

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

Product Status	Active
Number of LABs/CLBs	-
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	119
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/afs600-fgg256k

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Device Architecture

Table 2-8 •	XTLOSC Signals	Descriptions
-------------	----------------	--------------

Signal Name	Width	Direction		Functio	on	
XTL_EN*	1		Enables f	he crystal. Active high.		
XTL_MODE*	2		Settings f	for the crystal clock for di	fferent frequency.	
			Value	Modes	Frequency Range	
			b'00	RC network	32 KHz to 4 MHz	
			b'01	Low gain	32 to 200 KHz	
			b'10	Medium gain	0.20 to 2.0 MHz	
			b'11	High gain	2.0 to 20.0 MHz	
SELMODE	1	IN	Selects the source of XTL_MODE and also enables the XTL_EN. Connect from RTCXTLSEL from AB.			
			0 For normal operation or sleep mode, XTL_EN depends on FPGA_EN, XTL_MODE depends on MODE			
			1 For Standby mode, XTL_EN is enabled, XTL_MODE depends on RTC_MODE			
RTC_MODE[1:0]	2	IN	Settings XTL_MO	for the crystal clock for DE uses RTC_MODE wh	different frequency ranges. nen SELMODE is '1'.	
MODE[1:0]	2	IN	Settings for the crystal clock for different frequency ranges. XTL_MODE uses MODE when SELMODE is '0'. In Standby, MODE inputs will be 0s.			
FPGA_EN*	1	IN	0 when 1.5 V is not present for VCC 1 when 1.5 V is present for VCC			
XTL	1	IN	Crystal C	lock source		
CLKOUT	1	OUT	Crystal C	lock output		

Note: *Internal signal—does not exist in macro.

Table 2-9 • Electrical Characteristics of the Crystal Osci	llator
--	--------

Parameter	Description	Conditions	Min.	Тур.	Max.	Units
FXTAL	Operating Frequency	Using External Crystal	0.032		20	MHz
		Using Ceramic Resonator	0.5		8	MHz
		Using RC Network	0.032		4	MHz
	Output Duty Cycle			50		%
	Output Jitter	With 10 MHz Crystal		50		ps RMS
IDYNXTAL	Operating Current	RC		0.6		mA
		0.032–0.2		0.6		mA
		0.2–2.0		0.6		mA
		2.0–20.0		0.6		mA
ISTBXTAL	Standby Current			10		μA
PSRRXTAL	Power Supply Noise Tolerance			0.5		Vp-р
VIHXTAL	Input Logic Level High		90% of VCC			V
VILXTAL	Input Logic Level Low				10% of VCC	V

Flash Memory Block Addressing

Figure 2-34 shows a graphical representation of the flash memory block.

Figure 2-34 • Flash Memory Block Organization

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block. Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data. Addressing for the FB is shown in Table 2-19.

Table 2-19 •	FB Address	Bit Allocation	ADDR[17:0]
	I D Additooo	Bit Anouation	ABBIQ 11.0

17	12	11	7	6	4	3	0
Sector Page		ge	Blo	ock	Ву	/te	

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error, and reads will return all zeroes.

Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal. FB operations are only accepted in cycles where BUSY is logic 0.

Write Operation

Write operations are initiated with the assertion of the WEN signal. Figure 2-35 illustrates the multiple Write operations.

Figure 2-35 • FB Write Waveform

When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page Buffer. A Copy Page operation takes no less than 55 cycles and could take more if a Write or Unprotect Page operation is started while the NVM is busy pre-fetching a block. The basic operation is to read a block from the array into the block register (5 cycles) and then write the block register to the page buffer (1 cycle) and if necessary, when the copy is complete, reading the block being written from the page buffer into the block buffer (1 cycle). A page contains 9 blocks, so 9 blocks multiplied by 6 cycles to read/write each block, plus 1 is 55 cycles total. Subsequent writes to the same block of the page will incur no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded into the Block Buffer.

Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS indicates that an error was detected during the operation and the write was not performed. Note that the STATUS output is "sticky"; it is unchanged until another operation is started.

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before saving it to nonvolatile memory.

Write errors include the following:

- 1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not performed.
- 2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled (STATUS = '11'). The write is not performed.

RAM512X18 Description

Figure 2-49 • RAM512X18

The third part of the Analog Quad is called the Gate Driver Block, and its output pin is named AG. This section is used to drive an external FET. There are two modes available: a High Current Drive mode and a Current Source Control mode. Both negative and positive voltage polarities are available, and in the current source control mode, four different current levels are available.

The fourth section of the Analog Quad is called the Temperature Monitor Block, and its input pin name is AT. This block is similar to the Voltage Monitor Block, except that it has an additional function: it can be used to monitor the temperature of an external diode-connected transistor. It has a modified prescaler and is limited to positive voltages only.

The Analog Quad can be configured during design time by Libero SoC; however, the ACM can be used to change the parameters of any of these I/Os during runtime. This type of change is referred to as a context switch. The Analog Quad is a modular structure that is replicated to generate the analog I/O resources. Each Fusion device supports between 5 and 10 Analog Quads.

The analog pads are numbered to clearly identify both the type of pad (voltage, current, gate driver, or temperature pad) and its corresponding Analog Quad (AV0, AC0, AG0, AT0, AV1, ..., AC9, AG9, and AT9). There are three types of input pads (AVx, ACx, and ATx) and one type of analog output pad (AGx). Since there can be up to 10 Analog Quads on a device, there can be a maximum of 30 analog input pads and 10 analog output pads.

Figure 2-64 • Analog Quad

🌜 Microsemi.

Extended Temperature Fusion Family of Mixed Signal FPGAs

 C_{GS} is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-90 can only be used for a first-order estimate of the switching speed of the external MOSFET.

Figure 2-74 • Gate Driver Example

Terminology

Resolution

Resolution defines the smallest temperature change Fusion Temperature Monitor can resolve. For an ADC configured as 8-bit mode, each LSB represents 4°C, and 1°C per LSB for 10-bit mode. With 12-bit mode, the Temperature Monitor can still only resolve 1°C due to Temperature Monitor design.

Offset

The Fusion Temperature Monitor has a systematic offset (Table 2-49 on page 2-117), excluding error due to board resistance and ideality factor of the external diode. Microsemi provides an IP block (CalibIP) that is required in order to mitigate the systematic temperature offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the *Fusion FPGA Fabric User's Guide*.

Extended Temperature Fusion Family of Mixed Signal FPGAs

Timing Diagrams

Note: *Refer to EQ 15 on page 2-107 for the calculation on the period of ADCCLK, t_{ADCCLK}.

Figure 2-88 • Power-Up Calibration Status Signal Timing Diagram

Figure 2-89 • Input Setup Time

Extended Temperature Fusion Family of Mixed Signal FPGAs

Typical Performance Characteristics

Figure 2-93 • Temperature Error

Table 2-48 •	Temperature	vs. Average	Fitted	Error
--------------	-------------	-------------	--------	-------

Temperature (°C)	Averaged Fitted Error
100	3.2469
90	3.1559
80	3.0649
70	2.9739
60	2.8829
50	2.7919
40	2.7009
30	2.6099
20	2.5189
10	2.4279
0	2.3369
-10	2.2459
-20	2.1549
-30	2.0639
-40	1.9729
-55	1.8364

Microsemi

Device Architecture

Table 2-49 • Analog Channel Specifications (continued)

