
Microchip Technology - AFS1500-1FG256K Datasheet

Welcome to E-XFL.COM

Understanding Embedded - FPGAs (Field
Programmable Gate Array)

Embedded - FPGAs, or Field Programmable Gate Arrays,
are advanced integrated circuits that offer unparalleled
flexibility and performance for digital systems. Unlike
traditional fixed-function logic devices, FPGAs can be
programmed and reprogrammed to execute a wide array
of logical operations, enabling customized functionality
tailored to specific applications. This reprogrammability
allows developers to iterate designs quickly and implement
complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them
indispensable in numerous fields. In telecommunications,
FPGAs are used for high-speed data processing and
network infrastructure. In the automotive industry, they
support advanced driver-assistance systems (ADAS) and
infotainment solutions. Consumer electronics benefit from
FPGAs in devices requiring high performance and
adaptability, such as smart TVs and gaming consoles.
Industrial automation relies on FPGAs for real-time control
and processing in machinery and robotics. Additionally,
FPGAs play a crucial role in aerospace and defense, where
their reliability and ability to handle complex algorithms
are essential.

Common Subcategories of Embedded -
FPGAs

Within the realm of Embedded - FPGAs, several
subcategories address different needs and applications.
General-purpose FPGAs are the most widely used, offering
a balance of performance and flexibility for a broad range
of applications. High-performance FPGAs are designed for
applications requiring exceptional speed and
computational power, such as data centers and high-
frequency trading systems. Low-power FPGAs cater to
battery-operated and portable devices where energy
efficiency is paramount. Lastly, automotive-grade FPGAs
meet the stringent standards of the automotive industry,
ensuring reliability and performance in vehicle systems.

Types of Embedded - FPGAs

Embedded - FPGAs can be classified into several types
based on their architecture and specific capabilities. SRAM-
based FPGAs are prevalent due to their high speed and
ability to support complex designs, making them suitable
for performance-critical applications. Flash-based FPGAs
offer non-volatile storage, retaining their configuration
without power and enabling faster start-up times. Antifuse-
based FPGAs provide a permanent, one-time
programmable solution, ensuring robust security and
reliability for critical systems. Each type of FPGA brings
distinct advantages, making the choice dependent on the
specific needs of the application.

Details

Product Status Active

Number of LABs/CLBs -

Number of Logic Elements/Cells -

Total RAM Bits 276480

Number of I/O 119

Number of Gates 1500000

Voltage - Supply 1.425V ~ 1.575V

Mounting Type Surface Mount

Operating Temperature -55°C ~ 100°C (TJ)

Package / Case 256-LBGA

Supplier Device Package 256-FPBGA (17x17)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/afs1500-1fg256k

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/afs1500-1fg256k-4487187
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-fpgas-field-programmable-gate-array


Extended Temperature Fusion Family of Mixed Signal FPGAs
Speed Grade and Temperature Grade Matrix

Summary of Differences Between Extended Temperature and 
Commercial/Industrial Grade Devices

Software Considerations for Extended Temperature Fusion
When designing with Libero® System-on-Chip (SoC) software, select the K package (example: 256 FBGA K) in the Device
Selection Wizard. This enables the option of selecting the EXT temperature range under operating conditions.

Device Availability
Contact your local Microsemi SoC Products Group representative for device availability:
(http://www.microsemi.com/soc/contact/offices/index.html).

Std –1 –2

K AFS600

AFS1500

M1AFS600

M1AFS1500

AFS600

AFS1500

M1AFS600

M1AFS1500

NA

Note: K = Extended Temperature Range: –55°C to 100°C Junction

Table 2 • Summary of Differences

Feature* Extended Temperature
Commercial/Industrial 

Temperature

Temperature (junction) –55°C to 100°C 0°C to 85°C / –40°C to 100°C

AV (negative voltage input) Not supported between –40°C to –55°C Supported across all temperatures

AC (positive voltage input) Not supported between –40°C to –55°C Supported across all temperatures

Sleep mode Not supported between –40°C to –55°C Supported across all temperatures

Pigeon Point ATCA IP support (P1) Not Supported Supported across all temperatures

MicroBlade Advanced Mezzanine Card support 
(U1)

Not Supported Supported across all temperatures

Remainder of features Supported across all temperatures Supported across all temperatures

Note: *This table lists only the differences in features. For additional details, refer to the "Device Architecture" section on page 2-1
and the "DC and Power Characteristics" section on page 3-1.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
diode. In addition to the external temperature monitor diode(s), a Fusion device can monitor an internal
temperature diode using dedicated channel 31 of the ADC MUX. 

