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Extended Temperature Fusion Family of Mixed Signal FPGAs
Clocking Resources
The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in
Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock
signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external
components. For systems requiring more precise clock signals, the Fusion family supports an on-chip
crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC oscillator, crystal
oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify
the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular
ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local
clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.

Figure 2-16 • Fusion Clocking Options
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Device Architecture
Notes:

1. Visit the Microsemi SoC Products Group website for future application notes concerning dynamic PLL reconfiguration.
Refer to the "PLL Macro" section on page 2-27 for signal descriptions.

2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.

3. Refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-10 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros
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Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library
Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.
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Device Architecture
Global Buffers with Programmable Delay
The CLKDLY macro is a pass-through clock source that does not use the PLL, but provides the ability to
delay the clock input using a programmable delay (Figure 2-21). The CLKDLY macro takes the selected
clock input and adds a user-defined delay element. This macro generates an output clock phase shift
from the input clock.

The CLKDLY macro can be driven by an INBUF macro to create a composite macro, where the I/O
macro drives the global buffer (with programmable delay) using a hardwired connection. In this case, the
I/O must be placed in one of the dedicated global I/O locations.

Many specific INBUF macros support the wide variety of single-ended and differential I/O standards
supported by the Fusion family. The available INBUF macros are described in the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide.

The CLKDLY macro can be driven directly from the FPGA core.

The CLKDLY macro can also be driven from an I/O that is routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate from the hardwired
I/O connection described earlier.

The visual CLKDLY configuration in the SmartGen part of the Libero SoC and Designer tools allows the
user to select the desired amount of delay and configures the delay elements appropriately. SmartGen
also allows the user to select the input clock source. SmartGen will automatically instantiate the special
macro, PLLINT, when needed.

Figure 2-21 • Fusion CCC Options: Global Buffers with Programmable Delay
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Device Architecture
Example: Calculation for Match Count
To put the Fusion device on standby for one hour using an external crystal of 32.768 KHz:

The period of the crystal oscillator is Tcrystal:

Tcrystal = 1 / 32.768 KHz = 30.518 µs

The period of the counter is Tcounter:

Tcounter = 30.518 us X 128 = 3.90625 ms

The Match Count for 1 hour is tmatch:

tmatch / Tcounter = (1 hr X 60 min/hr X 60 sec/min) / 3.90625 ms = 921600 or 0xE1000

Using a 32.768 KHz crystal, the maximum standby time of the 40-bit counter is 4,294,967,296 seconds,
which is 136 years.

Table 2-14 • Memory Map for RTC in ACM Register and Description

ACMADDR Register Name Description Use
Default 
Value

0x40 COUNTER0 Counter bits 7:0 Used to preload the counter to
a specified start point.

0x00

0x41 COUNTER1 Counter bits 15:8 0x00

0x42 COUNTER2 Counter bits 23:16 0x00

0x43 COUNTER3 Counter bits 31:24 0x00

0x44 COUNTER4 Counter bits 39:32 0x00

0x48 MATCHREG0 Match register bits 7:0 The RTC comparison bits 0x00

0x49 MATCHREG1 Match register bits 15:8 0x00

0x4A MATCHREG2 Match register bits 23:16 0x00

0x4B MATCHREG3 Match register bits 31:24 0x00

0x4C MATCHREG4 Match register bits 39:32 0x00

0x50 MATCHBIT0 Individual match bits 7:0 The output of the XNOR gates

0 – Not matched

1 – Matched

0x00

0x51 MATCHBIT1 Individual match bits 15:8 0x00

0x52 MATCHBIT2 Individual match bits 23:16 0x00

0x53 MATCHBIT3 Individual match bits 31:24 0x00

0x54 MATCHBIT4 Individual match bits 29:32 0x00

0x58 CTRL_STAT Control (write/read) / Status
(read only) register bits

Refer to Table 2-15 on 
page 2-35 for details.