Extended Temperature Range Conditions, $T_J = 100^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Temperature Mo	nitor Using Analog Pad	AT				•
External	Resolution	8-bit ADC		4		°C
Temperature		10-bit ADC		1		
(external diode		12-bit ADC		0.2	5	°C
2N3904,	Systematic Offset ⁵	AFS090, AFS250, uncalibrated ⁷		5		°C
$I_{\rm J} = 25^{\circ} {\rm C}$)		AFS090, AFS250, calibrated ⁷		0		°C
		AFS600, AFS1500, uncalibrated ⁷		11		°C
		AFS600, AFS1500, calibrated ⁷		0		
	Accuracy			±3	±5	°C
	External Sensor Source	High level, TMSTBx = 0		10		μA
	Current	Low level, TMSTBx = 1		100		μA
	Max Capacitance on AT pad				1.3	nF
Internal	Resolution	8-bit ADC	4			°C
Temperature Monitor		10-bit ADC	1			°C
Wornton		12-bit ADC	0.25			°C
	Systematic Offset ⁵	AFS090, AFS250, uncalibrated ⁷		5		°C
		AFS090, AFS250, calibrated ⁷		0		°C
		AFS600, AFS1500 uncalibrated ⁷		11		°C
		AFS600, AFS1500 calibrated ⁷		0		°C
	Accuracy			±3	±5	°C
t _{TMSHI}	Strobe High time		10		105	μs
t _{TMSLO}	Strobe Low time		5			μs
t _{TMSSET}	Settling time		5			μs

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

- Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as V_{IND} does not exceed these limits.
- 3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.
- 4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain 0 offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User's Guide.

Device Architecture

	Calibrated Typical Error per Positive Prescaler Setting ¹ (%FSR)							Direct ADC ^{2,3} (%FSR)
Input Voltage (V)	16 V (AT)	16 V (12 V) (AV/AC)	8 V (AV/AC)	4 V (AT)	4 V (AV/AC)	2 V (AV/AC)	1 V (AV/AC)	VAREF = 2.56 V
15	1							
14	1							
12	1	1						
5	2	2	1					
3.3	2	2	1	1	1			
2.5	3	2	1	1	1			1
1.8	4	4	1	1	1	1		1
1.5	5	5	2	2	2	1		1
1.2	7	6	2	2	2	1		1
0.9	9	9	4	3	3	1	1	1

Table 2-53 • Analog Channel Accuracy: Monitoring Standard Positive Voltages Typical Conditions, T_A = 25°C

Notes:

1. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User's Guide.

2. Direct ADC mode using an external VAREF of 2.56V±4.6mV, without Analog Calibration macro.

3. For input greater than 2.56 V, the ADC output will saturate. A higher VAREF or prescaler usage is recommended.

Examples

Calculating Accuracy for an Uncalibrated Analog Channel

Formula

For a given prescaler range, EQ 30 gives the output voltage.

Output Voltage = (Channel Output Offset in V) + (Input Voltage x Channel Gain)

EQ 30

where

Channel Output offset in V = Channel Input offset in LSBs x Equivalent voltage per LSB Channel Gain Factor = 1 + (% Channel Gain / 100)

Example

Input Voltage = 5 V Chosen Prescaler range = 8 V range Refer to Table 2-51 on page 2-122.

Max. Output Voltage = (Max Positive input offset) + (Input Voltage x Max Positive Channel Gain)

Max. Positive input offset = (21 LSB) x (8 mV per LSB in 10-bit mode) Max. Positive input offset = 166 mV Max. Positive Gain Error = +3% Max. Positive Channel Gain = 1 + (+3% / 100) Max. Positive Channel Gain = 1.03 Max. Output Voltage = (166 mV) + (5 V x 1.03) Max. Output Voltage = **5.316 V**

User I/Os

Introduction

Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V, and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on page 2-136 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates, drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant. See the "5 V Input Tolerance" section on page 2-145 for possible implementations of 5 V tolerance.

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset" section on page 3-6 for more information. In low power standby or sleep mode (V_{CC} is OFF, V_{CC33A} is ON, V_{CCI} is ON) or when the resource is not used, digital inputs are tristated, digital outputs are tristated, and digital bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support high-performance register inputs and outputs, with register enable if desired (Figure 2-98 on page 2-134). The registers can also be used to support the JESD-79C DDR standard within the I/O structure (see the "Double Data Rate (DDR) Support" section on page 2-140 for more information).