Figure 1-1 on page 1-5 illustrates a typical use of the Analog Quad I/O structure. The Analog Quad
shown is configured to monitor and control an external power supply. The AV pad measures the source
of the power supply. The AC pad measures the voltage drop across an external sense resistor to
calculate current. The AG MOSFET gate driver pad turns the external MOSFET on and off. The AT pad
measures the load-side voltage level. 

Embedded Memories

Flash Memory Blocks

The flash memory available in each Fusion device is composed of two to four flash blocks, each 2 Mbits
in density. Each block operates independently with a dedicated flash controller and interface. Fusion
flash memory blocks combine fast access times (60 ns random access and 10 ns access in Read-Ahead
mode) with a configurable 8-, 16-, or 32-bit datapath, enabling high-speed flash operation without wait
states. The memory block is organized in pages and sectors. Each page has 128 bytes, with 33 pages
comprising one sector and 64 sectors per block. The flash block can support multiple partitions. The only
constraint on size is that partition boundaries must coincide with page boundaries. The flexibility and
granularity enable many use models and allow added granularity in programming updates. 

Fusion devices support two methods of external access to the flash memory blocks. The first method is a
serial interface that features a built-in JTAG-compliant port, which allows in-system programmability
during user or monitor/test modes. This serial interface supports programming of an AES-encrypted
stream. Secure data can be passed through the JTAG interface, decrypted, and then programmed in the
flash block. The second method is a soft parallel interface. 

Figure 1-1 • Analog Quad
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Device Architecture
The system application, Level 3, is the larger user application that utilizes one or more applets. Designing
at the highest level of abstraction supported by the Fusion technology stack, the application can be easily
created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU
can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the
MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

The Fusion technology stack enables a very flexible design environment. Users can engage in design
across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile
Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to
gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be
configured using the appropriate flash switch connections:

• Any 3-input logic function

• Latch with clear or set

• D-flip-flop with clear or set

• Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line
routing resources. VersaTiles and larger functions are connected with any of the four levels of routing
hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input,
which can only be routed to the core cell over the VersaNet (global) network.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the
connection is to the efficient long-line or very-long-line resources (Figure 2-2). 

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile
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Extended Temperature Fusion Family of Mixed Signal FPGAs
VersaNet Global Networks and Spine Access 
The Fusion architecture contains a total of 18 segmented global networks that can access the
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,
including clock signals. In addition, these highly segmented global networks offer users the flexibility to
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can
result in significant improvement in design performance on Fusion devices. 

The nine spines available in a vertical column reside in global networks with two separate regions of
scope: the quadrant global network, which has three spines, and the chip (main) global network, which
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four
quadrant global network regions per device (Figure 2-12 on page 2-12). 

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of the die. 

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;
see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree
architecture, which defines how a particular spine is driven—either by the signal on the global network
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. 

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine
drivers for each spine are located in the middle of the die. 

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion
devices, see the application note Using Global Resources in Actel Fusion Devices.

Figure 2-13 • Spine-Selection MUX of Global Tree
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Device Architecture
CCC Physical Implementation
The CCC circuit is composed of the following (Figure 2-23):

• PLL core

• 3 phase selectors

• 6 programmable delays and 1 fixed delay

• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in
Figure 2-23 because they are automatically configured based on the user's required frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the
user to dynamically reconfigure the PLL without the need for core programming. The register file is
accessed through a simple serial interface. 

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are
automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Real-Time Counter (part of AB macro)
The RTC is a 40-bit loadable counter and used as the primary timekeeping element (Figure 2-29). The
clock source, RTCCLK, must come from the CLKOUT signal of the crystal oscillator. The RTC can be
configured to reset itself when a count value reaches the match value set in the Match Register.

The RTC is part of the Analog Block (AB) macro. The RTC is configured by the analog configuration
MUX (ACM). Each address contains one byte of data. The circuitry in the RTC is powered by VCC33A, so
the RTC can be used in standby mode when the 1.5 V supply is not present.

The 40-bit counter can be preloaded with an initial value as a starting point by the Counter Register. The
count from the 40-bit counter can be read through the same set of address space. The count comes from
a Read-Hold Register to avoid data changing during read.

