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Fusion Device Family Overview
The on-chip crystal and RC oscillators work in conjunction with the integrated phase-locked loops (PLLs)
to provide clocking support to the FPGA array and on-chip resources. In addition to supporting typical
RTC uses such as watchdog timer, the Fusion RTC can control the on-chip voltage regulator to power
down the device (FPGA fabric, flash memory block, and ADC), enabling a low power standby mode.

The Fusion family offers revolutionary features, never before available in an FPGA. The nonvolatile flash
technology gives the Fusion solution the advantage of being a secure, low power, single-chip solution
that is Instant On. Fusion is reprogrammable and offers time-to-market benefits at an ASIC-level unit
cost. These features enable designers to create high-density systems using existing ASIC or FPGA
design flows and tools.

Flash Advantages

Reduced Cost of Ownership
Advantages to the designer extend beyond low unit cost, high performance, and ease of use. Flash-
based Fusion devices are Instant On and do not need to be loaded from an external boot PROM. On-
board security mechanisms prevent access to the programming information and enable secure remote
updates of the FPGA logic. Designers can perform secure remote in-system reprogramming to support
future design iterations and field upgrades, with confidence that valuable IP cannot be compromised or
copied. Secure ISP can be performed using the industry-standard AES algorithm with MAC data
authentication on the device. The Fusion family device architecture mitigates the need for ASIC
migration at higher user volumes. This makes the Fusion family a cost-effective ASIC replacement
solution for applications in the consumer, networking and communications, computing, and avionics
markets.

Security

As the nonvolatile, flash-based Fusion family requires no boot PROM, there is no vulnerable external
bitstream. Fusion devices incorporate FlashLock, which provides a unique combination of
reprogrammability and design security without external overhead, advantages that only an FPGA with
nonvolatile flash programming can offer. 

Fusion devices utilize a 128-bit flash-based key lock and a separate AES key to provide the highest level
of protection in the FPGA industry for programmed IP and configuration data. The FlashROM data in
Fusion devices can also be encrypted prior to loading. Additionally, the flash memory blocks can be
programmed during runtime using the industry-leading AES-128 block cipher encryption standard (FIPS
Publication 192). The AES standard was adopted by the National Institute of Standards and Technology
(NIST) in 2000 and replaces the DES standard, which was adopted in 1977. Fusion devices have a built-
in AES decryption engine and a flash-based AES key that make Fusion devices the most comprehensive
programmable logic device security solution available today. Fusion devices with AES-based security
provide a high level of protection for remote field updates over public networks, such as the Internet, and
are designed to ensure that valuable IP remains out of the hands of system overbuilders, system cloners,
and IP thieves. As an additional security measure, the FPGA configuration data of a programmed Fusion
device cannot be read back, although secure design verification is possible. During design, the user
controls and defines both internal and external access to the flash memory blocks.

Security, built into the FPGA fabric, is an inherent component of the Fusion family. The flash cells are
located beneath seven metal layers, and many device design and layout techniques have been used to
make invasive attacks extremely difficult. Fusion with FlashLock and AES security is unique in being
highly resistant to both invasive and noninvasive attacks. Your valuable IP is protected with industry-
standard security, making remote ISP possible. A Fusion device provides the best available security for
programmable logic designs.

Single Chip
Flash-based FPGAs store their configuration information in on-chip flash cells. Once programmed, the
configuration data is an inherent part of the FPGA structure, and no external configuration data needs to
be loaded at system power-up (unlike SRAM-based FPGAs). Therefore, flash-based Fusion FPGAs do
not require system configuration components such as EEPROMs or microcontrollers to load device
configuration data. This reduces bill-of-materials costs and PCB area, and increases security and system
reliability.
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Fusion Device Family Overview
FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide
(×32) data port options. Through the programmable flash parallel interface, the on-chip and off-chip
memories can be cascaded for wider or deeper configurations. 

The flash memory has built-in security. The user can configure either the entire flash block or the small
blocks to prevent unintentional or intrusive attempts to change or destroy the storage contents. Each on-
chip flash memory block has a dedicated controller, enabling each block to operate independently.

The flash block logic consists of the following sub-blocks:

• Flash block – Contains all stored data. The flash block contains 64 sectors and each sector
contains 33 pages of data.

• Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks
of data.

• Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic – The flash memory stores error correction information with each block to perform
single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM on-
chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system
applications:

• Internet protocol addressing (wireless or fixed)

• System calibration settings

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage for secure communications algorithms

• Asset management/tracking

• Date stamping

• Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be
individually programmed (erased and written). On-chip AES decryption can be used selectively over
public networks to securely load data such as security keys stored in the FlashROM for a user design. 

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its
contents can be read back either through the JTAG programming interface or via direct FPGA core
addressing.

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has
extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of
sequential programming files for applications requiring a unique serial number in each part. Another
feature allows the inclusion of static data for system version control. Data for the FlashROM can be
generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive
programming file support is also included to allow for easy programming of large numbers of parts with
differing FlashROM contents.

SRAM and FIFO
Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be written through a 4-bit port
and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via
the device JTAG port (ROM emulation mode), using the UJTAG macro. 

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Clock Conditioning Circuits
In Fusion devices, the CCCs are used to implement frequency division, frequency multiplication, phase
shifting, and delay operations.

The CCCs are available in six chip locations—each of the four chip corners and the middle of the east
and west chip sides.

Each CCC can implement up to three independent global buffers (with or without programmable delay),
or a PLL function (programmable frequency division/multiplication, phase shift, and delays) with up to three
global outputs. Unused global outputs of a PLL can be used to implement independent global buffers, up
to a maximum of three global outputs for a given CCC.

A global buffer can be placed in any of the three global locations (CLKA-GLA, CLKB-GLB, and CLKC-
GLC) of a given CCC.

A PLL macro uses the CLKA CCC input to drive its reference clock. It uses the GLA and, optionally, the
GLB and GLC global outputs to drive the global networks. A PLL macro can also drive the YB and YC
regular core outputs. The GLB (or GLC) global output cannot be reused if the YB (or YC) output is used
(Figure 2-19). Refer to the "PLL Macro" section on page 2-27 for more information.

Each global buffer, as well as the PLL reference clock, can be driven from one of the following:

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

The CCC block is fully configurable, either via flash configuration bits set in the programming bitstream or
through an asynchronous interface. This asynchronous interface is dynamically accessible from inside
the Fusion device to permit changes of parameters (such as divide ratios) during device operation. To
increase the versatility and flexibility of the clock conditioning system, the CCC configuration is
determined either by the user during the design process, with configuration data being stored in flash
memory as part of the device programming procedure, or by writing data into a dedicated shift register
during normal device operation. This latter mode allows the user to dynamically reconfigure the CCC
without the need for core programming. The shift register is accessed through a simple serial interface.
Refer to the "UJTAG Applications in Microsemi’s Low-Power Flash Devices" chapter of the Fusion FPGA
Fabric User’s Guide and the "CCC and PLL Characteristics" section on page 2-28 for more information.
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Device Architecture
Notes:

1. Visit the Microsemi SoC Products Group website for future application notes concerning dynamic PLL reconfiguration.
Refer to the "PLL Macro" section on page 2-27 for signal descriptions.

2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.

3. Refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-10 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros

CLKBUF_LVCMOS5

CLKBUF_LVCMOS331

CLKBUF_LVCMOS18

CLKBUF_LVCMOS15

CLKBUF_PCI

CLKBUF_LVDS2

CLKBUF_LVPECL

Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library
Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.

PADN

PADP

Y

PAD Y

Input LVDS/LVPECL Macro

INBUF2 Macro

GLA
or
GLA and (GLB or YB)
or
GLA and (GLC or YC)
or
GLA and (GLB or YB) and
(GLC or YC)

Clock Source Clock Conditioning Output

OADIVHALF
OADIV[4:0]
OAMUX[2:0]
DLYGLA[4:0]
OBDIV[4:0]
OBMUX[2:0]
DLYYB[4:0]
DLYGLB[4:0]
OCDIV[4:0]
OCMUX[2:0]
DLYYC[4:0]
DLYGLC[4:0]
FINDIV[6:0]
FBDIV[6:0]
FBDLY[4:0]
FBSEL[1:0]
XDLYSEL
VCOSEL[2:0]

CLKA
EXTFB
POWERDOWN

OADIVRST

GLA
LOCK

GLB
YB

GLC
YC
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Device Architecture
The following signals are used to configure the RAM4K9 memory element:

WIDTHA and WIDTHB
These signals enable the RAM to be configured in one of four allowable aspect ratios (Table 2-26).