As depicted in Figure 2-99 on page 2-139, all I/O registers share one CLR port. The output register and output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-139 for more information.

I/O Banks and I/O Standards Compatibility

The digital I/Os are grouped into I/O voltage banks. There are four digital I/O banks on the AFS600 and AFS1500 devices. Figure 2-112 on page 2-159 shows the bank configuration. The north side of the I/O in the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a wide number of voltage-referenced I/O standards in addition to the multitude of single-ended and differential I/O standards common throughout all digital I/Os. Each I/O voltage bank has dedicated I/O supply and ground voltages (VCCI/GNDQ for input buffers and V_{CCI}/GND for output buffers). Because of these dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank. Table 2-69 and Table 2-70 on page 2-135 show the required voltage compatibility values for each of these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the device in the "Pin Assignments" section on page 4-1 and the "User I/O Naming Convention" section on page 2-159.

Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region of scope of a VREF pin) can be configured as a VREF pin (Figure 2-98 on page 2-134). Only one VREF pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can be determined by the I/O name. For details, see the "User I/O Naming Convention" section on page 2-159.

Table 2-70 on page 2-135 shows the I/O standards supported by Fusion devices and the corresponding voltage levels.

I/O standards are compatible if the following are true:

- Their VCCI values are identical.
- If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).

	Extended Temperature (K) ¹				
	IIL ²	IIL ³			
DC I/O Standards	μΑ	μΑ			
3.3 V LVTTL / 3.3 V LVCMOS	15	15			
2.5 V LVCMOS	15	15			
1.8 V LVCMOS	15	15			
1.5 V LVCMOS	15	15			
3.3 V PCI	15	15			
3.3 V PCI-X	15	15			
3.3 V GTL	15	15			
2.5 V GTL	15	15			
3.3 V GTL+	15	15			
2.5 V GTL+	15	15			
HSTL (I)	15	15			
HSTL (II)	15	15			
SSTL2 (I)	15	15			
SSTL2 (II)	15	15			
SSTL3 (I)	15	15			
SSTL3 (II)	15	15			

Table 2-88 • Summary of Maximum and Minimum DC Input Levels Applicable to Extended Temperature Conditions in all I/O Bank Types

Notes:

1. Extended Temperature range ($-55^{\circ}C < T_J < 100^{\circ}C$)

2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Single-Ended I/O Characteristics

3.3 V LVTTL / 3.3 V LVCMOS

Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is supported as part of the 3.3 V LVTTL support.

Table 2-100 • Minimum and Maximum DC Input and Output Levels Applicable to Pro I/O banks

3.3 V LVTTL / IIL¹ IIH² 3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL Min. Max. Min. Min. Max. Max. Max. Max μA^4 mA mA³ mA³ μA⁴ Drive Strength V ۷ ν ۷ mA ν ν Applicable to Pro I/O Banks 4 mA -0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 15 15 8 mA -0.30.8 2 3.6 0.4 2.4 8 8 54 51 15 15 2 -0.3 12 12 12 mA 0.8 3.6 0.4 2.4 109 103 15 15 16 mA -0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 15 15 2 -0.3 24 24 mA 0.8 3.6 0.4 2.4 24 181 268 15 15 Applicable to Advanced I/O Banks 2 mA -0.3 0.8 2 0.4 2 27 25 15 3.6 2.4 2 15 4 mA -0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 15 15 2 6 mA -0.3 0.8 3.6 0.4 2.4 6 54 51 15 15 6 -0.3 2 3.6 51 8 mA 0.8 0.4 2.4 8 8 54 15 15 2 -0.3 0.8 0.4 2.4 12 12 109 103 15 12 mA 3.6 15 16 mA -0.3 0.8 2 3.6 0.4 2.4 127 132 15 16 16 15 2 24 mA -0.3 0.8 3.6 0.4 2.4 24 24 181 268 15 15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

2. I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-117 • AC Loading

Table 2-101 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	V _{REF} (typ.) (V)	C _{LOAD} (pF)
0	3.3	1.4	-	35

Note: *Measuring point = V_{trip} . See Table 2-89 on page 2-166 for a complete table of trip points.

