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1 – Fusion Device Family Overview

Introduction
The Fusion® mixed signal FPGA satisfies the demand from system architects for a device that simplifies
design and unleashes their creativity. As the world’s first mixed signal programmable logic family, Fusion
integrates mixed signal analog, flash memory, and FPGA fabric in a monolithic device. Fusion devices
enable designers to quickly move from concept to completed design and then deliver feature-rich
systems to market. This new technology takes advantage of the unique properties of Microsemi flash-
based FPGAs, including a high-isolation, triple-well process and the ability to support high-voltage
transistors to meet the demanding requirements of mixed signal system design. 

Fusion mixed signal FPGAs bring the benefits of programmable logic to many application areas,
including power management, smart battery charging, clock generation and management, and motor
control. Until now, these applications have only been implemented with costly and space-consuming
discrete analog components or mixed signal ASIC solutions. Fusion mixed signal FPGAs present new
capabilities for system development by allowing designers to integrate a wide range of functionality into a
single device, while at the same time offering the flexibility of upgrades late in the manufacturing process
or after the device is in the field. Fusion devices provide an excellent alternative to costly and time-
consuming mixed signal ASIC designs. In addition, when used in conjunction with the Cortex-M1, Fusion
technology represents the definitive mixed signal FPGA platform.

Flash-based Fusion devices are Instant On. As soon as the system power is applied, within normal
operating specifications, Fusion devices start working. Fusion devices have a 128-bit flash-based lock
and industry-leading AES decryption, used to secure programmed intellectual property (IP) and
configuration data. Fusion devices are the most comprehensive single-chip analog and digital
programmable logic solution available today.

To support this new ground-breaking technology, Microsemi has developed a series of major tool
innovations to help maximize designer productivity. Implemented as extensions to the popular Libero®

System-on-Chip (SoC), these new tools allow designers to easily instantiate and configure peripherals
within a design, establish links between peripherals, create or import building blocks or reference
designs, and perform hardware verification. This tool suite will also add comprehensive
hardware/software debug capability as well as a suite of utilities to simplify development of embedded
soft-processor-based solutions.

General Description
The Fusion family, based on the highly successful ProASIC®3 and ProASIC3E flash FPGA architecture,
has been designed as a high-performance, programmable, mixed signal platform. By combining an
advanced flash FPGA core with flash memory blocks and analog peripherals, Fusion devices
dramatically simplify system design and, as a result, dramatically reduce overall system cost and board
space.

The state-of-the-art flash memory technology offers high-density integrated flash memory blocks,
enabling savings in cost, power, and board area relative to external flash solutions, while providing
increased flexibility and performance. The flash memory blocks and integrated analog peripherals enable
true mixed-mode programmable logic designs. Two examples are using an on-chip soft processor to
implement a fully functional flash microcontroller (MCU) and using high-speed FPGA logic to offer
system and power supervisory capabilities. Instant On and capable of operating from a single 3.3 V
supply, the Fusion family is ideally suited for system management and control applications.

The devices in the Fusion family are categorized by FPGA core density. The two family members contain
many peripherals, including flash memory blocks, an analog-to-digital-converter (ADC), high-drive
outputs, both RC and crystal oscillators, and a real-time counter (RTC). This provides the user with a
high level of flexibility and integration to support a wide variety of mixed signal applications. The flash
memory block capacity ranges from 4 Mbits to 8 Mbits. The integrated 12-bit ADC supports up to 30
independently configurable input channels. 
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Device Architecture
The system application, Level 3, is the larger user application that utilizes one or more applets. Designing
at the highest level of abstraction supported by the Fusion technology stack, the application can be easily
created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU
can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the
MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

The Fusion technology stack enables a very flexible design environment. Users can engage in design
across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile
Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to
gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be
configured using the appropriate flash switch connections:

• Any 3-input logic function

• Latch with clear or set

• D-flip-flop with clear or set

• Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line
routing resources. VersaTiles and larger functions are connected with any of the four levels of routing
hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input,
which can only be routed to the core cell over the VersaNet (global) network.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the
connection is to the efficient long-line or very-long-line resources (Figure 2-2). 