When the counter value equals the Match Register value, all Match Bits Register values will be
0xFFFFFFFFFF. The RTCMATCH and RTCPSMMATCH signals will assert. The 40-bit counter can be
configured to automatically reset to 0x0000000000 when the counter value equals the Match Register
value. The automatic reset does not apply if the Match Register value is 0x0000000000.

The RTCCLK has a prescaler to divide the clock by 128 before it is used for the 40-bit counter. Below is
an example of how to calculate the OFF time.

Figure 2-29 • RTC Block Diagram

Table 2-13 • RTC Signal Description

Signal Name Width Direction Function

RTCCLK 1 In Must come from CLKOUT of XTLOSC.

RTCXTLMODE[1:0] 2 Out Controlled by xt_mode in CTRL_STAT. Signal must connect to
the RTC_MODE signal in XTLOSC, as shown in Figure 2-27.

RTCXTLSEL 1 Out Controlled by xtal_en from CTRL_STAT register. Signal must
connect to RTC_MODE signal in XTLOSC in Figure 2-27.

RTCMATCH 1 Out Match signal for FPGA

0 – Counter value does not equal the Match Register value.

1 – Counter value equals the Match Register value.

RTCPSMMATCH 1 Out Same signal as RTCMATCH. Signal must connect to
RTCPSMMATCH in VRPSM, as shown in Figure 2-27.

xt_mode[1:0]

RTCMATCH

RTCPSMMATCH

RTCCLK

ACM
Registers 

1.5 V to
3.3 V
Level
Shifter

Control Status

40-Bit Counter

Match Reg

MatchBits Reg

Counter Reg

Counter
Read-Hold Reg 

Real-Time Counter

Crystal Prescaler
FRTCCLK Divide by 128

xtal_en
RTCXTLSEL

RTCXTLMODE[1:0]
Revision 2 2-33



Device Architecture
1.5 V Voltage Regulator
The 1.5 V voltage regulator uses an external pass transistor to generate 1.5 V from a 3.3 V supply. The
base of the pass transistor is tied to PTBASE, the collector is tied to 3.3 V, and an emitter is tied to
PTBASE and the 1.5 V supplies of the Fusion device. Figure 2-27 on page 2-31 shows the hook-up of
the 1.5 V voltage regulator to an external pass transistor.

Microsemi recommends using a PN2222A or 2N2222A transistor. The gain of such a transistor is
approximately 25, with a maximum base current of 20 mA. The maximum current that can be supported
is 0.5 A. Transistors with different gain can also be used for different current requirements.

Table 2-17 • Electrical Characteristics
VCC33A = 3.3 V

Symbol Parameter Condition Min Typical Max Units

VOUT Output Voltage TJ = 25ºC 1.425 1.5 1.575 V

ICC33A Operation Current TJ = 25ºC ILOAD = 1 mA

ILOAD = 100 mA

ILOAD = 0.5 A

 11

11

30

mA

mA

mA

VOUT Load Regulation TJ = 25ºC ILOAD = 1 mA to 0.5 A 90 mV

VOUT Line Regulation TJ = 25ºC VCC33A = 2.97 V to 3.63 V

ILOAD = 1 mA

VCC33A = 2.97 V to 3.63 V

ILOAD = 100 mA

VCC33A = 2.97 V to 3.63 V

ILOAD = 500 mA

10.6

12.1

10.6

mV/V

mV/V

mV/V

Dropout Voltage* TJ = 25ºC ILOAD = 1 mA

ILOAD = 100 mA

ILOAD = 0.5 A

0.63

0.84

1.35

V

V

V

IPTBASE PTBase Current TJ = 25ºC ILOAD = 1 mA

ILOAD = 100 mA

ILOAD = 0.5 A

 48

736

12 20

µA

µA

mA

Note: *Data collected with 2N2222A.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Embedded Memories
Fusion devices include four types of embedded memory: flash block, FlashROM, SRAM, and FIFO.

Flash Memory Block
Fusion is the first FPGA that offers a flash memory block (FB). Each FB block stores 2 Mbits of data. The
flash memory block macro is illustrated in Figure 2-32. The port pin name and descriptions are detailed
on Table 2-18 on page 2-40. All flash memory block signals are active high, except for CLK and active
low RESET. All flash memory operations are synchronous to the rising edge of CLK.

Figure 2-32 • Flash Memory Block
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Device Architecture
The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-26).

BLKA and BLKB
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, the corresponding port’s outputs hold the previous value.