Device Architecture

Timing Characteristics

Table 2-113 • 1.8 V LVCMOS Low Slew, Extended Temperature Case Conditions: T_J = 100°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V

Applicable to Pro I/O Banks

Drive	Speed													
Strength	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{PYS}	t _{eout}	t _{ZL}	t _{ZH}	t _{LZ}	t _{HZ}	t _{ZLS}	tzhs	Units
2 mA	Std.	0.68	16.70	0.05	1.53	2.01	0.44	16.50	16.70	2.93	1.67	18.86	19.06	ns
	-1	0.58	14.21	0.04	1.30	1.71	0.38	14.04	14.21	2.50	1.42	16.05	16.21	ns
	-2	0.51	12.47	0.03	1.14	1.50	0.33	12.32	12.47	2.19	1.25	14.09	14.23	ns
4 mA	Std.	0.68	12.01	0.05	1.53	2.01	0.44	12.24	11.34	3.43	2.92	14.59	13.70	ns
	-1	0.58	10.22	0.04	1.30	1.71	0.38	10.41	9.65	2.92	2.49	12.41	11.66	ns
	-2	0.51	8.97	0.03	1.14	1.50	0.33	9.14	8.47	2.56	2.18	10.90	10.23	ns
6 mA	Std.	0.68	9.46	0.05	1.53	2.01	0.44	9.54	8.54	3.76	3.54	11.99	10.90	ns
	-1	0.58	8.05	0.04	1.30	1.71	0.38	8.20	7.26	3.20	3.01	10.20	9.27	ns
	-2	0.51	7.06	0.03	1.14	1.50	0.33	7.20	6.38	2.81	2.64	8.96	8.14	ns
8 mA	Std.	0.68	8.81	0.05	1.53	2.01	0.44	8.97	8.00	3.84	3.71	11.33	10.36	ns
	-1	0.58	7.49	0.04	1.30	1.71	0.38	7.63	6.80	3.27	3.16	9.64	8.81	ns
	-2	0.51	6.58	0.03	1.14	1.50	0.33	6.70	5.97	2.87	2.77	8.46	7.73	ns
12 mA	Std.	0.68	8.37	0.05	1.53	2.01	0.44	8.53	7.97	3.95	4.33'	10.89	10.33	ns
	-1	0.58	7.12	0.04	1.30	1.71	0.38	7.25	6.78	3.36	3.68	9.26	8.79	ns
	-2	0.51	6.25	0.03	1.14	1.50	0.33	6.37	5.95	2.85	3.23	8.13	7.71	ns
16 mA	Std.	0.68	8.37	0.05	1.53	2.01	0.44	8.53	7.97	3.95	4.33	10.89	10.33	ns
	-1	0.58	7.12	0.04	1.30	1.71	0.38	7.25	6.78	3.36	3.68	9.26	8.79	ns
	-2	0.51	6.25	0.03	1.14	1.50	0.33	6.37	5.95	2.95	3.23	8.13	7.71	ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on page 3-10.

