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Fusion Device Family Overview
• Clocking resources

– PLL and CCC

– RC oscillator

– Crystal oscillator

– No-Glitch MUX (NGMUX)

• Digital I/Os with advanced I/O standards

• FPGA VersaTiles

• Analog components 

– ADC

– Analog I/Os supporting voltage, current, and temperature monitoring1 

– 1.5 V on-board voltage regulator

– Real-time counter 

The FPGA core consists of a sea of VersaTiles. Each VersaTile can be configured as a three-input logic
lookup table (LUT) equivalent or a D-flip-flop or latch (with or without enable) by programming the
appropriate flash switch interconnections. This versatility allows efficient use of the FPGA fabric. The
VersaTile capability is unique to the Microsemi families of flash-based FPGAs. VersaTiles and larger
functions are connected with any of the four levels of routing hierarchy. Flash switches are distributed
throughout the device to provide nonvolatile, reconfigurable interconnect programming. Maximum core
utilization is possible for virtually any design. 

In addition, extensive on-chip programming circuitry allows for rapid (3.3 V) single-voltage programming
of Fusion devices via an IEEE 1532 JTAG interface.

Unprecedented Integration

Integrated Analog Blocks and Analog I/Os
Fusion devices offer robust and flexible analog mixed signal capability in addition to the high-
performance flash FPGA fabric and flash memory block. The many built-in analog peripherals include a
configurable 32:1 input analog MUX, up to 10 independent MOSFET gate driver outputs, and a
configurable ADC. The ADC supports 8-, 10-, and 12-bit modes of operation with a cumulative sample
rate up to 600 k samples per second (Ksps), differential nonlinearity (DNL) less than 1.0 LSB, and total
unadjusted error (TUE) of 0.72 LSB in 10-bit mode. The TUE is used for characterization of the
conversion error and includes errors from all sources, such as offset and linearity. Internal bandgap
circuitry offers 1% voltage reference accuracy with the flexibility of utilizing an external reference voltage.
The ADC channel sampling sequence and sampling rate are programmable and implemented in the
FPGA logic using Designer and Libero SoC software tool support.

Two channels of the 32-channel ADC MUX are dedicated. Channel 0 is connected internally to VCC and
can be used to monitor core power supply. Channel 31 is connected to an internal temperature diode
which can be used to monitor device temperature. The 30 remaining channels can be connected to
external analog signals. The exact number of I/Os available for external connection signals is device-
dependent (refer to Table 1 on page I for details). 

With Fusion, Microsemi also introduces the Analog Quad I/O structure (Figure 1-1 on page 1-5). Each
quad consists of three analog inputs and one gate driver. Each quad can be configured in various built-in
circuit combinations, such as three prescaler circuits, three digital input circuits, a current monitor circuit,
or a temperature monitor circuit. Each prescaler has multiple scaling factors programmed by FPGA
signals to support a large range of analog inputs with positive or negative polarity. When the current
monitor circuit is selected, two adjacent analog inputs measure the voltage drop across a small external
sense resistor. For more information, refer to the "Analog System Characteristics" section on page 2-117
for more information. Built-in operational amplifiers amplify small voltage signals for accurate current
measurement. One analog input in each quad can be connected to an external temperature monitor

1. For additional details, refer to the "Device Architecture" section on page 2-1 and the "DC and Power Characteristics" section
on page 3-1.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
VersaTile Characteristics
Sample VersaTile Specifications—Combinatorial Module
The Fusion library offers all combinations of LUT-3 combinatorial functions. In this section, timing
characteristics are presented for a sample of the library (Figure 2-3). For more details, refer to the
IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide. 

Figure 2-3 • Sample of Combinatorial Cells
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Device Architecture
Routing Architecture
The routing structure of Fusion devices is designed to provide high performance through a flexible four-
level hierarchy of routing resources: ultra-fast local resources; efficient long-line resources; high-speed
very-long-line resources; and the high-performance VersaNet networks.

The ultra-fast local resources are dedicated lines that allow the output of each VersaTile to connect
directly to every input of the eight surrounding VersaTiles (Figure 2-8). The exception to this is that the
SET/CLR input of a VersaTile configured as a D-flip-flop is driven only by the VersaNet global network.

