns	
15	TfRxC	/RxC Fall Time		60		60		60	ns	
16	TsRxD(RxCr)	RxD to /RxC Rise Setup Time (X1 Mode)	0		0		0		ns	
17	ThRxCr(RxD)	/RxC Rise to RxD Hold Time (X1 Mode)	80		60			40	ns	
18	TdRxCr(W/RRf)	/RxC Rise to /W//RDY Fall Delay (Ready Mode)	10	13	10	13	10	13	TcC	
19	TdRxCr(INTf)	/RxC Rise to /INT Fall Delay	10	13	10	13	10	13	TcC	
20	TdRxCr(SYNCf)	/RxC Rise to /SYNC Fall Delay (Output Modes)	4	7	4	7	4	7	TcC	
21	TsSYNCf(RxCr)	/SYNC Fall to /RxC Rise Setup (External Sync Modes)	-100		-100		-100		ns	[F2]
22	TdlOf(W/RRf)	/IORQ Fall or Valid Address to /W//RDY Delay (Wait Mode)		130		110		40	ns	[F2]
23	TdCr(W/RRf)	Clock Rise to /W//RDY Delay (Ready Mode)		85		85		40	ns	[F2]
24	TdCf(W/Rz)	Clock Fall to /W//RDY Float Delay (Wait Mode)		90		80		40	ΠS	[F2]

PS018201-0602

[[]F1] In all modes, the System Clock rate must be at least five times the maximum data rate.
[F2] Parameters 22 to 24 are on Figure 53a.

	6MHz		10MHz		16MHz	,
	Min	Max	Min	Max	Min	Max
Input Buffer Delay	10nS		10nS		10 nS	
Look ahead gate delay	10nS		10nS		10 nS	

6MHz	PIO part Min	Max	CTC part Min	Max	SIO part Min	Max
TdM1(IEO)		90nS		130nS		150nS
TsIEI(IO)		90nS		100nS		70nS
TdIEI(IEOf)		100nS		90nS		50nS
TdIEI(IEOr)		130nS		90nS		50nS

10MHz	PIO part Min	Max	CTC part Min	Max	SIO part Min	Max
TdM1(IEO)		60nS		60nS		90nS
TsiEI(IO)		50nS		70nS		50nS
TdIEI(IEOf)		50nS		50nS		30nS
TdlEl(IEOr)		50nS		50nS		30nS

Preliminary

16MHz*	PIO part Min	Max	CTC part Min	Мах	SIO part Min	Max
TdM1(IEO)		55nS		55nS		90nS
TsIEI(IO)		45nS		65nS		45n \$
TdIEI(IEOf)		45nS		45nS		30n\$
TdlEl(IEOr)		45nS		45nS		30n\$

^{*} Note:

16MHz is for C15 only.

If using an interrupt from only a portion of the IPC, these numbers are smaller than the values shown above. For more details about the "Z80 Daisy Chain Structure," please refer to the Application Note "Z80 Family Interrupt Structure" included in the Z80 Data book.