Symbol	Paramete	Ext. Temperature	Units		
Т _Ј	Junction temperature	-55 to +100	°C		
VCC	1.5 V DC core supply voltage	1.425 to 1.575	V		
VJTAG	JTAG DC voltage		1.4 to 3.6	V	
VPUMP	Programming voltage	Programming mode ³	3.15 to 3.45	V	
		Operation ⁴	0 to 3.6	V	
VCCPLL	Analog power supply (PLL)		1.425 to 1.575	V	
VCCI	1.5 V DC supply voltage		1.425 to 1.575	V	
	1.8 V DC supply voltage	1.8 V DC supply voltage			
	2.5 V DC supply voltage		2.3 to 2.7	V	
	3.3 V DC supply voltage		3.0 to 3.6	V	
	LVDS differential I/O		2.375 to 2.625	V	
	LVPECL differential I/O	3.0 to 3.6	V		
VCC33A	+3.3 V power supply	2.97 to 3.63	V		
VCC33PMP	+3.3 V power supply	2.97 to 3.63	V		
VAREF	Voltage reference for ADC	2.527 to 2.593	V		
VCC15A ⁶	Digital power supply for the analog	system	1.425 to 1.575	V	
VCCNVM	Embedded flash power supply		1.425 to 1.575	V	
VCCOSC	Oscillator power supply		2.97 to 3.63	V	
AV ⁵	Unpowered, ADC reset asserted o	r unconfigured	-10.5 to 11.6	V	
	Analog input (+16 V to +2 V presca	aler range)	-0.3 to 11.6	V	
	Analog input (+1 V to + 0.125 V pr	escaler range)	-0.3 to 3.6	V	
	Analog input (–16 V to –2 V presca	aler range) ⁷	-10.5 to 0.3	V	
	Analog input (–1 V to –0.125 V pre	escaler range) ⁷	-3.6 to 0.3	V	
	Analog input (direct input to ADC)		-0.3 to 3.6	V	
	Analog input (positive current mon	itor) ⁸	-0.3 to 11.6	V	
	Analog input (negative current mor	nitor) ⁷	-10.5 to 0.3	V	
	Digital input		-0.3 to 11.6	V	

Table 3-2 •	Recommended	Operating	Conditions ¹
-------------	-------------	-----------	-------------------------

Notes:

- 1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-85 on page 2-158.
- 2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 3. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.
- 4. VPUMP can be left floating during normal operation (not programming mode).
- 5. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode), provided the duration of the overshoot is less than 50% of the operating lifetime of the device.
- 6. Violating the VCC15A recommended voltage supply during an embedded flash program cycle can corrupt the page being programmed.
- 7. Negative input is not supported between -40°C and -55°C.
- 8. Positive input is not supported between –40°C and –55°C.

Thermal Characteristics

Introduction

The temperature variable in the Microsemi Designer software refers to the junction temperature, not the ambient, case, or board temperatures. This is an important distinction because dynamic and static power consumption will cause the chip's junction temperature to be higher than the ambient, case, or board temperatures. EQ 1 through EQ 3 give the relationship between thermal resistance, temperature gradient, and power.

 θ_{J}

$$\theta_{JA} = \frac{T_J - \theta_A}{P}$$

EQ 1

$$\theta_{\mathsf{JB}} = \frac{\mathsf{T}_{\mathsf{J}} - \mathsf{T}_{\mathsf{B}}}{\mathsf{P}}$$

EQ 2

EQ 3

$$c = \frac{T_J - T_C}{P}$$

where

- θ_{JA} = Junction-to-air thermal resistance
- θ_{JB} = Junction-to-board thermal resistance
- θ_{JC} = Junction-to-case thermal resistance
- T_J = Junction temperature
- T_A = Ambient temperature
- T_B = Board temperature (measured 1.0 mm away from the package edge)
- T_C = Case temperature
- P = Total power dissipated by the device

Table 3-6 • Package Thermal Resistance

Product	Still Air	1.0 m/s	2.5 m/s	θ_{JC}	θ_{JB}	Units
AFS600-FG256	28.9	25.2	23.5	6.8	19.9	°C/W
AFS1500-FG256	23.3	19.6	18.0	4.3	14.2	°C/W
AFS600-FG484	21.8	18.2	16.7	7.7	16.8	°C/W
AFS1500-FG484	21.6	16.8	15.2	5.6	14.9	°C/W
AFS1500-FG676	TBD	TBD	TBD	TBD	TBD	°C/W