The efficient long-line resources provide routing for longer distances and higher-fanout connections.
These resources vary in length (spanning one, two, or four VersaTiles), run both vertically and
horizontally, and cover the entire Fusion device (Figure 2-9 on page 2-9). Each VersaTile can drive
signals onto the efficient long-line resources, which can access every input of every VersaTile. Active
buffers are inserted automatically by routing software to limit loading effects.

The high-speed very-long-line resources, which span the entire device with minimal delay, are used to
route very long or high-fanout nets: length ±12 VersaTiles in the vertical direction and length ±16 in the
horizontal direction from a given core VersaTile (Figure 2-10 on page 2-10). Very long lines in Fusion
devices, like those in ProASIC3 devices, have been enhanced. This provides a significant performance
boost for long-reach signals.

The high-performance VersaNet global networks are low-skew, high-fanout nets that are accessible from
external pins or from internal logic (Figure 2-11 on page 2-11). These nets are typically used to distribute
clocks, reset signals, and other high-fanout nets requiring minimum skew. The VersaNet networks are
implemented as clock trees, and signals can be introduced at any junction. These can be employed
hierarchically, with signals accessing every input on all VersaTiles.

Note: Input to the core cell for the D-flip-flop set and reset is only available via the VersaNet global
network connection.

Figure 2-8 • Ultra-Fast Local Lines Connected to the Eight Nearest Neighbors
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Extended Temperature Fusion Family of Mixed Signal FPGAs
In RC network mode, the XTAL1 pin is connected to an RC circuit, as shown in Figure 2-17. The XTAL2
pin should be left floating. The RC value can be chosen based on Figure 2-18 for any desired frequency
between 32 KHz and 4 MHz. The RC network mode can also accommodate an external clock source on
XTAL1 instead of an RC circuit.

In Low gain, Medium gain, and High gain, an external crystal component or ceramic resonator can be
added onto XTAL1 and XTAL2, as shown in Figure 2-16 on page 2-17. In the case where the Crystal
Oscillator block is not used, the XTAL1 pin should be connected to GND and the XTAL2 pin should be left
floating.

Note: *Internal signal—does not exist in macro.

Figure 2-17 • XTLOSC Macro

Figure 2-18 • Crystal Oscillator: RC Time Constant Values vs. Frequency (typical)
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Device Architecture
Notes:

1. Visit the Microsemi SoC Products Group website for future application notes concerning dynamic PLL reconfiguration.
Refer to the "PLL Macro" section on page 2-27 for signal descriptions.

2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.

3. Refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-10 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros

CLKBUF_LVCMOS5

CLKBUF_LVCMOS331

CLKBUF_LVCMOS18

CLKBUF_LVCMOS15

CLKBUF_PCI

CLKBUF_LVDS2

CLKBUF_LVPECL

Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library
Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.

PADN

PADP

Y

PAD Y

Input LVDS/LVPECL Macro

INBUF2 Macro

GLA
or
GLA and (GLB or YB)
or
GLA and (GLC or YC)
or
GLA and (GLB or YB) and
(GLC or YC)

Clock Source Clock Conditioning Output

OADIVHALF
OADIV[4:0]
OAMUX[2:0]
DLYGLA[4:0]
OBDIV[4:0]
OBMUX[2:0]
DLYYB[4:0]
DLYGLB[4:0]
OCDIV[4:0]
OCMUX[2:0]
DLYYC[4:0]
DLYGLC[4:0]
FINDIV[6:0]
FBDIV[6:0]
FBDLY[4:0]
FBSEL[1:0]
XDLYSEL
VCOSEL[2:0]

CLKA
EXTFB
POWERDOWN

OADIVRST

GLA
LOCK

GLB
YB

GLC
YC
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Global Input Selections
Each global buffer, as well as the PLL reference clock, can be driven from one of the following (Figure 2-
22):

• 3 dedicated single-ended I/Os using a hardwired connection

• 2 dedicated differential I/Os using a hardwired connection

• The FPGA core

Notes:

1. Represents the global input pins. Globals have direct access to the clock conditioning block and are not
routed via the FPGA fabric. Refer to the "User I/O Naming Convention" section on page 2-159 for more
information. 