WENA and WENB
These signals switch the RAM between read and write mode for the respective ports. A Low on these
signals indicates a write operation, and a High indicates a read.

CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on
these signals makes the output retain data from the previous read. A High indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.

RESET
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 2-27).

Table 2-26 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0 WIDTHB1, WIDTHB0 D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

Table 2-27 • Address Pins Unused/Used for Various Supported Bus Widths

D×W

ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.
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Device Architecture
Voltage Monitor
The Fusion Analog Quad offers a robust set of voltage-monitoring capabilities unique in the FPGA
industry. The Analog Quad comprises three analog input pads—Analog Voltage (AV), Analog Current
(AC), and Analog Temperature (AT)—and a single gate driver output pad, Analog Gate (AG). There are
many common characteristics among the analog input pads. Each analog input can be configured to
connect directly to the input MUX of the ADC. When configured in this manner (Figure 2-65), there will be
no prescaling of the input signal. Care must be taken in this mode not to drive the ADC into saturation by
applying an input voltage greater than the reference voltage. The internal reference voltage of the ADC is
2.56 V. Optionally, an external reference can be supplied by the user. The external reference can be a
maximum of 3.3 V DC.

Figure 2-65 • Analog Quad Direct Connect
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Device Architecture
Current Monitor
The Fusion Analog Quad is an excellent element for voltage- and current-monitoring applications. In
addition to supporting the same functionality offered by the AV pad, the AC pad can be configured to
monitor current across an external sense resistor (Figure 2-69). To support this current monitor function,
a differential amplifier with 10x gain passes the amplified voltage drop between the AV and AC pads to
the ADC. The amplifier enables the user to use very small resistor values, thereby limiting any impact on
the circuit. This function of the AC pad does not limit AV pad operation. The AV pad can still be
configured for use as a direct voltage input or scaled through the AV prescaler independently of it’s use
as an input to the AC pad’s differential amplifier. 

Figure 2-69 • Analog Quad Current Monitor Configuration
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Device Architecture
Gate Driver
The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-73).
Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink
or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive
levels: 1 µA, 3 µA, 10 µA, and 30 µA (Figure 2-74 on page 2-91). The AG also supports a High Current
Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with
100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a
voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current
sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the
number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9). 

The gate-to-source voltage (Vgs) of the external MOSFET is limited to the programmable drive current
times the external pull-up or pull-down resistor value (EQ 5).

Vgs  Ig × (Rpullup or Rpulldown)

EQ 5

The rate at which the gate voltage of the external MOSFET slews is determined by the current, Ig,
sourced or sunk by the AG pin and the gate-to-source capacitance, CGS, of the external MOSFET. As an
approximation, the slew rate is given by EQ 6.

dv/dt = Ig / CGS 

EQ 6

Figure 2-73 • Gate Driver
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Device Architecture
Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note
that the AT pin has a reduced number of available prescaler values.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits.
This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal,
or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT
pins.

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT
pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines 
Bx[2:0]

Scaling 
Factor, Pad to 

ADC Input 

LSB for an 
8-Bit 

Conversion 
(mV)1

LSB for a 
10-Bit 

Conversion 
(mV)1

LSB for a 
12-Bit 

Conversion 
(mV)1

Full Scale 
Voltage in 

10-Bit 
Mode2

Range 
Name

0003 0.15625 64 16 4 16.368 V 16 V 

001 0.3125 32 8 2 8.184 V 8 V 

0103 0.625 16 4 1 4.092 V 4 V 

011 1.25 8 2 0.5 2.046 V 2 V 

100 2.5 4 1 0.25 1.023 V 1 V 

101 5.0 2 0.5 0.125 0.5115 V 0.5 V 

110 10.0 1 0.25 0.0625 0.25575 V 0.25 V 

111 20.0 0.5 0.125 0.03125 0.127875 V 0.125 V 

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.
2. Full Scale voltage for n-bit mode: ((2^n) - 1) x (LSB for a n-bit Conversion).