BLKA and BLKB
These signals are active low and will enable the respective ports when asserted. When a BLKx signal is
deasserted, the corresponding port’s outputs hold the previous value.

WENA and WENB
These signals switch the RAM between read and write mode for the respective ports. A Low on these
signals indicates a write operation, and a High indicates a read.

CLKA and CLKB
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

PIPEA and PIPEB 
These signals are used to specify pipelined read on the output. A Low on PIPEA or PIPEB indicates a
nonpipelined read, and the data appears on the corresponding output in the same clock cycle. A High
indicates a pipelined, read and data appears on the corresponding output in the next clock cycle.

WMODEA and WMODEB
These signals are used to configure the behavior of the output when the RAM is in write mode. A Low on
these signals makes the output retain data from the previous read. A High indicates pass-through
behavior, wherein the data being written will appear immediately on the output. This signal is overridden
when the RAM is being read.

RESET
This active low signal resets the output to zero, disables reads and writes from the SRAM block, and
clears the data hold registers when asserted. It does not reset the contents of the memory.

ADDRA and ADDRB
These are used as read or write addresses, and they are 12 bits wide. When a depth of less than 4 k is
specified, the unused high-order bits must be grounded (Table 2-27).

Table 2-26 • Allowable Aspect Ratio Settings for WIDTHA[1:0]

WIDTHA1, WIDTHA0 WIDTHB1, WIDTHB0 D×W

00 00 4k×1

01 01 2k×2

10 10 1k×4

11 11 512×9

Note: The aspect ratio settings are constant and cannot be changed on the fly.

Table 2-27 • Address Pins Unused/Used for Various Supported Bus Widths

D×W

ADDRx

Unused Used

4k×1 None [11:0]

2k×2 [11] [10:0]

1k×4 [11:10] [9:0]

512×9 [11:9] [8:0]

Note: The "x" in ADDRx implies A or B.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
SRAM Characteristics
Timing Waveforms     

Figure 2-50 • RAM Read for Flow-Through Output. Applicable to Both RAM4K9 and RAM512x18. 

Figure 2-51 • RAM Read for Pipelined Output. Applicable to Both RAM4K9 and RAM512x18. 
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Device Architecture
Analog Quad
With the Fusion family, Microsemi introduces the Analog Quad, shown in Figure 2-64 on page 2-81, as
the basic analog I/O structure. The Analog Quad is a four-channel system used to precondition a set of
analog signals before sending it to the ADC for conversion into a digital signal. To maximize the
usefulness of the Analog Quad, the analog input signals can also be configured as LVTTL digital input
signals. The Analog Quad is divided into four sections. 

The first section is called the Voltage Monitor Block, and its input pin is named AV. It contains a two-
channel analog multiplexer that allows an incoming analog signal to be routed directly to the ADC or
allows the signal to be routed to a prescaler circuit before being sent to the ADC. The prescaler can be
configured to accept analog signals between –12 V and 0 or between 0 and +12 V. The prescaler circuit
scales the voltage applied to the ADC input pad such that it is compatible with the ADC input voltage
range. The AV pin can also be used as a digital input pin. 

The second section of the Analog Quad is called the Current Monitor Block. Its input pin is named AC.
The Current Monitor Block contains all the same functions as the Voltage Monitor Block with one
addition, which is a current monitoring function. A small external current sensing resistor (typically less
than 1 ) is connected between the AV and AC pins and is in series with a power source. The Current
Monitor Block contains a current monitor circuit that converts the current through the external resistor to
a voltage that can then be read using the ADC. 