Extended Temperature Fusion Family of Mixed Signal FPGAs

Table 3-11 • Summar	y of I/O Outpu	t Buffer Power (pe	er pin)—Default I/C) Software Settings ¹
	,	C Banon i onon (po		oontinano oottiingo

	CLOAD (pF)	VCCI (V)	Static Power PDC8 (mW) ²	Dynamic Power PAC10 (µW/MHz) ³
Applicable to Pro I/O Banks				•
Single-Ended				
3.3 V LVTTL/LVCMOS	35	3.3	-	474.70
2.5 V LVCMOS	35	2.5	-	270.73
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	204.61
3.3 V PCI-X	10	3.3	-	204.61
Voltage-Referenced			•	•
3.3 V GTL	10	3.3	-	24.08
2.5 V GTL	10	2.5	-	13.52
3.3 V GTL+	10	3.3	-	24.10
2.5 V GTL+	10	2.5	-	13.54
HSTL (I)	20	1.5	7.08	26.22
HSTL (II)	20	1.5	13.88	27.18
SSTL2 (I)	30	2.5	16.69	105.65
SSTL2 (II)	30	2.5	25.91	116.48
SSTL3 (I)	30	3.3	26.02	114.67
SSTL3 (II)	30	3.3	42.21	131.69
Differential				
LVDS	-	2.5	7.70	90.17
LVPECL	-	3.3	19.42	168.70
Applicable to Advanced I/O Ban	ks			•
Single-Ended				
3.3 V LVTTL / 3.3 V LVCMOS	35	3.3	-	466.67
2.5 V LVCMOS	35	2.5	-	267.48
1.8 V LVCMOS	35	1.8	-	151.78
1.5 V LVCMOS (JESD8-11)	35	1.5	-	104.55
3.3 V PCI	10	3.3	-	201.02
3.3 V PCI-X	10	3.3	-	201.02
Differential			-	
LVDS	-	2.5	7.74	89.82
LVPECL	-	3.3	19.54	167.55

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.

2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.

	FG484		FG484		
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function
A1	GND	GND	AA14	AG7	AG7
A2	VCC	NC	AA15	AG8	AG8
A3	GAA1/IO01PDB0V0	GAA1/IO01PDB0V0	AA16	GNDA	GNDA
A4	GAB0/IO02NDB0V0	GAB0/IO02NDB0V0	AA17	AG9	AG9
A5	GAB1/IO02PDB0V0	GAB1/IO02PDB0V0	AA18	VAREF	VAREF
A6	IO07NDB0V1	IO07NDB0V1	AA19	VCCIB2	VCCIB2
A7	IO07PDB0V1	IO07PDB0V1	AA20	PTEM	PTEM
A8	IO10PDB0V1	IO09PDB0V1	AA21	GND	GND
A9	IO14NDB0V1	IO13NDB0V2	AA22	VCC	NC
A10	IO14PDB0V1	IO13PDB0V2	AB1	GND	GND
A11	IO17PDB1V0	IO24PDB1V0	AB2	VCC	NC
A12	IO18PDB1V0	IO26PDB1V0	AB3	NC	IO94NSB4V0
A13	IO19NDB1V0	IO27NDB1V1	AB4	GND	GND
A14	IO19PDB1V0	IO27PDB1V1	AB5	VCC33N	VCC33N
A15	IO24NDB1V1	IO35NDB1V2	AB6	AT0	AT0
A16	IO24PDB1V1	IO35PDB1V2	AB7	ATRTN0	ATRTN0
A17	GBC0/IO26NDB1V1	GBC0/IO40NDB1V2	AB8	AT1	AT1
A18	GBA0/IO28NDB1V1	GBA0/IO42NDB1V2	AB9	AT2	AT2
A19	IO29NDB1V1	IO43NDB1V2	AB10	ATRTN1	ATRTN1
A20	IO29PDB1V1	IO43PDB1V2	AB11	AT3	AT3
A21	VCC	NC	AB12	AT6	AT6
A22	GND	GND	AB13	ATRTN3	ATRTN3
AA1	VCC	NC	AB14	AT7	AT7
AA2	GND	GND	AB15	AT8	AT8
AA3	VCCIB4	VCCIB4	AB16	ATRTN4	ATRTN4
AA4	VCCIB4	VCCIB4	AB17	AT9	AT9
AA5	PCAP	PCAP	AB18	VCC33A	VCC33A
AA6	AG0	AG0	AB19	GND	GND
AA7	GNDA	GNDA	AB20	NC	IO76NPB2V0
AA8	AG1	AG1	AB21	VCC	NC
AA9	AG2	AG2	AB22	GND	GND
AA10	GNDA	GNDA	B1	VCC	NC
AA11	AG3	AG3	B2	GND	GND
AA12	AG6	AG6	B3	GAA0/IO01NDB0V0	GAA0/IO01NDB0V0
AA13	GNDA	GNDA	B4	GND	GND