3. These are the only valid ranges for the temperature monitor block prescaler.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4] Control Lines Bx[3] ADC Connected To 

0 0 Prescaler 

0 1 Direct input 

1 0 Current amplifier* temperature monitor 

1 1 Not valid 

Note: *Current monitor is not supported between –40°C and –55°C.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5] Direct Input Switch 

0 Off 

1 On 

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6] Input Signal Polarity 

0 1 Positive 
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Extended Temperature Fusion Family of Mixed Signal FPGAs
5 V Input Tolerance
I/Os can support 5 V input tolerance when LVTTL 3.3 V, LVCMOS 3.3 V, LVCMOS 2.5 V / 5 V, and
LVCMOS 2.5 V configurations are used (see Table 2-78 on page 2-148 for more details). There are four
recommended solutions (see Figure 2-102 to Figure 2-105 on page 2-147 for details of board and macro
setups) to achieve 5 V receiver tolerance. All the solutions meet a common requirement of limiting the
voltage at the input to 3.6 V or less. In fact, the I/O absolute maximum voltage rating is 3.6 V, and any
voltage above 3.6 V may cause long-term gate oxide failures. 

Solution 1
The board-level design needs to ensure that the reflected waveform at the pad does not exceed the limits
provided in Table 3-4 on page 3-5. This is a long-term reliability requirement.

This scheme will also work for a 3.3 V PCI / PCI-X configuration, but the internal diode should not be
used for clamping, and the voltage must be limited by the two external resistors, as explained below.
Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

The following are some examples of possible resistor values (based on a simplified simulation model
with no line effects and 10  transmitter output resistance, where Rtx_out_high = (VCCI – VOH) / IOH,
Rtx_out_low = VOL / IOL).

Example 1 (high speed, high current):

Rtx_out_high = Rtx_out_low = 10 

R1 = 36  (±5%), P(r1)min = 0.069 

R2 = 82  (±5%), P(r2)min = 0.158 

Imax_tx = 5.5 V / (82 * 0.95 + 36 * 0.95 + 10) = 45.04 mA

tRISE = tFALL = 0.85 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 4 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Example 2 (low–medium speed, medium current):

Rtx_out_high = Rtx_out_low = 10 

R1 = 220  (±5%), P(r1)min = 0.018 

R2 = 390  (±5%), P(r2)min = 0.032 

Imax_tx = 5.5 V / (220 * 0.95 + 390 * 0.95 + 10) = 9.17 mA

tRISE = tFALL = 4 ns at C_pad_load = 10 pF (includes up to 25% safety margin)

tRISE = tFALL = 20 ns at C_pad_load = 50 pF (includes up to 25% safety margin)

Other values of resistors are also allowed as long as the resistors are sized appropriately to limit the
voltage at the receiving end to 2.5 V < Vin(rx) < 3.6 V when the transmitter sends a logic 1. This range of
Vin_dc(rx) must be assured for any combination of transmitter supply (5 V ± 0.5 V), transmitter output
resistance, and board resistor tolerances.
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Table 2-109 • 2.5 V LVCMOS Low Slew, Extended Temperature Case Conditions: TJ = 100°C, Worst Case 
VCC = 1.425 V, Worst Case VCCI = 2.3 V 
Applicable to Advanced I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.68 12.02 0.05 1.38 0.44 11.83 12.02 2.82 2.33 14.19 14.38  ns 

 –1 0.58 10.22 0.04 1.18 0.38 10.06 10.22 2.40 1.98 12.07 12.23  ns 

–2 0.51 8.97 0.03 1.03 0.33 8.83 8.97 2.11 1.74 10.59 10.74 ns

8 mA  Std. 0.68 8.39 0.05 1.38 0.44 8.55 8.24 3.22 3.05 10.91 10.60  ns 

 –1 0.58 7.14 0.04 1.18 0.38 7.27 7.01 2.74 2.59 9.28 9.02  ns 

–2 0.51 6.27 0.03 1.03 0.33 6.38 6.15 2.40 2.28 8.15 7.91 ns

12 mA  Std. 0.68 6.52 0.05 1.38 0.44 6.64 6.24 3.48 3.50 8.99 8.60  ns 

 –1 0.58 5.54 0.04 1.18 0.38 5.65 5.31 2.96 2.98 7.65 7.31  ns 

–2 0.51 4.87 0.03 1.03 0.33 4.96 4.66 2.60 2.62 6.72 6.42 ns

16 mA  Std. 0.68 6.08 0.05 1.38 0.44 6.19 5.83 3.54 3.63 8.55 8.18  ns 

 –1 0.58 5.17 0.04 1.18 0.38 5.27 4.96 3.01 3.08 7.27 6.96  ns 

–2 0.51 4.54 0.03 1.03 0.33 4.62 4.35 2.65 2.71 6.38 6.11 ns

24 mA  Std. 0.68 5.81 0.05 1.38 0.44 5.80 5.81 3.62 4.08 8.16 8.16  ns 

 –1 0.58 4.94 0.04 1.18 0.38 4.94 4.94 3.08 3.47 6.94 6.95  ns 

–2 0.51 4.34 0.03 1.03 0.33 4.33 4.34 2.70 3.05 6.09 6.10 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Timing Characteristics     

