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Extended Temperature Fusion Family of Mixed Signal FPGAs
VersaTile Characteristics
Sample VersaTile Specifications—Combinatorial Module
The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide. 

Figure 2-3 • Sample of Combinatorial Cells
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-9 • Efficient Long-Line Resources
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Extended Temperature Fusion Family of Mixed Signal FPGAs
PLL Macro
The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL
macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global
A[2:0] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL
feedback loop can be driven either internally or externally. The PLL macro also provides power-down
input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up.
See Figure 2-19 on page 2-22 for more information.

Inputs:

• CLKA: selected clock input

• POWERDOWN (active low): disables PLLs. The default state is power-down on (active low). 

Outputs:

• LOCK (active high): indicates that PLL output has locked on the input reference signal

• GLA, GLB, GLC: outputs to respective global networks

• YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs.
Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device
core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the
reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where
the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this
case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired
I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user. SmartGen allows the user to select the various delays and phase shift values
necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB,
GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from.
SmartGen automatically instantiates the special macro, PLLINT, when needed.
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Device Architecture
The NGMUX macro is simplified to show the two clock options that have been selected by the
GLMUXCFG[1:0] bits. Figure 2-25 illustrates the NGMUX macro. During design, the two clock sources
are connected to CLK0 and CLK1 and are controlled by GLMUXSEL[1:0] to determine which signal is to
be passed through the MUX.

The sequence of switching between two clock sources (from CLK0 to CLK1) is as follows (Figure 2-26):

• GLMUXSEL[1:0] transitions to initiate a switch.

• GL drives one last complete CLK0 positive pulse (i.e., one rising edge followed by one falling
edge).

• From that point, GL stays Low until the second rising edge of CLK1 occurs.

• At the second CLK1 rising edge, GL will begin to continuously deliver the CLK1 signal.

• Minimum tsw = 0.05 ns at 25°C (typical conditions)

For examples of NGMUX operation, refer to the Fusion FPGA Fabric User’s Guide. 

Figure 2-25 •  NGMUX Macro

Figure 2-26 • NGMUX Waveform
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Real-Time Counter System
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce
power consumption in many applications.

• Sleep mode, typical 10 µA

• Standby mode (RTC running), typical 3 mA with 20 MHz 

The RTC system is composed of five cores:

• RTC sub-block inside Analog Block (AB) 

• Voltage Regulator and Power System Monitor (VRPSM)

• Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock
Resources chapter of the Fusion FPGA Fabric User’s Guide for more detail.

• Crystal clock; does not require instantiation in RTL

• 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during
standby mode. Figure 2-27 shows their connection.

Notes:

1. Signals are hardwired internally and do not exist in the macro core.
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator

to be different from the default, or employ user logic to shut the voltage regulator off.

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Unprotect Page Operation
An Unprotect Page operation will clear the protection for a page addressed on the ADDR input. It is
initiated by setting the UNPROTECTPAGE signal on the interface along with the page address on
ADDR. 

If the page is not in the Page Buffer, the Unprotect Page operation will copy the page into the Page
Buffer. The Copy Page operation occurs only if the current page in the Page Buffer is not Page Loss
Protected.

The waveform for an Unprotect Page operation is shown in Figure 2-42.

The Unprotect Page operation can incur the following error conditions:

1. If the copy of the page to the Page Buffer determines that the page has a single-bit correctable
error in the data, it will report a STATUS = '01'.

2. If the address on ADDR does not match the address of the Page Buffer, PAGELOSSPROTECT is
asserted, and the Page Buffer has been modified, then STATUS = '11' and the addressed page is
not loaded into the Page Buffer.

3. If the copy of the page to the Page Buffer determines that at least one block in the page has a
double-bit uncorrectable error, STATUS = '10' and the Page Buffer will contain the corrupted data.

Discard Page Operation
If the contents of the modified Page Buffer have to be discarded, the DISCARDPAGE signal should be
asserted. This command results in the Page Buffer being marked as unmodified.

The timing for the operation is shown in Figure 2-43. The BUSY signal will remain asserted until the
operation has completed.