AG6 1 Output Analog Quad

AT6 1 Input Analog Quad

ATRETURN67 1 Input Temperature monitor return shared by
Analog Quads 6 and 7

Analog Quad

AV7 1 Input Analog Quad 7 Analog Quad

AC7 1 Input Analog Quad

AG7 1 Output Analog Quad

AT7 1 Input Analog Quad

AV8 1 Input Analog Quad 8 Analog Quad

AC8 1 Input Analog Quad

AG8 1 Output Analog Quad

AT8 1 Input Analog Quad

ATRETURN89 1 Input Temperature monitor return shared by
Analog Quads 8 and 9

Analog Quad

AV9 1 Input Analog Quad 9 Analog Quad

AC9 1 Input Analog Quad

AG9 1 Output Analog Quad

AT9 1 Input Analog Quad

RTCMATCH 1 Output MATCH RTC

RTCPSMMATCH 1 Output MATCH connected to VRPSM RTC

RTCXTLMODE[1:0] 2 Output Drives XTLOSC RTCMODE[1:0] pins RTC

RTCXTLSEL 1 Output Drives XTLOSC MODESEL pin RTC

RTCCLK 1 Input RTC clock input RTC

Table 2-35 • Analog Block Pin Description (continued)

Signal Name
Number 
of Bits Direction Function

Location of 
Details
2-80 Revision 2



Device Architecture
Gate Driver
The Fusion Analog Quad includes a Gate Driver connected to the Quad's AG pin (Figure 2-73).
Designed to work with external p- or n-channel MOSFETs, the Gate driver is a configurable current sink
or source and requires an external pull-up or pull-down resistor. The AG supports 4 selectable gate drive
levels: 1 µA, 3 µA, 10 µA, and 30 µA (Figure 2-74 on page 2-91). The AG also supports a High Current
Drive mode in which it can sink 20 mA; in this mode the switching rate is approximately 1.3 MHz with
100 ns turn-on time and 600 ns turn-off time. Modeled on an open-drain-style output, it does not output a
voltage level without an appropriate pull-up or pull-down resistor. If 1 V is forced on the drain, the current
sinking/sourcing will exceed the ability of the transistor, and the device could be damaged.

The AG pad is turned on via the corresponding GDONx pin in the Analog Block macro, where x is the
number of the corresponding Analog Quad for the AG pad to be enabled (GDON0 to GDON9). 

The gate-to-source voltage (Vgs) of the external MOSFET is limited to the programmable drive current
times the external pull-up or pull-down resistor value (EQ 5).

Vgs  Ig × (Rpullup or Rpulldown)

EQ 5

The rate at which the gate voltage of the external MOSFET slews is determined by the current, Ig,
sourced or sunk by the AG pin and the gate-to-source capacitance, CGS, of the external MOSFET. As an
approximation, the slew rate is given by EQ 6.

dv/dt = Ig / CGS 

EQ 6

Figure 2-73 • Gate Driver
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Device Architecture
The ADC can be powered down independently of the FPGA core, as an additional control or for power-
saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the
comparators in the ADC.

ADC Modes
The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion,
and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-40.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits
RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's.
In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Integrated Voltage Reference
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be

16 AV5 Analog Quad 5

17 AC5

18 AT5

19 AV6 Analog Quad 6

20 AC6

21 AT6

22 AV7 Analog Quad 7

23 AC7

24 AT7

25 AV8 Analog Quad 8

26 AC8

27 AT8

28 AV9 Analog Quad 9

29 AC9

30 AT9

31 Internal temperature monitor

Table 2-40 • Mode Bits Function

Name Bits Function

MODE 3 0 – Internal calibration after every conversion; two ADCCLK cycles are used
after the conversion.

1 – No calibration after every conversion

MODE 2 0 – Power-down after conversion

1 – No Power-down after conversion

MODE 1:0 00 – 10-bit

01 – 12-bit

10 – 8-bit

11 – Unused

Table 2-39 • Analog MUX Channels (continued)

Analog MUX Channel Signal Analog Quad Number
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Sample time is computed based on the period of ADCCLK.

Distribution Phase
The second phase is called the distribution phase. During distribution phase, the ADC computes the
equivalent digital value from the value stored in the input capacitor. In this phase, the output signal
SAMPLE goes back to '0', indicating the sample is completed; but the BUSY signal remains '1', indicating
the ADC is still busy for distribution. The distribution time depends strictly on the number of bits. If the
ADC is configured as a 10-bit ADC, then 10 ADCCLK cycles are needed. EQ 8 describes the distribution
time. 