Table 2-119 • 1.5 V LVCMOS Low Slew, Extended Temperature Case Conditions: TJ = 100°C, Worst-Case 
VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.68 14.88 0.05 1.52 2.26 0.44 15.15 13.85 3.59 2.83 17.51 16.21  ns 

 –1 0.58 12.66 0.04 1.29 1.92 0.38 12.89 11.78 3.05 2.40 14.90 13.79  ns 

 –2 0.51 11.11 0.03 1.13 1.69 0.33 11.32 10.34 2.68 2.11 13.08 12.11  ns 

4 mA  Std. 0.68 11.84 0.05 1.52 2.26 0.44 12.06 10.40 3.97 3.54 14.42 12.76  ns 

 –1 0.58 10.07 0.04 1.29 1.92 0.38 10.26 8.85 3.38 3.01 12.27 10.86  ns 

 –2 0.51 8.84 0.03 1.13 1.69 0.33 9.01 7.77 2.97 2.64 10.77 9.53  ns 

6 mA  Std. 0.68 11.02 0.05 1.52 2.26 0.44 11.23 9.75 4.05 3.74 13.58 12.10 ns

 –1 0.58 9.38 0.04 1.29 1.92 0.38 9.55 8.29 3.45 3.18 11.56 10.30 ns

 –2 0.51 8.23 0.03 1.13 1.69 0.33 8.38 7.28 3.03 2.80 10.14 9.04 ns

8 mA  Std. 0.68 10.57 0.05 1.52 2.26 0.44 10.76 9.73 4.19 4.45 13.12 12.09  ns 

 –1 0.58 8.99 0.04 1.29 1.92 0.38 9.15 8.28 3.56 3.78 11.16 10.29  ns 

 –2 0.51 7.89 0.03 1.13 1.69 0.33 8.04 7.27 3.13 3.32 9.80 9.03  ns 

12 mA  Std. 0.68 9.39 0.05 1.52 2.26 0.44 9.57 9.38 4.17 4.27 11.93 11.74  ns 

 –1 0.58 2.99 0.04 1.29 1.92 0.38 8.14 7.98 3.55 3.63 10.14 9.98  ns 

 –2 0.51 7.01 0.03 1.13 1.69 0.33 7.14 7.00 3.11 3.19 8.91 8.76  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
2.5 V GTL+
Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential
amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 2.5 V.  

Timing Characteristics 

Table 2-136 • Minimum and Maximum DC Input and Output Levels

2.5 V GTL+ VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

33 mA –0.3 VREF – 0.1 VREF + 0.1 3.6 0.6 – 33 33 124 169 15 15

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-125 • AC Loading

Table 2-137 • 2.5 V GTL+ AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.1 VREF + 0.1 1.0 1.0 1.5 10

Note: *Measuring point = Vtrip. See Table 2-80 on page 2-153 for a complete table of trip points.

Test Point

10 pF

25GTL+

VTT

Table 2-138 • 2.5 V GTL+
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 2.3 V, VREF = 1.0 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

Std. 0.68 2.33 0.05 1.60 0.44 2.37 2.21 4.73 4.57 ns

–1 0.58 1.98 0.04 1.36 0.38 2.02 1.88 4.02 3.89 ns

–2 0.51 1.74 0.03 1.19 0.33 1.77 1.65 3.53 3.41 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Static Power Consumption of Various Internal Resources 

Power Calculation Methodology
This section describes a simplified method to estimate power consumption of an application. For more
accurate and detailed power estimations, use the SmartPower tool in the Libero SoC software.

The power calculation methodology described below uses the following variables:

• The number of PLLs as well as the number and the frequency of each output clock generated

• The number of combinatorial and sequential cells used in the design

• The internal clock frequencies

• The number and the standard of I/O pins used in the design

• The number of RAM blocks used in the design

• The number of NVM blocks used in the design

• The number of Analog Quads used in the design

• Toggle rates of I/O pins as well as VersaTiles—guidelines are provided in Table 3-14 on
page 3-23.