Figure 2-42 • FB Unprotected Page Waveform
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-26 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.

Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be
undefined. The RAM blocks employ little-endian byte order for read and write operations. 

Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller
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Extended Temperature Fusion Family of Mixed Signal FPGAs
RAM4K9 Description

Figure 2-48 • RAM4K9
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Direct Digital Input
The AV, AC, and AT pads can also be configured as high-voltage digital inputs (Figure 2-68). As these
pads are 12 V–tolerant, the digital input can also be up to 12 V. However, the frequency at which these
pads can operate is limited to 10 MHz.

To enable one of these analog input pads to operate as a digital input, its corresponding Digital Input
Enable (DENAxy) pin on the Analog Block must be pulled High, where x is either V, C, or T (for AV, AC,
or AT pads, respectively) and y is in the range 0 to 9, corresponding to the appropriate Analog Quad.

When the pad is configured as a digital input, the signal will come out of the Analog Block macro on the
appropriate DAxOUTy pin, where x represents the pad type (V for AV pad, C for AC pad, or T for AT pad)
and y represents the appropriate Analog Quad number. Example: If the AT pad in Analog Quad 5 is
configured as a digital input, it will come out on the DATOUT5 pin of the Analog Block macro.

Figure 2-68 • Analog Quad Direct Digital Input Configuration
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Extended Temperature Fusion Family of Mixed Signal FPGAs
ADC Input Multiplexer
At the input to the Fusion ADC is a 32:1 multiplexer. Of the 32 input channels, up to 30 are user
definable. Two of these channels are hardwired internally. Channel 31 connects to an internal
temperature diode so the temperature of the Fusion device itself can be monitored. Channel 0 is wired to
the FPGA’s 1.5 V VCC supply, enabling the Fusion device to monitor its own power supply. Doing this
internally makes it unnecessary to use an analog I/O to support these functions. The balance of the MUX
inputs are connected to Analog Quads (see the "Analog Quad" section on page 2-80). Table 2-39 defines
which Analog Quad inputs are associated with which specific analog MUX channels. The number of
Analog Quads present is device-dependent; refer to the family list in the "Fusion Extended Temperature
Devices" table on page I of this datasheet for the number of quads per device. Regardless of the number
of quads populated in a device, the internal connections to both VCC and the internal temperature diode
remain on Channels 0 and 31, respectively. To sample the internal temperature monitor, it must be
strobed (similar to the AT pads). The TMSTBINT pin on the Analog Block macro is the control for strobing
the internal temperature measurement diode.

To determine which channel is selected for conversion, there is a five-pin interface on the Analog Block,
CHNUMBER[4:0], defined in Table 2-38. 

Table 2-39 shows the correlation between the analog MUX input channels and the analog input pins.

Table 2-38 • Channel Selection

Channel Number CHNUMBER[4:0]

0 00000

1 00001

2 00010

3 00011

.

.

.

.

.

.

30 11110

31 11111

Table 2-39 • Analog MUX Channels

Analog MUX Channel Signal Analog Quad Number

0 Vcc_analog

1 AV0 Analog Quad 0

2 AC0

3 AT0

4 AV1 Analog Quad 1

5 AC1

6 AT1

7 AV2 Analog Quad 2

8 AC2

9 AT2

10 AV3 Analog Quad 3

11 AC3

12 AT3

13 AV4 Analog Quad 4

14 AC4

15 AT4
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Device Architecture
The ADC can be powered down independently of the FPGA core, as an additional control or for power-
saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the
comparators in the ADC.

ADC Modes
The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion,
and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-40.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits
RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's.
In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Integrated Voltage Reference
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be

16 AV5 Analog Quad 5

17 AC5

18 AT5

19 AV6 Analog Quad 6

20 AC6

21 AT6

22 AV7 Analog Quad 7

23 AC7

24 AT7

25 AV8 Analog Quad 8

26 AC8

27 AT8

28 AV9 Analog Quad 9

29 AC9

30 AT9

31 Internal temperature monitor

Table 2-40 • Mode Bits Function

Name Bits Function

MODE 3 0 – Internal calibration after every conversion; two ADCCLK cycles are used
after the conversion.