EQ 21

N: Number of bits

Post-Calibration Phase
The last phase is the post-calibration phase. This is an optional phase. The post-calibration phase takes
two ADCCLK cycles. The output BUSY signal will remain '1' until the post-calibration phase is completed.
If the post-calibration phase is skipped, then the BUSY signal goes to '0' after distribution phase. As soon
as BUSY signal goes to '0', the DATAVALID signal goes to '1', indicating the digital result is available on
the RESULT output signals. DATAVAILD will remain '1' until the next ADCSTART is asserted. Microsemi
recommends enabling post-calibration to compensate for drift and temperature-dependent effects. This
ensures that the ADC remains consistent over time and with temperature. The post-calibration phase is
enabled by bit 3 of the Mode register. EQ 9 describes the post-calibration time.

EQ 22

MODE[3]: Bit 3 of the Mode register, described in Table 2-40.

The calculation for the conversion time for the ADC is summarized in EQ 23.

tconv = tsync_read + tsample + tdistrib + tpost-cal + tsync_write

EQ 23

tconv: conversion time

tsync_read: maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the
worst case is a period of SYSCLK, tSYSCLK.

tsample: Sample time

tdistrib: Distribution time

tpost-cal: Post-calibration time

tsync_write: Maximum time for a signal to synchronize with SYSCLK. For calculation purposes, the
worst case is a period of SYSCLK, tSYSCLK.

Intra-Conversion
Performing a conversion during power-up calibration is possible but should be avoided, since the
performance is not guaranteed, as shown in Table 2-49 on page 2-117. This is described as intra-
conversion. Figure 2-91 on page 2-112 shows intra-conversion (conversion that starts during power-up
calibration).

Injected Conversion
A conversion can be interrupted by another conversion. Before the current conversion is finished, a
second conversion can be started by issuing a pulse on signal ADCSTART. When a second conversion
is issued before the current conversion is completed, the current conversion would be dropped and the
ADC would start the second conversion on the rising edge of the SYSCLK. This is known as injected
conversion. Since the ADC is synchronous, the minimum time to issue a second conversion is two clock
cycles of SYSCLK after the previous one. Figure 2-92 on page 2-113 shows injected conversion

Table 2-45 • STC Bits Function

Name Bits Function

STC [7:0] Sample time control

tdistrib N tADCCLK=

tpost-cal MODE 3  2 tADCCLK =
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Injected Conversion

Note: * See EQ 23 on page 2-109 for calculation on the conversion time, tCONV.

Figure 2-92 • Injected-Conversion Timing Diagram
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Device Architecture
Analog Configuration MUX
The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter.
Libero SoC will generate IP that will load and configure the Analog Block via the ACM. However, users
are not limited to using the Libero SoC IP. This section provides a detailed description of the ACM's
register map, truth tables for proper configuration of the Analog Block and RTC, as well as timing
waveforms so users can access and control the ACM directly from their designs. 

The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM.
These latches act as configuration bits for Analog Quads. The ACM block runs from the core voltage
supply (1.5 V).

Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in
Table 2-35 on page 2-78. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient
to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the
Analog Block).

Table 2-54 decodes the ACM address space and maps it to the corresponding Analog Quad and
configuration byte for that quad.

Table 2-54 • ACM Address Decode Table for Analog Quad

ACMADDR [7:0] 
in Decimal Name Description

Associated 
Peripheral

0 – – Analog Quad

1 AQ0 Byte 0 Analog Quad

2 AQ0 Byte 1 Analog Quad

3 AQ0 Byte 2 Analog Quad

4 AQ0 Byte 3 Analog Quad

5 AQ1 Byte 0 Analog Quad

… … … Analog Quad

36 AQ8 Byte 3 Analog Quad

37 AQ9 Byte 0 Analog Quad

38 AQ9 Byte 1 Analog Quad

39 AQ9 Byte 2 Analog Quad

40 AQ9 Byte 3 Analog Quad

41 Undefined Analog Quad

… … Undefined Analog Quad

63 Undefined RTC

64 COUNTER0 Counter bits 7:0 RTC

65 COUNTER1 Counter bits 15:8 RTC

66 COUNTER2 Counter bits 23:16 RTC

67 COUNTER3 Counter bits 31:24 RTC

68 COUNTER4 Counter bits 39:32 RTC

72 MATCHREG0 Match register bits 7:0 RTC

73 MATCHREG1 Match register bits 15:8 RTC

74 MATCHREG2 Match register bits 23:16 RTC

75 MATCHREG3 Match register bits 31:24 RTC

76 MATCHREG4 Match register bits 39:32 RTC

80 MATCHBITS0 Individual match bits 7:0 RTC
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Device Architecture
Weak Pull-Up and Weak Pull-Down Resistors
Fusion devices support optional weak pull-up and pull-down resistors for each I/O pin. When the I/O is
pulled up, it is connected to the VCCI of its corresponding I/O bank. When it is pulled down, it is
connected to GND. Refer to Table 2-95 on page 2-171 for more information.