• Enable rates of output buffers—guidelines are provided for typical applications in Table 3-15 on
page 3-23.

• Read rate and write rate to the RAM—guidelines are provided for typical applications in
Table 3-15 on page 3-23. 

• Read rate to the NVM blocks

The calculation should be repeated for each clock domain defined in the design.

Table 3-13 • Different Components Contributing to the Static Power Consumption in Fusion 
Devices

Parameter Definition

Power Supply

Device-Specific 
Static 

Contributions

UnitsName Setting AFS1500 AFS600

PDC1 Core static power contribution in operating
mode

VCC 1.5 V 18 7.5 mW

PDC2 Device static power contribution in sleep
mode*

VCC33A 3.3 V 0.66 mW

PDC3 Device static power contribution in standby
mode

VCC33A 3.3 V 0.03 mW

PDC4 NVM static power contribution VCC 1.5 V 1.19 mW

PDC5 Analog Block static power contribution of
ADC

VCC33A 3.3 V 8.25 mW

PDC6 Analog Block static power contribution per
Quad

VCC33A 3.3 V 3.3 mW

PDC7 Static contribution per input pin – standard
dependent contribution

VCCI See Table 3-10 on page 3-15

PDC8 Static contribution per output pin –
standard dependent contribution

VCCI See Table 3-11 on page 3-17

PDC9 Static contribution for PLL VCC 1.5 V 2.55 mW

Note: *Sleep mode is not supported between –40°C and –55°C.
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Pin Assignments
FG256