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile
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Device Architecture
Figure 2-10 • Very-Long-Line Resources
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Extended Temperature Fusion Family of Mixed Signal FPGAs
VersaNet Global Networks and Spine Access 
The Fusion architecture contains a total of 18 segmented global networks that can access the
VersaTiles, SRAM, and I/O tiles on the Fusion device. There are 6 chip (main) global networks that
access the entire device and 12 quadrant networks (3 in each quadrant). Each device has a total of 18
globals. These VersaNet global networks offer fast, low-skew routing resources for high-fanout nets,
including clock signals. In addition, these highly segmented global networks offer users the flexibility to
create low-skew local networks using spines for up to 180 internal/external clocks (in an AFS1500
device) or other high-fanout nets in Fusion devices. Optimal usage of these low-skew networks can
result in significant improvement in design performance on Fusion devices. 

The nine spines available in a vertical column reside in global networks with two separate regions of
scope: the quadrant global network, which has three spines, and the chip (main) global network, which
has six spines. Note that there are three quadrant spines in each quadrant of the device. There are four
quadrant global network regions per device (Figure 2-12 on page 2-12). 

The spines are the vertical branches of the global network tree, shown in Figure 2-11 on page 2-11. Each
spine in a vertical column of a chip (main) global network is further divided into two equal-length spine
segments: one in the top and one in the bottom half of the die. 

Each spine and its associated ribs cover a certain area of the Fusion device (the "scope" of the spine;
see Figure 2-11 on page 2-11). Each spine is accessed by the dedicated global network MUX tree
architecture, which defines how a particular spine is driven—either by the signal on the global network
from a CCC, for example, or another net defined by the user (Figure 2-13). Quadrant spines can be
driven from user I/Os on the north and south sides of the die, via analog I/Os configured as direct digital
inputs. The ability to drive spines in the quadrant global networks can have a significant effect on system
performance for high-fanout inputs to a design. 

Details of the chip (main) global network spine-selection MUX are presented in Figure 2-13. The spine
drivers for each spine are located in the middle of the die. 

Quadrant spines are driven from a north or south rib. Access to the top and bottom ribs is from the corner
CCC or from the I/Os on the north and south sides of the device. For details on using spines in Fusion
devices, see the application note Using Global Resources in Actel Fusion Devices.

Figure 2-13 • Spine-Selection MUX of Global Tree
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Clocking Resources
The Fusion family has a robust collection of clocking peripherals, as shown in the block diagram in
Figure 2-16. These on-chip resources enable the creation, manipulation, and distribution of many clock
signals. The Fusion integrated RC oscillator produces a 100 MHz clock source with no external
components. For systems requiring more precise clock signals, the Fusion family supports an on-chip
crystal oscillator circuit. The integrated PLLs in each Fusion device can use the RC oscillator, crystal
oscillator, or another on-chip clock signal as a source. These PLLs offer a variety of capabilities to modify
the clock source (multiply, divide, synchronize, advance, or delay). Utilizing the CCC found in the popular
ProASIC3 family, Fusion incorporates six CCC blocks. The CCCs allow access to Fusion global and local
clock distribution nets, as described in the "Global Resources (VersaNets)" section on page 2-11.

Figure 2-16 • Fusion Clocking Options
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Real-Time Counter System
The RTC system enables Fusion devices to support standby and sleep modes of operation to reduce
power consumption in many applications.

• Sleep mode, typical 10 µA

• Standby mode (RTC running), typical 3 mA with 20 MHz 

The RTC system is composed of five cores:

• RTC sub-block inside Analog Block (AB) 

• Voltage Regulator and Power System Monitor (VRPSM)

• Crystal oscillator (XTLOSC); refer to the "Crystal Oscillator" section in the Fusion Clock
Resources chapter of the Fusion FPGA Fabric User’s Guide for more detail.