0x00
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Extended Temperature Fusion Family of Mixed Signal FPGAs
The following error indications are possible for Read operations:

1. STATUS = '01' when a single-bit data error was detected and corrected within the block
addressed.

2. STATUS = '10' when a double-bit error was detected in the block addressed (note that the error is
uncorrected). 

In addition to data reads, users can read the status of any page in the FB by asserting PAGESTATUS
along with REN. The format of the data returned by a page status read is shown in Table 2-22, and the
definition of the page status bits is shown in Table 2-23.  

Table 2-22 • Page Status Read Data Format

31 8 7 4 3 2 1 0

Write Count Reserved Over Threshold Read Protected Write Protected Overwrite Protected

Table 2-23 • Page Status Bit Definition

Page Status 
Bit(s)  Definition

31–8 The number of times the page addressed has been programmed/erased

7–4 Reserved; read as 0

3 Over Threshold indicator (see the "Program Operation" section on page 2-46)

2 Read Protected; read protect bit for page, which is set via the JTAG interface and
only affects JTAG operations. This bit can be overridden by using the correct user
key value.

1 Write Protected; write protect bit for page, which is set via the JTAG interface and
only affects JTAG operations. This bit can be overridden by using the correct user
key value.

0 Overwrite Protected; designates that the user has set the OVERWRITEPROTECT
bit on the interface while doing a Program operation. The page cannot be written
without first performing an Unprotect Page operation.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-54 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
FIFO Flag Usage Considerations
The AEVAL and AFVAL pins are used to specify the 12-bit AEMPTY and AFULL threshold values,
respectively. The FIFO contains separate 12-bit write address (WADDR) and read address (RADDR)
counters. WADDR is incremented every time a write operation is performed, and RADDR is incremented
every time a read operation is performed. Whenever the difference between WADDR and RADDR is
greater than or equal to AFVAL, the AFULL output is asserted. Likewise, whenever the difference
between WADDR and RADDR is less than or equal to AEVAL, the AEMPTY output is asserted. To
handle different read and write aspect ratios, AFVAL and AEVAL are expressed in terms of total data bits
instead of total data words. When users specify AFVAL and AEVAL in terms of read or write words, the
SmartGen tool translates them into bit addresses and configures these signals automatically. SmartGen
configures the AFULL flag to assert when the write address exceeds the read address by at least a
predefined value. In a 2k×8 FIFO, for example, a value of 1,500 for AFVAL means that the AFULL flag
will be asserted after a write when the difference between the write address and the read address
reaches 1,500 (there have been at least 1500 more writes than reads). It will stay asserted until the
difference between the write and read addresses drops below 1,500.

The AEMPTY flag is asserted when the difference between the write address and the read address is
less than a predefined value. In the example above, a value of 200 for AEVAL means that the AEMPTY
flag will be asserted when a read causes the difference between the write address and the read address
to drop to 200. It will stay asserted until that difference rises above 200. Note that the FIFO can be
configured with different read and write widths; in this case, the AFVAL setting is based on the number of
write data entries and the AEVAL setting is based on the number of read data entries. For aspect ratios of
512×9 and 256×18, only 4,096 bits can be addressed by the 12 bits of AFVAL and AEVAL. The number
of words must be multiplied by 8 and 16, instead of 9 and 18. The SmartGen tool automatically uses the
proper values. To avoid halfwords being written or read, which could happen if different read and write
aspect ratios are specified, the FIFO will assert FULL or EMPTY as soon as at least a minimum of one
word cannot be written or read. For example, if a two-bit word is written and a four-bit word is being read,
the FIFO will remain in the empty state when the first word is written. This occurs even if the FIFO is not
completely empty, because in this case, a complete word cannot be read. The same is applicable in the
full state. If a four-bit word is written and a two-bit word is read, the FIFO is full and one word is read. The
FULL flag will remain asserted because a complete word cannot be written at this point.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-63 • Analog Block Macro
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Device Architecture
Standard Conversion  

Intra-Conversion

Notes:

1. Refer to EQ 20 on page 2-108 for the calculation on the sample time, tSAMPLE.
2. See EQ 23 on page 2-109 for calculation on the conversion time, tCONV.