Slew Rate Control and Drive Strength
Fusion devices support output slew rate control: high and low. The high slew rate option is recommended
to minimize the propagation delay. This high-speed option may introduce noise into the system if
appropriate signal integrity measures are not adopted. Selecting a low slew rate reduces this kind of
noise but adds some delays in the system. Low slew rate is recommended when bus transients are
expected. Drive strength should also be selected according to the design requirements and noise
immunity of the system.

The output slew rate and multiple drive strength controls are available in LVTTL/LVCMOS 3.3 V,
LVCMOS 2.5 V, LVCMOS 2.5 V / 5.0 V input, LVCMOS 1.8 V, and LVCMOS 1.5 V. All other I/O
standards have a high output slew rate by default. 

For Fusion slew rate and drive strength specifications, refer to the appropriate I/O bank table: 

• Fusion Advanced I/O (Table 2-79 on page 2-153)

• Fusion Pro I/O (Table 2-80 on page 2-153)

Table 2-83 on page 2-156 lists the default values for the above selectable I/O attributes as well as those
that are preset for each I/O standard. 

Figure 2-111 • Timing Diagram (with skew circuit selected)

EN (b1)

EN (b2)

Transmitter 1: ON

ENABLE (t2) 

Transmitter 2: ON Transmitter 2: OFF

ENABLE (t1)

Result: No Bus Contention

Transmitter 1: OFF Transmitter 1: OFF
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Device Architecture
Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-89 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard
Input Reference Voltage 

(VREF_TYP)
Board Termination Voltage 

(VTT_REF)
Measuring Trip Point 

(Vtrip)

3.3 V LVTTL / 3.3 V LVCMOS – – 1.4 V

2.5 V LVCMOS – – 1.2 V

1.8 V LVCMOS – –  0.90 V

1.5 V LVCMOS – –  0.75 V

3.3 V PCI – – 0.285 * VCCI (RR)

0.615 * VCCI (FF))

3.3 V PCI-X – – 0.285 * VCCI (RR)

0.615 * VCCI (FF)

3.3 V GTL 0.8 V 1.2 V VREF

2.5 V GTL 0.8 V 1.2 V VREF

3.3 V GTL+ 1.0 V 1.5 V VREF

2.5 V GTL+ 1.0 V 1.5 V VREF

HSTL (I) 0.75 V 0.75 V VREF

HSTL (II) 0.75 V 0.75 V VREF

SSTL2 (I) 1.25 V 1.25 V VREF

SSTL2 (II) 1.25 V 1.25 V VREF

SSTL3 (I) 1.5 V 1.485 V VREF

SSTL3 (II) 1.5 V 1.485 V VREF

LVDS – – Cross point

LVPECL – – Cross point

Table 2-90 • I/O AC Parameter Definitions

Parameter Definition

tDP Data to Pad delay through the Output Buffer

tPY Pad to Data delay through the Input Buffer with Schmitt trigger disabled

tDOUT Data to Output Buffer delay through the I/O interface

tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface

tDIN Input Buffer to Data delay through the I/O interface

tPYS Pad to Data delay through the Input Buffer with Schmitt trigger enabled

tHZ Enable to Pad delay through the Output Buffer—High to Z 

tZH Enable to Pad delay through the Output Buffer—Z to High

tLZ Enable to Pad delay through the Output Buffer—Low to Z

tZL Enable to Pad delay through the Output Buffer—Z to Low

tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High

tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-103 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ =100°C, 
Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