• Crystal clock; does not require instantiation in RTL

• 1.5 V voltage regulator; does not require instantiation in RTL

All cores are powered by 3.3 V supplies, so the RTC system is operational without a 1.5 V supply during
standby mode. Figure 2-27 shows their connection.

Notes:

1. Signals are hardwired internally and do not exist in the macro core.
2. User is only required to instantiate the VRPSM macro if the user wishes to specify PUPO behavior of the voltage regulator

to be different from the default, or employ user logic to shut the voltage regulator off.

Figure 2-27 • Real-Time Counter System (not all the signals are shown for the AB macro)
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Device Architecture
Example: Calculation for Match Count
To put the Fusion device on standby for one hour using an external crystal of 32.768 KHz:

The period of the crystal oscillator is Tcrystal:

Tcrystal = 1 / 32.768 KHz = 30.518 µs

The period of the counter is Tcounter:

Tcounter = 30.518 us X 128 = 3.90625 ms

The Match Count for 1 hour is tmatch:

tmatch / Tcounter = (1 hr X 60 min/hr X 60 sec/min) / 3.90625 ms = 921600 or 0xE1000

Using a 32.768 KHz crystal, the maximum standby time of the 40-bit counter is 4,294,967,296 seconds,
which is 136 years.

Table 2-14 • Memory Map for RTC in ACM Register and Description

ACMADDR Register Name Description Use
Default 
Value

0x40 COUNTER0 Counter bits 7:0 Used to preload the counter to
a specified start point.

0x00

0x41 COUNTER1 Counter bits 15:8 0x00

0x42 COUNTER2 Counter bits 23:16 0x00

0x43 COUNTER3 Counter bits 31:24 0x00

0x44 COUNTER4 Counter bits 39:32 0x00

0x48 MATCHREG0 Match register bits 7:0 The RTC comparison bits 0x00

0x49 MATCHREG1 Match register bits 15:8 0x00

0x4A MATCHREG2 Match register bits 23:16 0x00

0x4B MATCHREG3 Match register bits 31:24 0x00

0x4C MATCHREG4 Match register bits 39:32 0x00

0x50 MATCHBIT0 Individual match bits 7:0 The output of the XNOR gates

0 – Not matched

1 – Matched

0x00

0x51 MATCHBIT1 Individual match bits 15:8 0x00

0x52 MATCHBIT2 Individual match bits 23:16 0x00

0x53 MATCHBIT3 Individual match bits 31:24 0x00

0x54 MATCHBIT4 Individual match bits 29:32 0x00

0x58 CTRL_STAT Control (write/read) / Status
(read only) register bits

Refer to Table 2-15 on 
page 2-35 for details.

0x00
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Device Architecture
Flash Memory Block Diagram
A simplified diagram of the flash memory block is shown in Figure 2-33.

The logic consists of the following sub-blocks:

• Flash Array

Contains all stored data. The flash array contains 64 sectors, and each sector contains 33 pages
of data.

• Page Buffer

A page-wide volatile register. A page contains 8 blocks of data and an AUX block.

• Block Buffer

Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic

The FB stores error correction information with each block to perform single-bit error correction and
double-bit error detection on all data blocks.

Figure 2-33 • Flash Memory Block Diagram
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Flash Memory Block Addressing
Figure 2-34 shows a graphical representation of the flash memory block.

Each FB is partitioned into sectors, pages, blocks, and bytes. There are 64 sectors in an FB, and each
sector contains 32 pages and 1 spare page. Each page contains 8 data blocks and 1 auxiliary block.
Each data block contains 16 bytes of user data, and the auxiliary block contains 4 bytes of user data.

Addressing for the FB is shown in Table 2-19.

When the spare page of a sector is addressed (SPAREPAGE active), ADDR[11:7] are ignored.

When the Auxiliary block is addressed (AUXBLOCK active), ADDR[6:2] are ignored.