3. Minimum time to issue an ADCSTART after DATAVALID is 1 SYSCLK period

Figure 2-90 • Standard Conversion Status Signal Timing Diagram
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conversion time, tCONV.

Figure 2-91 • Intra-Conversion Timing Diagram
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Device Architecture
Table 2-71 • Fusion Advanced I/O Features
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Device Architecture
Temporary overshoots are allowed according to Table 3-4 on page 3-5.

Solution 2
The board-level design must ensure that the reflected waveform at the pad does not exceed limits
provided in Table 3-4 on page 3-5. This is a long-term reliability requirement. 

This scheme will also work for a 3.3 V PCI/PCI-X configuration, but the internal diode should not be used
for clamping, and the voltage must be limited by the external resistors and Zener, as shown in Figure 2-
103. Relying on the diode clamping would create an excessive pad DC voltage of 3.3 V + 0.7 V = 4 V.

Figure 2-102 • Solution 1 

Figure 2-103 • Solution 2
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Device Architecture
Table 2-81 • Fusion Pro I/O Default Attributes

I/O Standards
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Refer to the following 
tables for more 
information:

Table 2-79 on page 2-153

Table 2-80 on page 2-153 

Refer to the following 
tables for more 
information:

Table 2-79 on page 2-153

Table 2-80 on page 2-153 

Off None 35 pF – Off 0 Off

LVCMOS 2.5 V Off None 35 pF – Off 0 Off

LVCMOS
2.5/5.0 V

Off None 35 pF – Off 0 Off

LVCMOS 1.8 V Off None 35 pF – Off 0 Off

LVCMOS 1.5 V Off None 35 pF – Off 0 Off

PCI (3.3 V) Off None 10 pF – Off 0 Off

PCI-X (3.3 V) Off None 10 pF – Off 0 Off

GTL+ (3.3 V) Off None 10 pF – Off 0 Off

GTL+ (2.5 V) Off None 10 pF – Off 0 Off

GTL (3.3 V) Off None 10 pF – Off 0 Off

GTL (2.5 V) Off None 10 pF – Off 0 Off

HSTL Class I Off None 20 pF – Off 0 Off

HSTL Class II Off None 20 pF – Off 0 Off

SSTL2
Class I and II

Off None 30 pF – Off 0 Off

SSTL3
Class I and II

Off None 30 pF – Off 0 Off

LVDS, B-LVDS,
M-LVDS

Off None 0 pF – Off 0 Off

LVPECL Off None 0 pF – Off 0 Off
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Device Architecture
Table 2-96 • I/O Short Currents IOSH/IOSL

Drive Strength IOSH (mA)* IOSL (mA)*

Applicable to Pro I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 4 mA 25 27

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

2.5 V LVCMOS 4 mA 16 18

8 mA 32 37

12 mA 65 74

16 mA 83 87

24 mA 169 124

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

6 mA 35 44

8 mA 45 51

12 mA 91 74

16 mA 91 74

1.5 V LVCMOS 2 mA 13 16

4 mA 25 33

6 mA 32 39

8 mA 66 55

12 mA 66 55

Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

Note: *TJ = 100°C
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-103 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ =100°C, 
Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