4 mA  Std. 0.68 8.31 0.05 1.27 1.65 0.44 8.47 7.07 2.84 2.73 10.82 9.43 ns

 –1 0.58 7.07 0.04 1.08 1.40 0.38 7.20 6.01 2.41 2.32 9.21 8.02 ns

–2 0.51 6.21 0.03 0.95 1.23 0.33 6.32 5.28 2.12 2.04 8.08 7.04 s

8 mA  Std. 0.68 5.35 0.05 1.27 1.65 0.44 5.45 4.37 3.21 3.39 7.81 6.73 ns

 –1 0.58 4.55 0.04 1.08 1.40 0.38 4.64 3.72 2.73 2.88 6.64 5.72 ns

–2 0.51 4.00 0.03 0.95 1.23 0.33 4.07 3.26 2.40 2.53 5.83 5.02 ns

12 mA  Std. 0.68 3.87 0.05 1.27 1.65 0.44 3.94 3.03 3.45 3.81 6.30 5.38 ns

 –1 0.58 3.29 0.04 1.08 1.40 0.38 3.35 2.57 2.94 3.24 5.36 4.58 ns

–2 0.51 2.89 0.03 0.95 1.23 0.33 2.94 2.26 2.58 2.85 4.70 4.02 ns

16 mA  Std. 0.68 3.65 0.05 1.27 1.65 0.44 3.72 2.75 3.51 3.93 6.08 5.11 ns

 –1 0.58 3.11 0.04 1.08 1.40 0.38 3.16 2.34 2.99 3.34 5.17 4.34 ns

–2 0.51 2.73 0.03 0.95 1.23 0.33 2.78 2.05 2.62 2.93 4.54 3.81 ns

24 mA  Std. 0.68 3.38 0.05 1.27 1.65 0.44 3.44 2.27 3.57 4.35 5.80 4.63 ns

 –1 0.58 2.88 0.04 1.08 1.40 0.38 2.93 1.93 3.04 3.70 4.94 3.94 ns

–2 0.51 2.53 0.03 0.95 1.23 0.33 2.57 1.70 2.67 3.25 4.33 3.46 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
3.3 V PCI, 3.3 V PCI-X
The Peripheral Component Interface for 3.3 V standard specifies support for 33 MHz and 66 MHz PCI
Bus applications.  

AC loadings are defined per the PCI/PCI-X specifications for the datapath; Microsemi loadings for enable
path characterization are described in Figure 2-121. 

AC loadings are defined per PCI/PCI-X specifications for the data path; Microsemi loading for tristate is
described in Table 2-124.

Table 2-123 • Minimum and Maximum DC Input and Output Levels

3.3 V PCI/PCI-X VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

Per PCI
specification

Per PCI curves 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-121 • AC Loading

Test Point
Enable Path

R = 1 k

Test Point
Data Path

R = 25 R to VCCI for tDP (F)
R to GND for tDP (R)

R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

10 pF for tZH / tZHS / tZL / tZLS
10 pF for tHZ / tLZ

Table 2-124 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 3.3 0.285 * VCCI for tDP(R)

0.615 * VCCI for tDP(F)

– 10

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Voltage Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  

Timing Characteristics  

Table 2-127 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL4 IIH5

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA1

Max.
mA1 µA2 µA2

20 mA3 –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 181 268 15 15

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

4. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL

5. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.

Figure 2-122 • AC Loading

Table 2-128 • 3.3 V GTL AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10

Note: *Measuring point = Vtrip. See Table 2-80 on page 2-153 for a complete table of trip points.

Test Point

10 pF

25GTL

VTT

Table 2-129 • 3.3 V GTL
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 3.0 V, VREF = 0.8 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

Std. 0.68 2.19 0.05 3.09 0.44 2.15 2.19 4.51 4.55 ns

–1 0.58 1.86 0.04 2.63 0.38 1.83 1.86 3.83 3.87 ns

–2 0.51 1.63 0.03 2.31 0.33 1.60 1.63 3.36 3.40 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Input Register