Note: The spare page of sector 0 is unavailable for any user data. Writes to this page will return an error,
and reads will return all zeroes.

Figure 2-34 • Flash Memory Block Organization
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Table 2-19 • FB Address Bit Allocation ADDR[17:0]

17 12 11 7 6 4 3 0

Sector Page Block Byte
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal.
FB operations are only accepted in cycles where BUSY is logic 0.

Write Operation
Write operations are initiated with the assertion of the WEN signal. Figure 2-35 illustrates the multiple
Write operations.

When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic
will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page
Buffer. A Copy Page operation takes no less than 55 cycles and could take more if a Write or Unprotect
Page operation is started while the NVM is busy pre-fetching a block. The basic operation is to read a
block from the array into the block register (5 cycles) and then write the block register to the page buffer
(1 cycle) and if necessary, when the copy is complete, reading the block being written from the page
buffer into the block buffer (1 cycle). A page contains 9 blocks, so 9 blocks multiplied by 6 cycles to
read/write each block, plus 1 is 55 cycles total. Subsequent writes to the same block of the page will incur
no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when
PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded
into the Block Buffer.

Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS
indicates that an error was detected during the operation and the write was not performed. Note that the
STATUS output is "sticky"; it is unchanged until another operation is started.

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are
responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just
like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any
order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before
saving it to nonvolatile memory.

Write errors include the following:

1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not
performed.

2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled
(STATUS = '11'). The write is not performed.

Figure 2-35 • FB Write Waveform
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Extended Temperature Fusion Family of Mixed Signal FPGAs
The following signals are used to configure the FIFO4K18 memory element:

WW and RW
These signals enable the FIFO to be configured in one of the five allowable aspect ratios (Table 2-32).

WBLK and RBLK
These signals are active low and will enable the respective ports when Low. When the RBLK signal is
High, the corresponding port’s outputs hold the previous value.

WEN and REN
Read and write enables. WEN is active low and REN is active high by default. These signals can be
configured as active high or low.

WCLK and RCLK
These are the clock signals for the synchronous read and write operations. These can be driven
independently or with the same driver.

RPIPE
This signal is used to specify pipelined read on the output. A Low on RPIPE indicates a nonpipelined
read, and the data appears on the output in the same clock cycle. A High indicates a pipelined read, and
data appears on the output in the next clock cycle.

RESET
This active low signal resets the output to zero when asserted. It resets the FIFO counters. It also sets all
the RD pins Low, the FULL and AFULL pins Low, and the EMPTY and AEMPTY pins High (Table 2-33). 

WD
This is the input data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. When a data
width less than 18 is specified, unused higher-order signals must be grounded (Table 2-33). 

RD
This is the output data bus and is 18 bits wide. Not all 18 bits are valid in all configurations. Like the WD
bus, high-order bits become unusable if the data width is less than 18. The output data on unused pins is
undefined (Table 2-33).

ESTOP, FSTOP
ESTOP is used to stop the FIFO read counter from further counting once the FIFO is empty (i.e., the
EMPTY flag goes High). A High on this signal inhibits the counting. 

Table 2-32 • Aspect Ratio Settings for WW[2:0]

WW2, WW1, WW0 RW2, RW1, RW0 D×W

000 000 4k×1

001 001 2k×2

010 010 1k×4 

011 011 512×9

100 100 256×18

101, 110, 111 101, 110, 111 Reserved

Table 2-33 • Input Data Signal Usage for Different Aspect Ratios

D×W WD/RD Unused

4k×1 WD[17:1], RD[17:1]

2k×2 WD[17:2], RD[17:2]

1k×4 WD[17:4], RD[17:4]

512×9 WD[17:9], RD[17:9]

256×18 –
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Device Architecture
Analog-to-Digital Converter Block
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown
in Figure 2-78 on page 2-96. The ADC offers multiple self-calibrating modes to ensure consistent high
performance both at power-up and during runtime. 