1 – No calibration after every conversion

MODE 2 0 – Power-down after conversion

1 – No Power-down after conversion

MODE 1:0 00 – 10-bit

01 – 12-bit

10 – 8-bit

11 – Unused

Table 2-39 • Analog MUX Channels (continued)

Analog MUX Channel Signal Analog Quad Number
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Device Architecture
(conversion that starts before a previously started conversion is finished). The total time for
calibration still remains 3,840 ADCCLK cycles.

ADC Configuration Example
This example shows how to choose the correct settings to achieve the fastest sample time in 10-bit mode
for a system that runs at 66 MHz. Assume the acquisition times defined in Table 2-43 on page 2-108 for
10-bit mode, which gives 0.549 µs as a minimum hold time.

The period of SYSCLK: tSYSCLK = 1/66 MHz = 0.015 µs

Choosing TVC between 1 and 33 will meet the maximum and minimum period for the ADCCLK
requirement. A higher TVC leads to a higher ADCCLK period. 

The minimum TVC is chosen so that tdistrib and tpost-cal can be run faster. The period of ADCCLK with a
TVC of 1 can be computed by EQ 24.

EQ 24

The STC value can now be computed by using the minimum sample/hold time from Table 2-43 on
page 2-108, as shown in EQ 25. 

EQ 25

You must round up to 3 to accommodate the minimum sample time requirement. The actual sample time,
tsample, with an STC of 3, is now equal to 0.6 µs, as shown in EQ 26

EQ 26

Microsemi recommends post-calibration for temperature drift over time, so post-calibration is enabled.

The post-calibration time, tpost-cal, can be computed by EQ 27. The post-calibration time is 0.24 µs.

EQ 27

The distribution time, tdistrib, is equal to 1.2 µs and can be computed as shown in EQ 28 (N is number of
bits, referring back to EQ 8 on page 2-94).

EQ 28

The total conversion time can now be summated, as shown in EQ 29 (referring to EQ 23 on page 2-109).

tsync_read + tsample + tdistrib + tpost-cal + tsync_write = (0.015 + 0.60 + 1.2 + 0.24 + 0.015) µs = 2.07 µs

EQ 29

The optimal setting for the system running at 66 MHz with an ADC for 10-bit mode chosen is shown in
Table 2-46:

Table 2-46 • Optimal Setting at 66 MHz in 10-Bit Mode

TVC[7:0] = 1 = 0x01

STC[7:0] = 3 = 0x03

MODE[3:0] = b'0100 = 0x4*

Note: No power-down after every conversion is chosen in this case; however, if the application is
power-sensitive, the MODE[2] can be set to '0', as described above, and it will not affect any
performance.

tADCCLK 4 1 TVC+  tSYSCLK 4 1 1+  0.015 µs 0.12 µs= = =

STC
tsample

tADCCLK
-------------------- 2–

0.549 µs
0.12 µs
----------------------- 2– 4.575 2– 2.575= = = =

tsample 2 STC+  tADCCLK 2 3+  tADCCLK 5 0.12 µs 0.6 µs= = = =

tpost-cal 2 tADCCLK 0.24 µs= =

tdistrib N tADCCLK 10 0.12 1.2 µs= = =
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Device Architecture
Table 2-71 • Fusion Advanced I/O Features
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Device Architecture
Double Data Rate (DDR) Support
Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every
transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition,
high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR
The basic structure to support a DDR input is shown in Figure 2-100. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 2-101 on page 2-141. New data is presented to the
output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The
combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the
edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account
in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-100 • DDR Input Register Support in Fusion Devices
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-82 • Advanced I/O Default Attributes

I/O Standards SLEW (output only) OUT_DRIVE (output only) S
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LVTTL/LVCMOS 3.3 V Refer to the following 
tables for more 
information:

Table 2-79 on page 2-153

Table 2-80 on page 2-153 

Refer to the following tables 
for more information:

Table 2-79 on page 2-153

Table 2-80 on page 2-153 

Off None 35 pF – 

LVCMOS 2.5 V Off None 35 pF –

LVCMOS 2.5/5.0 V Off None 35 pF –

LVCMOS 1.8 V Off None 35 pF –

LVCMOS 1.5 V Off None 35 pF –

PCI (3.3 V) Off None 10 pF –

PCI-X (3.3 V) Off None 10 pF –

LVDS, B-LVDS, M-LVDS Off None – –

LVPECL Off None – –
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Device Architecture
Table 2-120 • 1.5 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ = 100°C, Worst-Case 
VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Pro I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tPYS

tEOU

T tZL tZH tLZ tHZ tZLS tZHS

 
Units 

2 mA  Std. 0.68 8.82 0.05 1.52 2.26 0.44 7.20 8.82 3.57 2.92 9.55 11.18  ns 

 –1 0.58 7.50 0.04 1.29 1.92 0.38 6.12 7.50 3.04 2.48 8.13 9.51  ns 

 –2 0.51 6.59 0.03 1.13 1.69 0.33 5.37 6.59 2.67 2.18 7.13 8.35  ns 

4 mA  Std. 0.68 5.60 0.05 1.52 2.26 0.44 5.11 5.60 3.94 3.59 7.47 7.96  ns 

 –1 0.58 4.77 0.04 1.29 1.92 0.38 4.35 4.77 3.36 3.05 6.36 6.77  ns 

 –2 0.51 4.18 0.03 1.13 1.69 0.33 3.82 4.18 2.95 2.68 5.58 5.95  ns 

6 mA  Std. 0.68 5.07 0.05 1.52 2.26 0.44 4.80 4.92 4.03 3.76 7.15 7.28 ns

 –1 0.58 4.31 0.04 1.29 1.92 0.38 4.08 4.19 3.43 3.20 6.09 6.19 ns

 –2 0.51 3.78 0.03 1.13 1.69 0.33 3.58 3.68 3.01 2.81 5.34 5.44 ns

8 mA  Std. 0.68 4.66 0.05 1.52 2.26 0.44 4.38 3.77 4.16 4.43 6.74 6.13  ns 

 –1 0.58 3.96 0.04 1.29 1.92 0.38 3.73 3.21 3.54 3.77 5.73 5.21  ns 

 –2 0.51 3.48 0.03 1.13 1.69 0.33 3.27 2.82 3.11 3.31 5.03 4.58  ns 

12 mA  Std. 0.68 4.30 0.05 1.52 2.26 0.44 4.38 3.77 4.16 4.43 6.74 6.13  ns 

 –1 0.58 3.66 0.04 1.29 1.92 0.38 3.73 3.21 3.54 3.77 5.73 5.21  ns 

 –2 0.51 3.21 0.03 1.13 1.69 0.33 3.27 2.82 3.11 3.31 5.03 4.58  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
Output Register

Timing Characteristics 

Figure 2-138 • Output Register Timing Diagram
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Table 2-168 • Output Data Register Propagation Delays
Extended Temperature Case Conditions: TJ = 100°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tOCLKQ Clock-to-Q of the Output Data Register 0.61 0.69 0.81 ns

tOSUD Data Setup Time for the Output Data Register 0.32 0.37 0.43 ns

tOHD Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOSUE Enable Setup Time for the Output Data Register 0.45 0.51 0.60 ns

tOHE Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.83 0.94 1.11 ns

tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.83 0.94 1.11 ns

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.23 0.26 0.31 ns

tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.23 0.26 0.31 ns

tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns

tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data
Register

0.22 0.25 0.30 ns

tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns

tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Output Enable Register

Timing Characteristics

Figure 2-139 • Output Enable Register Timing Diagram
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Table 2-169 • Output Enable Register Propagation Delays
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V 