Timing Characteristics  

Figure 2-137 • Input Register Timing Diagram
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Table 2-167 • Input Data Register Propagation Delays
Extended Temperature Case Conditions: TJ = 100°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tICLKQ Clock-to-Q of the Input Data Register 0.25 0.28 0.33 ns

tISUD Data Setup Time for the Input Data Register 0.27 0.31 0.36 ns

tIHD Data Hold Time for the Input Data Register 0.00 0.00 0.00 ns

tISUE Enable Setup Time for the Input Data Register 0.38 0.44 0.51 ns

tIHE Enable Hold Time for the Input Data Register 0.00 0.00 0.00 ns

tICLR2Q Asynchronous Clear-to-Q of the Input Data Register 0.47 0.53 0.63 ns

tIPRE2Q Asynchronous Preset-to-Q of the Input Data Register 0.47 0.53 0.63 ns

tIREMCLR Asynchronous Clear Removal Time for the Input Data Register 0.00 0.00 0.00 ns

tIRECCLR Asynchronous Clear Recovery Time for the Input Data Register 0.23 0.26 0.31 ns

tIREMPRE Asynchronous Preset Removal Time for the Input Data Register 0.00 0.00 0.00 ns

tIRECPRE Asynchronous Preset Recovery Time for the Input Data Register 0.23 0.26 0.31 ns

tIWCLR Asynchronous Clear Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns

tIWPRE Asynchronous Preset Minimum Pulse Width for the Input Data Register 0.22 0.25 0.30 ns

tICKMPWH Clock Minimum Pulse Width High for the Input Data Register 0.36 0.41 0.48 ns

tICKMPWL Clock Minimum Pulse Width Low for the Input Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
Special Function Pins

NC No Connect

This pin is not connected to circuitry within the device. These pins can be driven to any voltage or can be
left floating with no effect on the operation of the device.

DC Don't Connect

This pin should not be connected to any signals on the PCB. These pins should be left unconnected.

NCAP Negative Capacitor

Negative Capacitor is where the negative terminal of the charge pump capacitor is connected. A
capacitor, with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PCAP Positive Capacitor

Positive Capacitor is where the positive terminal of the charge pump capacitor is connected. A capacitor,
with a 2.2 µF recommended value, is required to connect between PCAP and NCAP.

PUB Push Button

Push button is the connection for the external momentary switch used to turn on the 1.5 V voltage
regulator and can be floating if not used.

PTBASE Pass Transistor Base

Pass Transistor Base is the control signal of the voltage regulator. This pin should be connected to the
base of the external pass transistor used with the 1.5 V internal voltage regulator and can be floating if
not used.

PTEM Pass Transistor Emitter

Pass Transistor Emitter is the feedback input of the voltage regulator.

This pin should be connected to the emitter of the external pass transistor used with the 1.5 V internal
voltage regulator and can be floating if not used.

XTAL1 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.

XTAL2 Crystal Oscillator Circuit Input

Input to crystal oscillator circuit. Pin for connecting external crystal, ceramic resonator, RC network, or
external clock input. When using an external crystal or ceramic oscillator, external capacitors are also
recommended (Please refer to the crystal oscillator manufacturer for proper capacitor value).

If using external RC network or clock input, XTAL1 should be used and XTAL2 left unconnected. In the
case where the Crystal Oscillator block is not used, the XTAL1 pin should be connected to GND and the
XTAL2 pin should be left floating.
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Datasheet Information
Revision 1
(continued)

An incomplete, duplicate sentence was removed from the end of the "GNDAQ Ground
(analog quiet)" pin description (SAR 38706).

2-222

Information about configuration of unused I/Os was added to the "User Pins" section
(SAR 34903).

2-224

The following information was added to the pin description for "XTAL1 Crystal Oscillator
Circuit Input" and "XTAL2 Crystal Oscillator Circuit Input" (SAR 34900):

In the case where the Crystal Oscillator block is not used, the XTAL1 pin should be
connected to GND and the XTAL2 pin should be left floating.

2-226

The input resistance to ground value in Table 3-3 • Input Resistance of Analog Pads for
Analog Input (direct input to ADC), was corrected from 1 M (typical) to 2 k (typical)
(SAR 38707). 

3-5

The reference to guidelines for global spines and VersaTile rows, given in the "Global
Clock Dynamic Contribution—PCLOCK" section, was corrected to the "Spine
Architecture" section of the Global Resources chapter in the Fusion FPGA Fabric User's
Guide (SAR 34740).

3-20

Package names used in the "Pin Assignments" section were revised to match standards
given in Package Mechanical Drawings (SAR 38711).

4-1
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