Figure 2-78 • ADC Block Diagram
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Extended Temperature Fusion Family of Mixed Signal FPGAs
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling
period, between the samples. The inverse of the sampling period is often referred to as the sampling
frequency fS = 1 / T. The combined effect is illustrated in Figure 2-81.

Figure 2-81 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if
the actual value of VIN falls between counts in the result, this information is lost during the conversion.
There are several techniques that can be used to address these issues. 

First, the sampling rate must be chosen to provide enough samples to adequately represent the input
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For
example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user
must sample it at a minimum of 44 ksps. However, as shown in Figure 2-81, significant post-processing
of the data is required to interpolate the value of the waveform during the time between each sample. 

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and
reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher
resolution than the original data. Interpolating many intermediate values increases the effective number
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.
For applications that do not require extremely fine reproduction of the input signal, alternative methods
can enhance digital sampling results with relatively simple post-processing. The details of such
techniques are out of the scope of this chapter; refer to the Improving ADC Results through
Oversampling and Post-Processing of Data white paper for more information.

Figure 2-81 • Conversion Example
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Device Architecture
The ADC can be powered down independently of the FPGA core, as an additional control or for power-
saving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the
comparators in the ADC.

ADC Modes
The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion,
and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-40.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits
RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's.
In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Integrated Voltage Reference
The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this
reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks
change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be

16 AV5 Analog Quad 5

17 AC5

18 AT5

19 AV6 Analog Quad 6

20 AC6

21 AT6

22 AV7 Analog Quad 7

23 AC7

24 AT7

25 AV8 Analog Quad 8

26 AC8

27 AT8

28 AV9 Analog Quad 9

29 AC9

30 AT9

31 Internal temperature monitor

Table 2-40 • Mode Bits Function

Name Bits Function

MODE 3 0 – Internal calibration after every conversion; two ADCCLK cycles are used
after the conversion.

1 – No calibration after every conversion

MODE 2 0 – Power-down after conversion

1 – No Power-down after conversion

MODE 1:0 00 – 10-bit

01 – 12-bit

10 – 8-bit

11 – Unused

Table 2-39 • Analog MUX Channels (continued)

Analog MUX Channel Signal Analog Quad Number
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Device Architecture
along with the use of the active bipolar prescaler, current monitor, or temperature monitor, the minimum
sample time(s) for each must be obeyed. EQ 19 can be used to determine the appropriate value of STC.

You can calculate the minimum actual acquisition time by using EQ 16:

VOUT = VIN(1 – e–t/RC)

EQ 16

For 0.5 LSB gain error, VOUT should be replaced with (VIN –(0.5 × LSB Value)):

(VIN – 0.5 × LSB Value) = VIN(1 – e–t/RC)

EQ 17

where VIN is the ADC reference voltage (VREF)

Solving EQ 17:

t = RC x ln (VIN / (0.5 x LSB Value))

EQ 18

where R = ZINAD + RSOURCE and C = CINAD.

Calculate the value of STC by using EQ 19.

tSAMPLE = (2 + STC) x (1 / ADCCLK) or tSAMPLE = (2 + STC) x (ADC Clock Period)

EQ 19

where ADCCLK = ADC clock frequency in MHz.

tSAMPLE = 0.449 µs from bit resolution in Table 2-43.

ADC Clock frequency = 10 MHz or a 100 ns period.

STC = (tSAMPLE / (1 / 10 MHz)) – 2 = 4.49 – 2 = 2.49. 

You must round up to 3 to accommodate the minimum sample time.