2. Instantiate the routed clock source input as follows:
a) Connect the output of a logic element to the clock input of the PLL, CLKDLY, or CLKINT macro.
b) Do not place a clock source I/O (INBUF or INBUF_LVPECL/LVDS) in a relevant global pin location. 

3. LVDS-based clock sources are available in the east and west banks on all Fusion devices. 

Figure 2-22 • Clock Input Sources Including CLKBUF, CLKBUF_LVDS/LVPECL, and CLKINT
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Erase Page Operation
The Erase Page operation is initiated when the ERASEPAGE pin is asserted. The Erase Page operation
allows the user to erase (set user data to zero) any page within the FB. 

The use of the OVERWRITEPAGE and PAGELOSSPROTECT pins is the same for erase as for a
Program Page operation.

As with the Program Page operation, a STATUS of '01' indicates that the addressed page is not erased.

A waveform for an Erase Page operation is shown in Figure 2-37.

Erase errors include the following:

1. Attempting to erase a page that is Overwrite Protected (STATUS = '01')

2. Attempting to erase a page that is not in the Page Buffer when the Page Buffer has entered Page
Loss Protection mode (STATUS = '01')

3. The Write Count of the erased page exceeding the Write Threshold defined in the part
specification (STATUS = '11')

4. The ECC Logic determining that there is an uncorrectable error within the erased page (STATUS
= '10')

Figure 2-37 • FB Erase Page Waveform
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Device Architecture
Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from the address to the data but enables operation at a much higher frequency. The read
address is registered on the read port active clock edge, and the read data is registered and
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is High. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. Write and read transfers are
described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the
"FIFO Characteristics" section on page 2-72.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-227 and the Fusion SRAM/FIFO
Blocks application note). The shift register for a target block can be selected and loaded with the proper
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-54 • RAM Reset. Applicable to Both RAM4K9 and RAM512x18.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Fusion uses a remote diode as a temperature sensor. The Fusion Temperature Monitor uses a
differential input; the AT pin and ATRTN (AT Return) pin are the differential inputs to the Temperature
Monitor. There is one Temperature Monitor in each Quad. A simplified block diagram is shown in
Figure 2-76.

The Fusion approach to measuring temperature is forcing two different currents through the diode with a
ratio of 10:1. The switch that controls the different currents is controlled by the Temperature Monitor
Strobe signal, TMSTB. Setting TMSTB to '1' will initiate a Temperature reading. The TMSTB should
remain '1' until the ADC finishes sampling the voltage from the Temperature Monitor. The minimum
sample time for the Temperature Monitor cannot be less than the minimum strobe high time minus the
setup time. Figure 2-77 shows the timing diagram.

Note: When the IEEE 1149.1 Boundary Scan EXTEST instruction is executed, the AG pad drive
strength ceases and becomes a 1 µA sink into the Fusion device. 

Note: *Refer to Table 2-39 on page 2-105 for the MUX channel number.

Figure 2-76 • Block Diagram for Temperature Monitor Circuit

Figure 2-77 • Timing Diagram for the Temperature Monitor Strobe Signal
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Device Architecture
There are several popular ADC architectures, each with advantages and limitations. The analog-to-digital
converter in Fusion devices is a switched-capacitor Successive Approximation Register (SAR) ADC. It
supports 8-, 10-, and 12-bit modes of operation with a cumulative sample rate up to 600 k samples per
second (ksps). Built-in bandgap circuitry offers 1% internal voltage reference accuracy or an external
reference voltage can be used.

As shown in Figure 2-80, a SAR ADC contains N capacitors with binary-weighted values.

To begin a conversion, all of the capacitors are quickly discharged. Then VIN is applied to all the
capacitors for a period of time (acquisition time) during which the capacitors are charged to a value very
close to VIN. Then all of the capacitors are switched to ground, and thus –VIN is applied across the
comparator. Now the conversion process begins. First, C is switched to VREF. Because of the binary
weighting of the capacitors, the voltage at the input of the comparator is then shown by EQ 11.