5 – Datasheet Information

List of Changes

The following table lists critical changes that were made in each revision of the Fusion datasheet.

Revision	Changes	Page
Revision 2 (January 2013)	The "Product Ordering Codes" section has been updated to mention "Y" as "Blank" mentioning "Device Does Not Include License to Implement IP Based on the Cryptography Research, Inc. (CRI) Patent Portfolio" (SAR 43178).	III
	Added values for Std., -1, and -2 grades to the "Speed Grade and Temperature Grade Matrix" table (SAR 44027).	IV
	Added values for minimum pulse width to Table 2-5 • AFS1500 Global Resource Timing, Extended Temperature Case Conditions: $TJ = 100^{\circ}C$, VCC = 1.425 V and Table 2-6 • AFS600 Global Resource Timing, Extended Temperature Case Conditions: $TJ = 100^{\circ}C$, VCC = 1.425 V in the "VersaNet Timing Characteristics" section. Use the software to determine the FRMAX for the device you are using (SAR 38976).	2-16
	The note in Table 2-11 • Fusion CCC/PLL Specification referring the reader to SmartGen was revised to refer instead to the online help associated with the core (SAR 42562).	2-28
	In Table 2-57 • Prescaler Control Truth Table—AV ($x = 0$), AC ($x = 1$), and AT ($x = 3$), changed the column heading from 'Full-Scale Voltage' to 'Full Scale Voltage in 10-Bit Mode', and added and updated Notes as required (SAR 34921).	2-130
	Added a note to Table 3-2 • Recommended Operating Conditions1 (SAR 43430): The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.	3-3
	Deleted the Die Size column from the Table 3-6 • Package Thermal Resistance (SAR 43503).	3-8
	Libero Integrated Design Environment (IDE) was changed to Libero System-on-Chip (SoC) throughout the document (SAR 40265).	NA
	Live at Power-Up (LAPU) has been replaced with 'Instant On'.	
Revision 1 (August 2012)	The phrase "without debug" was removed from the "Soft ARM® Cortex™- M1 Fusion Devices (M1)" section (SAR 34896).	Ι
	The maximum number of digital I/Os for AFS1500 was corrected to 223 in Table 1 • Fusion Extended Temperature Devices. The table previously stated 252 (SAR 38876).	Ι
	The "In-System Programming (ISP) and Security" section and "Security" section were revised to clarify that although no existing security measures can give an absolute guarantee, Microsemi FPGAs implement the best security available in the industry (SAR 34678).	I, 1-2
	The Y security option and Licensed DPA Logo was added to the "Product Ordering Codes" section. The trademarked Licensed DPA Logo identifies that a product is covered by a DPA counter-measures license from Cryptography Research (SAR 34720).	Ξ
	The "Specifying I/O States During Programming" section is new (SAR 34692).	1-8
	The "RC Oscillator" section was revised to correct a sentence that did not differentiate accuracy for commercial and industrial temperature ranges, which is given in Table 2-7 • Electrical Characteristics of RC Oscillator (SAR 38780).	2-18