Sample Phase
A conversion is performed in three phases. In the first phase, the analog input voltage is sampled on the
input capacitor. This phase is called sample phase. During the sample phase, the output signals BUSY
and SAMPLE change from '0' to '1', indicating the ADC is busy and sampling the analog signal. The
sample time can be controlled by input signals STC[7:0]. The sample time can be calculated by EQ 20.
When controlling the sample time for the ADC along with the use of Prescaler or Current Monitor or
Temperature Monitor, the minimum sample time for each must be obeyed. Refer to Table 2-45 on
page 2-109 and the "Acquisition Time or Sample Time Control" section on page 2-107

EQ 20

STC: Sample Time Control value (0–255)

tSAMPLE is the sample time

Table 2-43 • Acquisition Time Example with VAREF = 2.56 V

VIN = 2.56V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold Time for 0.5 LSB (µs)

8 10 0.449

10 2.5 0.549

12 0.625 0.649

Table 2-44 • Acquisition Time Example with VAREF = 3.3 V

VIN = 3.3V, R = 4K (RSOURCE ~ 0), C = 18 pF

Resolution LSB Value (mV) Min. Sample/Hold time for 0.5 LSB (µs)

8 12.891 0.449

10 3.223 0.549

12 0.806 0.649

tsample 2 STC+  tADCCLK=
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Extended Temperature Fusion Family of Mixed Signal FPGAs
User I/Os

Introduction
Fusion devices feature a flexible I/O structure, supporting a range of mixed voltages (1.5 V, 1.8 V, 2.5 V,
and 3.3 V) through a bank-selectable voltage. Table 2-68, Table 2-69, Table 2-70, and Table 2-71 on
page 2-136 show the voltages and the compatible I/O standards. I/Os provide programmable slew rates,
drive strengths, weak pull-up, and weak pull-down circuits. 3.3 V PCI and 3.3 V PCI-X are 5 V–tolerant.
See the "5 V Input Tolerance" section on page 2-145 for possible implementations of 5 V tolerance. 

All I/Os are in a known state during power-up, and any power-up sequence is allowed without current
impact. Refer to the "I/O Power-Up and Supply Voltage Thresholds for Power-On Reset" section on
page 3-6 for more information. In low power standby or sleep mode (VCC is OFF, VCC33A is ON, VCCI is
ON) or when the resource is not used, digital inputs are tristated, digital outputs are tristated, and digital
bibufs (input/output) are tristated.

I/O Tile

The Fusion I/O tile provides a flexible, programmable structure for implementing a large number of I/O
standards. In addition, the registers available in the I/O tile in selected I/O banks can be used to support
high-performance register inputs and outputs, with register enable if desired (Figure 2-98 on
page 2-134). The registers can also be used to support the JESD-79C DDR standard within the I/O
structure (see the "Double Data Rate (DDR) Support" section on page 2-140 for more information).

As depicted in Figure 2-99 on page 2-139, all I/O registers share one CLR port. The output register and
output enable register share one CLK port. Refer to the "I/O Registers" section on page 2-139 for more
information.

I/O Banks and I/O Standards Compatibility
The digital I/Os are grouped into I/O voltage banks. There are four digital I/O banks on the AFS600 and
AFS1500 devices. Figure 2-112 on page 2-159 shows the bank configuration. The north side of the I/O in
the AFS600 and AFS1500 devices comprises two banks of Pro I/Os. The Pro I/Os support a wide
number of voltage-referenced I/O standards in addition to the multitude of single-ended and differential
I/O standards common throughout all digital I/Os. Each I/O voltage bank has dedicated I/O supply and
ground voltages (VCCI/GNDQ for input buffers and VCCI/GND for output buffers). Because of these
dedicated supplies, only I/Os with compatible standards can be assigned to the same I/O voltage bank.
Table 2-69 and Table 2-70 on page 2-135 show the required voltage compatibility values for each of
these voltages.

For more information about I/O and global assignments to I/O banks, refer to the specific pin table of the
device in the "Pin Assignments" section on page 4-1 and the "User I/O Naming Convention" section on
page 2-159.

Each Pro I/O bank is divided into minibanks. Any user I/O in a VREF minibank (a minibank is the region
of scope of a VREF pin) can be configured as a VREF pin (Figure 2-98 on page 2-134). Only one VREF
pin is needed to control the entire VREF minibank. The location and scope of the VREF minibanks can
be determined by the I/O name. For details, see the "User I/O Naming Convention" section on
page 2-159.