Voltage at input of comparator = –VIN + VREF / 2

EQ 11

If VIN is greater than VREF / 2, the output of the comparator is 1; otherwise, the comparator output is 0.
A register is clocked to retain this value as the MSB of the result. Next, if the MSB is 0, C is switched
back to ground; otherwise, it remains connected to VREF, and C / 2 is connected to VREF. The result at
the comparator input is now either –VIN + VREF / 4 or –VIN + 3 VREF / 4 (depending on the state of the
MSB), and the comparator output now indicates the value of the next most significant bit. This bit is
likewise registered, and the process continues for each subsequent bit until a conversion is completed.
The conversion process requires some acquisition time plus N + 1 ADC clock cycles to complete.

Figure 2-80 • Example SAR ADC Architecture
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-52 • Calibrated Analog Channel Accuracy 1,2,3

Worst-Case Extended Temperature Conditions, TJ = 100°C

Condition Total Channel Error (LSB)

Analog 
Pad Prescaler Range (V) Input Voltage4 (V) Negative Max. Median Positive Max.

Positive Range ADC in 10-Bit Mode

AV, AC 16 0.300 to 12.0 –6 1 6

8 0.250 to 8.00 –6 0 6

4 0.200 to 4.00 –7 –1 7

2 0.150 to 2.00 –7 0 7

1 0.050 to 1.00 –6 –1 6

AT 16 0.300 to 16.0 –5 0 5

4 0.100 to 4.00 –7 –1 7

Negative Range ADC in 10-Bit Mode

AV, AC 16 –0.400 to –10.5 –7 1 9

8 –0.350 to –8.00 –7 –1 7

4 –0.300 to –4.00 –7 –2 9

2 –0.250 to –2.00 –7 –2 7

1 –0.050 to –1.00 –16 –1 20

Notes:

1. Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For 8-bit
mode, divide the LSB count by 4. Overall accuracy remains the same.

2. Requires enabling Analog Calibration using SmartGen Analog System Builder. For further details, refer to the
"Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User’s Guide.

3. Calibrated with two-point calibration methodology, using 20% and 80% full-scale points.

4. The lower limit of the input voltage is determined by the prescaler input offset.
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Device Architecture
Table 2-57 details the settings available to control the prescaler values of the AV, AC, and AT pins. Note
that the AT pin has a reduced number of available prescaler values.

Table 2-58 details the settings available to control the MUX within each of the AV, AC, and AT circuits.
This MUX determines whether the signal routed to the ADC is the direct analog input, prescaled signal,
or output of either the Current Monitor Block or the Temperature Monitor Block.

Table 2-59 details the settings available to control the Direct Analog Input switch for the AV, AC, and AT
pins.

Table 2-60 details the settings available to control the polarity of the signals coming to the AV, AC, and AT
pins. Note that the only valid setting for the AT pin is logic 0 to support positive voltages.

Table 2-57 • Prescaler Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines 
Bx[2:0]

Scaling 
Factor, Pad to 

ADC Input 

LSB for an 
8-Bit 

Conversion 
(mV)1

LSB for a 
10-Bit 

Conversion 
(mV)1

LSB for a 
12-Bit 

Conversion 
(mV)1

Full Scale 
Voltage in 

10-Bit 
Mode2

Range 
Name

0003 0.15625 64 16 4 16.368 V 16 V 

001 0.3125 32 8 2 8.184 V 8 V 

0103 0.625 16 4 1 4.092 V 4 V 

011 1.25 8 2 0.5 2.046 V 2 V 

100 2.5 4 1 0.25 1.023 V 1 V 

101 5.0 2 0.5 0.125 0.5115 V 0.5 V 

110 10.0 1 0.25 0.0625 0.25575 V 0.25 V 

111 20.0 0.5 0.125 0.03125 0.127875 V 0.125 V 

Notes:

1. LSB voltage equivalences assume VAREF = 2.56 V.
2. Full Scale voltage for n-bit mode: ((2^n) - 1) x (LSB for a n-bit Conversion).

3. These are the only valid ranges for the temperature monitor block prescaler.

Table 2-58 • Analog Multiplexer Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[4] Control Lines Bx[3] ADC Connected To 

0 0 Prescaler 

0 1 Direct input 

1 0 Current amplifier* temperature monitor 

1 1 Not valid 

Note: *Current monitor is not supported between –40°C and –55°C.