Parameter Description –2 –1 Std. Units

tOECLKQ Clock-to-Q of the Output Enable Register 0.46 0.52 0.61 ns

tOESUD Data Setup Time for the Output Enable Register 0.32 0.37 0.43 ns

tOEHD Data Hold Time for the Output Enable Register 0.00 0.00 0.00 ns

tOESUE Enable Setup Time for the Output Enable Register 0.45 0.51 0.60 ns

tOEHE Enable Hold Time for the Output Enable Register 0.00 0.00 0.00 ns

tOECLR2Q Asynchronous Clear-to-Q of the Output Enable Register 0.69 0.78 0.92 ns

tOEPRE2Q Asynchronous Preset-to-Q of the Output Enable Register 0.69 0.78 0.92 ns

tOEREMCLR Asynchronous Clear Removal Time for the Output Enable Register 0.00 0.00 0.00 ns

tOERECCLR Asynchronous Clear Recovery Time for the Output Enable Register 0.23 0.26 0.31 ns

tOEREMPRE Asynchronous Preset Removal Time for the Output Enable Register 0.00 0.00 0.00 ns

tOERECPRE Asynchronous Preset Recovery Time for the Output Enable Register 0.23 0.26 0.31 ns

tOEWCLR Asynchronous Clear Minimum Pulse Width for the Output Enable
Register

0.22 0.25 0.30 ns

tOEWPRE Asynchronous Preset Minimum Pulse Width for the Output Enable
Register

0.22 0.25 0.30 ns

tOECKMPWH Clock Minimum Pulse Width High for the Output Enable Register 0.36 0.41 0.48 ns

tOECKMPWL Clock Minimum Pulse Width Low for the Output Enable Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
Output DDR

Figure 2-142 • Output DDR Timing Model

Table 2-172 • Parameter Definitions

Parameter Name Parameter Definition Measuring Nodes (From, To)

tDDROCLKQ Clock-to-Out B, E

tDDROCLR2Q Asynchronous Clear-to-Out C, E

tDDROREMCLR Clear Removal C, B

tDDRORECCLR Clear Recovery C, B

tDDROSUD1 Data Setup Data_F A, B

tDDROSUD2 Data Setup Data_R D, B

tDDROHD1 Data Hold Data_F A, B

tDDROHD2 Data Hold Data_R D, B

Data_F
(from core)

CLK

CLKBUF

Out

FF2

INBUF
CLR

DDR_OUT

FF1

0

1

A

B

D

E
C

C

B

OUTBUF
Data_R
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Datasheet Categories

Categories
In order to provide the latest information to designers, some datasheet parameters are published before
data has been fully characterized from silicon devices. The data provided for a given device, as
highlighted in the "Fusion Device Status" table on page III, is designated as either "Product Brief,"
"Advance," "Preliminary," or "Production." The definitions of these categories are as follows:

Product Brief
The product brief is a summarized version of a datasheet (advance or production) and contains general
product information. This document gives an overview of specific device and family information.

Advance
This version contains initial estimated information based on simulation, other products, devices, or speed
grades. This information can be used as estimates, but not for production. This label only applies to the
DC and Switching Characteristics chapter of the datasheet and will only be used when the data has not
been fully characterized.

Preliminary
The datasheet contains information based on simulation and/or initial characterization. The information is
believed to be correct, but changes are possible.

Unmarked (production)
This version contains information that is considered to be final.

Export Administration Regulations (EAR) 
The products described in this document are subject to the Export Administration Regulations (EAR).
They could require an approved export license prior to export from the United States. An export includes
release of product or disclosure of technology to a foreign national inside or outside the United States.

Safety Critical, Life Support, and High-Reliability Applications 
Policy

The products described in this advance status document may not have completed the Microsemi
qualification process. Products may be amended or enhanced during the product introduction and
qualification process, resulting in changes in device functionality or performance. It is the responsibility of
each customer to ensure the fitness of any product (but especially a new product) for a particular
purpose, including appropriateness for safety-critical, life-support, and other high-reliability applications.
Consult the Microsemi SoC Products Group Terms and Conditions for specific liability exclusions relating
to life-support applications. A reliability report covering all of the SoC Products Group’s products is
available at http://www.microsemi.com/soc/documents/ORT_Report.pdf. Microsemi also offers a variety
of enhanced qualification and lot acceptance screening procedures. Contact your local sales office for
additional reliability information.
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