Table 2-70 on page 2-135 shows the I/O standards supported by Fusion devices and the corresponding
voltage levels.

I/O standards are compatible if the following are true:

• Their VCCI values are identical.

• If both of the standards need a VREF, their VREF values must be identical (Pro I/O only).
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Device Architecture
Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-89 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard
Input Reference Voltage 

(VREF_TYP)
Board Termination Voltage 

(VTT_REF)
Measuring Trip Point 

(Vtrip)

3.3 V LVTTL / 3.3 V LVCMOS – – 1.4 V

2.5 V LVCMOS – – 1.2 V

1.8 V LVCMOS – –  0.90 V

1.5 V LVCMOS – –  0.75 V

3.3 V PCI – – 0.285 * VCCI (RR)

0.615 * VCCI (FF))

3.3 V PCI-X – – 0.285 * VCCI (RR)

0.615 * VCCI (FF)

3.3 V GTL 0.8 V 1.2 V VREF

2.5 V GTL 0.8 V 1.2 V VREF

3.3 V GTL+ 1.0 V 1.5 V VREF

2.5 V GTL+ 1.0 V 1.5 V VREF

HSTL (I) 0.75 V 0.75 V VREF

HSTL (II) 0.75 V 0.75 V VREF

SSTL2 (I) 1.25 V 1.25 V VREF

SSTL2 (II) 1.25 V 1.25 V VREF

SSTL3 (I) 1.5 V 1.485 V VREF

SSTL3 (II) 1.5 V 1.485 V VREF

LVDS – – Cross point

LVPECL – – Cross point

Table 2-90 • I/O AC Parameter Definitions

Parameter Definition

tDP Data to Pad delay through the Output Buffer

tPY Pad to Data delay through the Input Buffer with Schmitt trigger disabled

tDOUT Data to Output Buffer delay through the I/O interface

tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface

tDIN Input Buffer to Data delay through the I/O interface

tPYS Pad to Data delay through the Input Buffer with Schmitt trigger enabled

tHZ Enable to Pad delay through the Output Buffer—High to Z 

tZH Enable to Pad delay through the Output Buffer—Z to High

tLZ Enable to Pad delay through the Output Buffer—Low to Z

tZL Enable to Pad delay through the Output Buffer—Z to Low

tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High

tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-105 • 3.3 V LVTTL / 3.3 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ = 100°C, 
Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Advanced I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

4 mA  Std. 0.68 8.07 0.05 1.27 0.44 8.22 6.95 2.79 2.76 10.58 9.31  ns 

 –1 0.58 6.87 0.04 1.08 0.38 6.99 5.91 2.38 2.34 9.00 7.92  ns 

–2 0.51 6.03 0.03 0.95 0.33 6.14 5.19 2.09 2.06 7.90 6.95 ns

8 mA  Std. 0.68 5.17 0.05 1.27 0.44 5.27 4.29 3.15 3.38 7.63 6.65  ns 

 –1 0.58 4.40 0.04 1.08 0.38 4.48 3.65 2.68 2.87 6.49 5.66  ns 

–2 0.51 3.86 0.03 0.95 0.33 3.94 3.20 2.35 2.52 5.70 4.97 ns

12 mA Std. 0.68 3.73 0.05 1.27 0.44 3.79 2.98 3.39 3.78 6.15 5.34  ns 

 –1 0.58 3.17 0.04 1.08 0.38 3.23 2.53 2.88 3.21 5.23 4.54  ns 

–2 0.51 2.78 0.03 0.95 0.33 2.83 2.22 2.53 2.82 4.59 3.99 ns

16 mA  Std. 0.68 3.51 0.05 1.27 0.44 3.58 2.70 3.44 3.88 5.94 5.06  ns 

 –1 0.58 2.99 0.04 1.08 0.38 3.04 2.30 2.93 3.30 5.05 4.31  ns 

–2 0.51 2.62 0.03 0.95 0.33 2.67 2.02 2.57 2.90 4.43 3.78 ns

24 mA  Std. 0.68 3.24 0.05 1.27 0.44 3.30 2.23 3.51 4.28 5.66 4.59  ns 

 –1 0.58 2.76 0.04 1.08 0.38 2.81 1.90 2.98 3.64 4.82 3.91  ns 

–2 0.51 2.42 0.03 0.95 0.33 2.47 1.67 2.62 3.20 4.23 3.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Timing Characteristics  