Pin 
Number AFS600 Function AFS1500 Function

A1 GND GND

A2 VCCIB0 VCCIB0

A3 GAA0/IO01NDB0V0 GAA0/IO01NDB0V0

A4 GAA1/IO01PDB0V0 GAA1/IO01PDB0V0

A5 GND GND

A6 IO10PDB0V1 IO07PDB0V1

A7 IO12PDB0V1 IO13PDB0V2

A8 IO12NDB0V1 IO13NDB0V2

A9 IO22NDB1V0 IO24NDB1V0

A10 IO22PDB1V0 IO24PDB1V0

A11 IO24NDB1V1 IO29NDB1V1

A12 GND GND

A13 GBA0/IO28NDB1V1 GBA0/IO42NDB1V2

A14 IO29NDB1V1 IO43NDB1V2

A15 VCCIB1 VCCIB1

A16 GND GND

B1 VCOMPLA VCOMPLA

B2 VCCPLA VCCPLA

B3 IO00NDB0V0 IO00NDB0V0

B4 IO00PDB0V0 IO00PDB0V0

B5 GAB1/IO02PPB0V0 GAB1/IO02PPB0V0

B6 IO10NDB0V1 IO07NDB0V1

B7 VCCIB0 VCCIB0

B8 IO18NDB1V0 IO22NDB1V0

B9 IO18PDB1V0 IO22PDB1V0

B10 VCCIB1 VCCIB1

B11 IO24PDB1V1 IO29PDB1V1

B12 GBC0/IO26NPB1V1 GBC0/IO40NPB1V2

B13 GBA1/IO28PDB1V1 GBA1/IO42PDB1V2

B14 IO29PDB1V1 IO43PDB1V2

B15 VCCPLB VCCPLB

B16 VCOMPLB VCOMPLB

C1 VCCIB4 VCCIB4

C2 GND GND

C3 VCCIB4 VCCIB4

C4 VCCIB0 VCCIB0

C5 VCCIB0 VCCIB0

C6 GAC1/IO03PDB0V0 GAC1/IO03PDB0V0

C7 IO06NDB0V0 IO09NDB0V1

C8 IO16PDB1V0 IO23PDB1V0

C9 IO16NDB1V0 IO23NDB1V0

C10 IO25NDB1V1 IO31NDB1V1

C11 IO25PDB1V1 IO31PDB1V1

C12 VCCIB1 VCCIB1

C13 GBC1/IO26PPB1V1 GBC1/IO40PPB1V2

C14 VCCIB2 VCCIB2

C15 GND GND

C16 VCCIB2 VCCIB2

D1 IO84NDB4V0 IO124NDB4V0

D2 GAB2/IO84PDB4V0 GAB2/IO124PDB4V0

D3 IO85NDB4V0 IO125NDB4V0

D4 GAA2/IO85PDB4V0 GAA2/IO125PDB4V0

D5 GAB0/IO02NPB0V0 GAB0/IO02NPB0V0

D6 GAC0/IO03NDB0V0 GAC0/IO03NDB0V0

D7 IO06PDB0V0 IO09PDB0V1

D8 IO14NDB0V1 IO15NDB0V2

D9 IO14PDB0V1 IO15PDB0V2

D10 IO23PDB1V1 IO37PDB1V2

D11 GBB0/IO27NDB1V1 GBB0/IO41NDB1V2

D12 VCCIB1 VCCIB1

D13 GBA2/IO30PDB2V0 GBA2/IO44PDB2V0

D14 IO30NDB2V0 IO44NDB2V0

D15 GBB2/IO31PDB2V0 GBB2/IO45PDB2V0

D16 IO31NDB2V0 IO45NDB2V0

E1 GND GND

E2 IO81NDB4V0 IO118NDB4V0

E3 IO81PDB4V0 IO118PDB4V0

E4 VCCIB4 VCCIB4

E5 IO83NPB4V0 IO123NPB4V0

E6 IO04NPB0V0 IO05NPB0V1

E7 GND GND

E8 IO08PDB0V1 IO11PDB0V1

E9 IO20NDB1V0 IO27NDB1V1

E10 GND GND

FG256

Pin 
Number AFS600 Function AFS1500 Function
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L17 VCCIB2 VCCIB2

L18 IO46PDB2V0 IO69PDB2V0

L19 GCA1/IO45PDB2V0 GCA1/IO64PDB2V0

L20 VCCIB2 VCCIB2

L21 GCC0/IO43NDB2V0 GCC0/IO62NDB2V0

L22 GCC1/IO43PDB2V0 GCC1/IO62PDB2V0

M1 NC IO103PDB4V0

M2 XTAL1 XTAL1

M3 VCCIB4 VCCIB4

M4 GNDOSC GNDOSC

M5 GFC0/IO72NDB4V0 GFC0/IO107NDB4V0

M6 VCCIB4 VCCIB4

M7 GFB0/IO71NDB4V0 GFB0/IO106NDB4V0

M8 VCCIB4 VCCIB4

M9 VCC VCC

M10 GND GND

M11 VCC VCC

M12 GND GND

M13 VCC VCC

M14 GND GND

M15 VCCIB2 VCCIB2

M16 IO48NDB2V0 IO70NDB2V0

M17 VCCIB2 VCCIB2

M18 IO46NDB2V0 IO69NDB2V0

M19 GCA0/IO45NDB2V0 GCA0/IO64NDB2V0

M20 VCCIB2 VCCIB2

M21 GCB0/IO44NDB2V0 GCB0/IO63NDB2V0

M22 GCB1/IO44PDB2V0 GCB1/IO63PDB2V0

N1 NC IO103NDB4V0

N2 GND GND

N3 IO68PDB4V0 IO101PDB4V0

N4 NC IO100NPB4V0

N5 GND GND

N6 NC IO99PDB4V0

N7 NC IO97PDB4V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

N8 GND GND

N9 GND GND

N10 VCC VCC

N11 GND GND

N12 VCC VCC

N13 GND GND

N14 VCC VCC

N15 GND GND

N16 GDB2/IO56PDB2V0 GDB2/IO83PDB2V0

N17 NC IO78PDB2V0

N18 GND GND

N19 IO47NDB2V0 IO72NDB2V0

N20 IO47PDB2V0 IO72PDB2V0

N21 GND GND

N22 IO49PDB2V0 IO71PDB2V0

P1 GFA1/IO70PDB4V0 GFA1/IO105PDB4V0

P2 GFA0/IO70NDB4V0 GFA0/IO105NDB4V0

P3 IO68NDB4V0 IO101NDB4V0

P4 IO65PDB4V0 IO96PDB4V0

P5 IO65NDB4V0 IO96NDB4V0

P6 NC IO99NDB4V0

P7 NC IO97NDB4V0

P8 VCCIB4 VCCIB4

P9 VCC VCC

P10 GND GND

P11 VCC VCC

P12 GND GND

P13 VCC VCC

P14 GND GND

P15 VCCIB2 VCCIB2

P16 IO56NDB2V0 IO83NDB2V0

P17 NC IO78NDB2V0

P18 GDA1/IO54PDB2V0 GDA1/IO81PDB2V0

P19 GDB1/IO53PDB2V0 GDB1/IO80PDB2V0

P20 IO51NDB2V0 IO73NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function
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