4 mA  Std. 0.68 8.31 0.05 1.27 1.65 0.44 8.47 7.07 2.84 2.73 10.82 9.43 ns

 –1 0.58 7.07 0.04 1.08 1.40 0.38 7.20 6.01 2.41 2.32 9.21 8.02 ns

–2 0.51 6.21 0.03 0.95 1.23 0.33 6.32 5.28 2.12 2.04 8.08 7.04 s

8 mA  Std. 0.68 5.35 0.05 1.27 1.65 0.44 5.45 4.37 3.21 3.39 7.81 6.73 ns

 –1 0.58 4.55 0.04 1.08 1.40 0.38 4.64 3.72 2.73 2.88 6.64 5.72 ns

–2 0.51 4.00 0.03 0.95 1.23 0.33 4.07 3.26 2.40 2.53 5.83 5.02 ns

12 mA  Std. 0.68 3.87 0.05 1.27 1.65 0.44 3.94 3.03 3.45 3.81 6.30 5.38 ns

 –1 0.58 3.29 0.04 1.08 1.40 0.38 3.35 2.57 2.94 3.24 5.36 4.58 ns

–2 0.51 2.89 0.03 0.95 1.23 0.33 2.94 2.26 2.58 2.85 4.70 4.02 ns

16 mA  Std. 0.68 3.65 0.05 1.27 1.65 0.44 3.72 2.75 3.51 3.93 6.08 5.11 ns

 –1 0.58 3.11 0.04 1.08 1.40 0.38 3.16 2.34 2.99 3.34 5.17 4.34 ns

–2 0.51 2.73 0.03 0.95 1.23 0.33 2.78 2.05 2.62 2.93 4.54 3.81 ns

24 mA  Std. 0.68 3.38 0.05 1.27 1.65 0.44 3.44 2.27 3.57 4.35 5.80 4.63 ns

 –1 0.58 2.88 0.04 1.08 1.40 0.38 2.93 1.93 3.04 3.70 4.94 3.94 ns

–2 0.51 2.53 0.03 0.95 1.23 0.33 2.57 1.70 2.67 3.25 4.33 3.46 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
Output Register

Timing Characteristics 

Figure 2-138 • Output Register Timing Diagram
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Table 2-168 • Output Data Register Propagation Delays
Extended Temperature Case Conditions: TJ = 100°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tOCLKQ Clock-to-Q of the Output Data Register 0.61 0.69 0.81 ns

tOSUD Data Setup Time for the Output Data Register 0.32 0.37 0.43 ns

tOHD Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOSUE Enable Setup Time for the Output Data Register 0.45 0.51 0.60 ns

tOHE Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.83 0.94 1.11 ns

tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.83 0.94 1.11 ns

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.23 0.26 0.31 ns

tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.23 0.26 0.31 ns

tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns

tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data
Register

0.22 0.25 0.30 ns

tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns

tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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because SAMPLE is defined in the IEEE1532 specification as a noninvasive instruction. If the input
buffers were to be enabled by SAMPLE temporarily turning on the I/Os, then it would not truly be a
noninvasive instruction. Refer to the standard or the "In-System Programming (ISP) of Microsemi's Low
Power Flash Devices Using FlashPro4/3/3X" chapter of the Fusion FPGA Fabric User’s Guide for more
details.

Boundary Scan
Fusion devices are compatible with IEEE Standard 1149.1, which defines a hardware architecture and
the set of mechanisms for boundary scan testing. The basic Fusion boundary scan logic circuit is
composed of the test access port (TAP) controller, test data registers, and instruction register (Figure 2-
144 on page 2-229). This circuit supports all mandatory IEEE 1149.1 instructions (EXTEST,
SAMPLE/PRELOAD, and BYPASS) and the optional IDCODE instruction (Table 2-176 on page 2-229).

Each test section is accessed through the TAP, which has five associated pins: TCK (test clock input),
TDI, TDO (test data input and output), TMS (test mode selector), and TRST (test reset input). TMS, TDI,
and TRST are equipped with pull-up resistors to ensure proper operation when no input data is supplied
to them. These pins are dedicated for boundary scan test usage. Refer to the "JTAG Pins" section on
page 2-225 for pull-up/-down recommendations for TDO and TCK pins. The TAP controller is a 4-bit state
machine (16 states) that operates as shown in Figure 2-144 on page 2-229. The 1s and 0s represent the
values that must be present on TMS at a rising edge of TCK for the given state transition to occur. IR and
DR indicate that the instruction register or the data register is operating in that state.

The TAP controller receives two control inputs (TMS and TCK) and generates control and clock signals
for the rest of the test logic architecture. On power-up, the TAP controller enters the Test-Logic-Reset
state. To guarantee a reset of the controller from any of the possible states, TMS must remain High for
five TCK cycles. The TRST pin can also be used to asynchronously place the TAP controller in the Test-
Logic-Reset state.