B-LVDS/M-LVDS
Bus LVDS (B-LVDS) and Multipoint LVDS (M-LVDS) specifications extend the existing LVDS standard to
high-performance multipoint bus applications. Multidrop and multipoint bus configurations can contain
any combination of drivers, receivers, and transceivers. Microsemi LVDS drivers provide the higher drive
current required by B-LVDS and M-LVDS to accommodate the loading. The driver requires series
terminations for better signal quality and to control voltage swing. Termination is also required at both
ends of the bus, since the driver can be located anywhere on the bus. These configurations can be
implemented using TRIBUF_LVDS and BIBUF_LVDS macros along with appropriate terminations.
Multipoint designs using Microsemi LVDS macros can achieve up to 200 MHz with a maximum of 20
loads. A sample application is given in Figure 2-133 on page 2-209. The input and output buffer delays
are available in the LVDS section in Table 2-161 on page 2-210.

Table 2-158 • LVDS AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V)

1.075 1.325 Cross point –

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Table 2-159 • LVDS
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 2.3 V 
Applicable to Pro I/O Banks

Speed Grade tDOUT tDP tDIN tPY Units

Std. 0.68 1.98 0.05 1.97 ns

–1 0.58 1.69 0.04 1.68 ns

–2 0.51 1.48 0.03 1.47 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.

Table 2-160 • LVDS
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 2.3 V 
Applicable to Advanced I/O Banks

Speed Grade tDOUT tDP tDIN tPY Units

Std. 0.68 1.98 0.05 1.75 ns

–1 0.58 1.69 0.04 1.49 ns

–2 0.51 1.48 0.03 1.31 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Output Register

Timing Characteristics 

Figure 2-138 • Output Register Timing Diagram
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Table 2-168 • Output Data Register Propagation Delays
Extended Temperature Case Conditions: TJ = 100°C, Worst-Case VCC = 1.425 V

Parameter Description –2 –1 Std. Units

tOCLKQ Clock-to-Q of the Output Data Register 0.61 0.69 0.81 ns

tOSUD Data Setup Time for the Output Data Register 0.32 0.37 0.43 ns

tOHD Data Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOSUE Enable Setup Time for the Output Data Register 0.45 0.51 0.60 ns

tOHE Enable Hold Time for the Output Data Register 0.00 0.00 0.00 ns

tOCLR2Q Asynchronous Clear-to-Q of the Output Data Register 0.83 0.94 1.11 ns

tOPRE2Q Asynchronous Preset-to-Q of the Output Data Register 0.83 0.94 1.11 ns

tOREMCLR Asynchronous Clear Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECCLR Asynchronous Clear Recovery Time for the Output Data Register 0.23 0.26 0.31 ns

tOREMPRE Asynchronous Preset Removal Time for the Output Data Register 0.00 0.00 0.00 ns

tORECPRE Asynchronous Preset Recovery Time for the Output Data Register 0.23 0.26 0.31 ns

tOWCLR Asynchronous Clear Minimum Pulse Width for the Output Data Register 0.22 0.25 0.30 ns

tOWPRE Asynchronous Preset Minimum Pulse Width for the Output Data
Register

0.22 0.25 0.30 ns

tOCKMPWH Clock Minimum Pulse Width High for the Output Data Register 0.36 0.41 0.48 ns

tOCKMPWL Clock Minimum Pulse Width Low for the Output Data Register 0.32 0.37 0.43 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
2-216 Revision 2