Table 2-59 • Direct Analog Input Switch Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)

Control Lines Bx[5] Direct Input Switch 

0 Off 

1 On 

Table 2-60 • Voltage Polarity Control Truth Table—AV (x = 0), AC (x = 1), and AT (x = 3)*

Control Lines Bx[6] Input Signal Polarity 

0 1 Positive 
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Device Architecture
Double Data Rate (DDR) Support
Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every
transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition,
high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR
The basic structure to support a DDR input is shown in Figure 2-100. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 2-101 on page 2-141. New data is presented to the
output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The
combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the
edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account
in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-100 • DDR Input Register Support in Fusion Devices
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Extended Temperature Fusion Family of Mixed Signal FPGAs
At the system level, the skew circuit can be used in applications where transmission activities on
bidirectional data lines need to be coordinated. This circuit, when selected, provides a timing margin that
can prevent bus contention and subsequent data loss or transmitter overstress due to transmitter-to-
transmitter current shorts. Figure 2-109 presents an example of the skew circuit implementation in a
bidirectional communication system. Figure 2-110 shows how bus contention is created, and Figure 2-
111 on page 2-152 shows how it can be avoided with the skew circuit.

Figure 2-109 • Example of Implementation of Skew Circuits in Bidirectional Transmission Systems Using 
Fusion Devices

Figure 2-110 • Timing Diagram (bypasses skew circuit)
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Device Architecture
Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications 
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LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5/5.0 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.8 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.5 V 3 3 3 3 3 3 3 3 3 3

PCI (3.3 V) 3 3 3 3 3

PCI-X (3.3 V) 3 3 3 3 3 3

GTL+ (3.3 V) 3 3 3 3 3 3

GTL+ (2.5 V) 3 3 3 3 3 3

GTL (3.3 V) 3 3 3 3 3 3

GTL (2.5 V) 3 3 3 3 3 3

HSTL Class I 3 3 3 3 3 3

HSTL Class II 3 3 3 3 3 3

SSTL2 Class I and II 3 3 3 3 3 3

SSTL3 Class I and II 3 3 3 3 3 3

LVDS, B-LVDS, M-LVDS 3 3 3 3 3

LVPECL 3 3 3 3
2-158 Revision 2



Device Architecture
1.5 V LVCMOS (JESD8-11)
Low-Voltage CMOS for 1.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.5 V applications. It uses a 1.5 V input buffer and push-pull output buffer.  

Table 2-117 • Minimum and Maximum DC Input and Output Levels

1.5 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 2 2 16 13 15 15

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 4 4 33 25 15 15

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 6 6 39 32 15 15

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 8 8 55 66 15 15

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.25 * VCCI 0.75 * VCCI 12 12 55 66 15 15

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 2 2 16 13 15 15

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 4 4 33 25 15 15

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 6 6 39 32 15 15

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 8 8 55 66 15 15

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.575 0.25 * VCCI 0.75 * VCCI 12 12 55 66 15 15

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-120 • AC Loading

Table 2-118 • 1.5 V LVCMOS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.5 0.75 – 35

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Device Architecture
Timing Characteristics  

B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The driver requires series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus, since the driver can be located anywhere on the bus. These configurations can be
implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-133 on page 2-209. The input and output buffer delays
are available in the LVDS section in Table 2-161 on page 2-210.

Table 2-158 • LVDS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V)

1.075 1.325 Cross point –

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Table 2-159 • LVDS
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 2.3 V 
Applicable to Pro I/O Banks

Speed Grade tDOUT tDP tDIN tPY Units

Std. 0.68 1.98 0.05 1.97 ns

–1 0.58 1.69 0.04 1.68 ns

–2 0.51 1.48 0.03 1.47 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.

Table 2-160 • LVDS
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 2.3 V 
Applicable to Advanced I/O Banks

Speed Grade tDOUT tDP tDIN tPY Units

Std. 0.68 1.98 0.05 1.75 ns

–1 0.58 1.69 0.04 1.49 ns

–2 0.51 1.48 0.03 1.31 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-136 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
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