Fusion devices support three types of test data registers: bypass, device identification, and boundary
scan. The bypass register is selected when no other register needs to be accessed in a device. This
speeds up test data transfer to other devices in a test data path. The 32-bit device identification register
is a shift register with four fields (LSB, ID number, part number, and version). The boundary scan register
observes and controls the state of each I/O pin. Each I/O cell has three boundary scan register cells,
each with a serial-in, serial-out, parallel-in, and parallel-out pin.

The serial pins are used to serially connect all the boundary scan register cells in a device into a
boundary scan register chain, which starts at the TDI pin and ends at the TDO pin. The parallel ports are
connected to the internal core logic I/O tile and the input, output, and control ports of an I/O buffer to
capture and load data into the register to control or observe the logic state of each I/O.

Table 2-175 • TRST and TCK Pull-Down Recommendations

VJTAG Tie-Off Resistance*

VJTAG at 3.3 V 200  to 1 k 

VJTAG at 2.5 V 200  to 1 k

VJTAG at 1.8 V 500  to 1 k

VJTAG at 1.5 V 500  to 1 k

Note: *Equivalent parallel resistance if more than one device is on JTAG chain.

http://www.microsemi.com/soc/documents/Fusion_UG.pdf


DC and Power Characteristics
Thermal Characteristics

Introduction
The temperature variable in the Microsemi Designer software refers to the junction temperature, not the
ambient, case, or board temperatures. This is an important distinction because dynamic and static power
consumption will cause the chip's junction temperature to be higher than the ambient, case, or board
temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature
gradient, and power.

EQ 1

EQ 2

EQ 3

where  

JA = Junction-to-air thermal resistance

JB = Junction-to-board thermal resistance

JC = Junction-to-case thermal resistance

TJ = Junction temperature

TA = Ambient temperature

TB = Board temperature (measured 1.0 mm away from the
package edge)

TC = Case temperature

P = Total power dissipated by the device

Table 3-6 • Package Thermal Resistance

Product

JA

JC JB UnitsStill Air 1.0 m/s 2.5 m/s

AFS600-FG256 28.9 25.2 23.5 6.8 19.9 °C/W

AFS1500-FG256 23.3 19.6 18.0 4.3 14.2 °C/W

AFS600-FG484 21.8 18.2 16.7 7.7 16.8 °C/W

AFS1500-FG484 21.6 16.8 15.2 5.6 14.9 °C/W

AFS1500-FG676 TBD TBD TBD TBD TBD °C/W

JA

TJ A–

P
------------------=

JB

TJ TB–

P
-------------------=

JC

TJ TC–

P
-------------------=
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DC and Power Characteristics
Methodology
Total Power Consumption—PTOTAL

Operating Mode, Standby Mode, and Sleep Mode

PTOTAL = PSTAT + PDYN

PSTAT is the total static power consumption.

PDYN is the total dynamic power consumption.

Total Static Power Consumption—PSTAT

Operating Mode

PSTAT = PDC1 + (NNVM-BLOCKS * PDC4) + PDC5+ (NQUADS * PDC6) + (NINPUTS * PDC7) + (NOUTPUTS 
* PDC8) + (NPLLS * PDC9)

NNVM-BLOCKS is the number of NVM blocks available in the device.

NQUADS is the number of Analog Quads used in the design.

NINPUTS is the number of I/O input buffers used in the design.

NOUTPUTS is the number of I/O output buffers used in the design.

NPLLS is the number of PLLs available in the device.

Standby Mode

PSTAT = PDC2

Sleep Mode

PSTAT = PDC3

Total Dynamic Power Consumption—PDYN

Operating Mode

PDYN = PCLOCK + PS-CELL + PC-CELL + PNET + PINPUTS + POUTPUTS + PMEMORY + PPLL + PNVM+ 
PXTL-OSC + PRC-OSC + PAB

Standby Mode

PDYN = PXTL-OSC

Sleep Mode

PDYN = 0 W

Global Clock Dynamic Contribution—PCLOCK

Operating Mode

PCLOCK = (PAC1 + NSPINE * PAC2 + NROW * PAC3 + NS-CELL * PAC4) * FCLK

NSPINE is the number of global spines used in the user design—guidelines are provided in the
"Spine Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

NROW is the number of VersaTile rows used in the design—guidelines are provided in the "Spine
Architecture" section of the Global Resources chapter in the Fusion and Extended
Temperature Fusion FPGA Fabric User's Guide.

FCLK is the global clock signal frequency.

NS-CELL is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

PCLOCK = 0 W
3-20 Revision 2
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Datasheet Information
Revision 1
(continued)

The following information was added before Figure 2-17 • XTLOSC Macro:

In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be
connected to GND and the XTAL2 pin should be left floating (SAR 34900).

2-19

Table 2-11 • Fusion CCC/PLL Specification was updated. A note was added indicating
that when the CCC/PLL core is generated by Microsemi core generator software, not all
delay values of the specified delay increments are available (SAR 34815).

2-28

A note was added to Figure 2-27 • Real-Time Counter System (not all the signals are
shown for the AB macro) stating that the user is only required to instantiate the VRPSM
macro if the user wishes to specify PUPO behavior of the voltage regulator to be
different from the default, or employ user logic to shut the voltage regulator off (SAR
34897).

2-31

VPUMP was incorrectly represented as VPP in several places. This was corrected to
VPUMP in the "Standby and Sleep Mode Circuit Implementation" section, Table 3-8 •
AFS1500 Quiescent Supply Current Characteristics, and Table 3-9 • AFS600 Quiescent
Supply Current Characteristics (SAR 34922).

2-32, 
3-11, 
3-13

Additional information was added to the Flash Memory Block "Write Operation" section,
including an explanation of the fact that a copy-page operation takes no less than 55
cycles (SAR 34924).

2-45

The "FlashROM" section was revised to refer to Figure 2-46 • FlashROM Timing
Diagram and Table 2-25 • FlashROM Access Time, Extended Temperature Conditions:
TJ = 100°C, Worst-Case VCC = 1.425 V rather than stating 20 MHz as the maximum
FlashROM access clock and 10 ns as the time interval for D0 to become valid or invalid
(SAR 34923).

2-54

Figure 2-54 • One Port Write / Other Port Read Same was deleted. Reference was
made to a new application note, Simultaneous Read-Write Operations in Dual-Port
SRAM for Flash-Based cSoCs and FPGAs, which covers these cases in detail (SAR
34864).

The port names in the "SRAM Characteristics" section, Figure 2-58 • FIFO Reset, and
the FIFO "Timing Characteristics" tables were revised to ensure consistency with the
software names (SARs 35745, 38235). 

2-63, 
2-73, 
2-75

Figure 2-56 • FIFO Read and Figure 2-57 • FIFO Write were added (SAR 34839). 2-72

In several places throughout the datasheet, GNDREF was corrected to ADCGNDREF
(SAR 38698):

Figure 2-63 • Analog Block Macro

Table 2-35 • Analog Block Pin Description

"ADC Operation" section

2-77, 
2-78, 
2-104

The following note was added below Figure 2-77 • Timing Diagram for the Temperature
Monitor Strobe Signal:

When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad
drive strength ceases and becomes a 1 µA sink into the Fusion device (SAR 34901).

2-93

Table 2-49 • Analog Channel Specifications was modified to include calibrated and
uncalibrated values for offset (AFS090 and AFS250) for the external and internal
temperature monitors. The "Offset" section was revised accordingly and now references
Table 2-49 • Analog Channel Specifications (SARs 34898, 34902).

2-95, 
2-117

The "Analog-to-Digital Converter Block" section was extensively revised, reorganizing
the information and adding the "ADC Theory of Operation" section and "Acquisition
Time or Sample Time Control" section. The "ADC Configuration Example" section was
reworked and corrected (SAR 34918).

2-96

Revision Changes Page
5-2 Revision 2
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