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Fusion Device Family Overview
The I/Os are organized into banks, with four or five banks per device. The configuration of these banks
determines the I/O standards supported. The banks along the east and west sides of the device support
the full range of I/O standards (single-ended and differential). The south bank supports the Analog Quads
(analog I/O). This family of devices, the north bank supports multiple single-ended digital I/O standards.
In the family’s larger devices, the north bank is divided into two banks of digital Pro I/Os, supporting a
wide variety of single-ended, differential, and voltage-referenced I/O standards.

Each I/O module contains several input, output, and enable registers. These registers allow the
implementation of the following applications:

• Single-Data-Rate (SDR) applications 

• Double-Data-Rate (DDR) applications—DDR LVDS I/O for chip-to-chip communications

• Fusion banks support LVPECL, LVDS, B-LVDS, and M-LVDS with 20 multi-drop points.

VersaTiles
The Fusion core consists of VersaTiles, which are also used in the successful ProASIC3 family. The
Fusion VersaTile supports the following:

• All 3-input logic functions—LUT-3 equivalent 

• Latch with clear or set

• D-flip-flop with clear or set and optional enable

Refer to Figure 1-2 for the VersaTile configuration arrangement.

Specifying I/O States During Programming
You can modify the I/O states during programming in FlashPro. In FlashPro, this feature is supported for
PDB files generated from Designer v8.5 or greater. See the FlashPro User’s Guide for more information.

Note: PDB files generated from Designer v8.1 to Designer v8.4 (including all service packs) have
limited display of Pin Numbers only.

The I/Os are controlled by the JTAG Boundary Scan register during programming, except for the analog
pins (AC, AT and AV). The Boundary Scan register of the AG pin can be used to enable/disable the gate
driver in software v9.0. 

1. Load a PDB from the FlashPro GUI. You must have a PDB loaded to modify the I/O states during
programming.

2. From the FlashPro GUI, click PDB Configuration. A FlashPoint – Programming File Generator
window appears.

3. Click the Specify I/O States During Programming button to display the Specify I/O States
During Programming dialog box.

4. Sort the pins as desired by clicking any of the column headers to sort the entries by that header.
Select the I/Os you wish to modify (Figure 1-3 on page 1-9).

5. Set the I/O Output State. You can set Basic I/O settings if you want to use the default I/O settings
for your pins, or use Custom I/O settings to customize the settings for each pin. Basic I/O state
settings: 

1 – I/O is set to drive out logic High

0 – I/O is set to drive out logic Low

Figure 1-2 • VersaTile Configurations
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Global Resource Characteristics
AFS600 VersaNet Topology
Clock delays are device-specific. Figure 2-15 is an example of a global tree used for clock routing. The
global tree presented in Figure 2-15 is driven by a CCC located on the west side of the AFS600 device. It
is used to drive all D-flip-flops in the device. 

Figure 2-15 • Example of Global Tree Use in an AFS600 Device for Clock Routing
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Device Architecture
Table 2-8 • XTLOSC Signals Descriptions

Signal Name Width Direction Function

XTL_EN* 1 Enables the crystal. Active high.

XTL_MODE* 2 Settings for the crystal clock for different frequency.

Value Modes Frequency Range

b'00 RC network 32 KHz to 4 MHz

b'01 Low gain 32 to 200 KHz

b'10 Medium gain 0.20 to 2.0 MHz

b'11 High gain 2.0 to 20.0 MHz

SELMODE 1 IN Selects the source of XTL_MODE and also enables the
XTL_EN. Connect from RTCXTLSEL from AB.

0 For normal operation or sleep mode, XTL_EN
depends on FPGA_EN, XTL_MODE depends on
MODE

1 For Standby mode, XTL_EN is enabled,
XTL_MODE depends on RTC_MODE

RTC_MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges.
XTL_MODE uses RTC_MODE when SELMODE is '1'.

MODE[1:0] 2 IN Settings for the crystal clock for different frequency ranges.
XTL_MODE uses MODE when SELMODE is '0'. In Standby,
MODE inputs will be 0s.

FPGA_EN* 1 IN 0 when 1.5 V is not present for VCC 1 when 1.5 V is present
for VCC

XTL 1 IN Crystal Clock source

CLKOUT 1 OUT Crystal Clock output

Note: *Internal signal—does not exist in macro.

Table 2-9 • Electrical Characteristics of the Crystal Oscillator

Parameter Description Conditions Min. Typ. Max. Units

FXTAL Operating Frequency Using External Crystal  0.032 20 MHz 

Using Ceramic Resonator 0.5 8 MHz 

Using RC Network 0.032 4 MHz

Output Duty Cycle 50 %

Output Jitter With 10 MHz Crystal 50 ps RMS

IDYNXTAL  Operating Current RC 0.6  mA 

0.032–0.2 0.6  mA

0.2–2.0 0.6  mA

2.0–20.0 0.6  mA

ISTBXTAL Standby Current 10  µA

PSRRXTAL Power Supply Noise Tolerance 0.5 Vp-p

VIHXTAL  Input Logic Level High  90% of 
VCC 

V

VILXTAL Input Logic Level Low  10% 
of 

VCC 

V
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Voltage Regulator and Power System Monitor (VRPSM)
The VRPSM macro controls the power-up state of the FPGA. The power-up bar (PUB) pin can turn on
the voltage regulator when set to 0. TRST can enable the voltage regulator when deasserted, allowing
the FPGA to power-up when user want access to JTAG ports. The inputs VRINITSTATE and
RTCPSMMATCH come from the flash bits and RTC, and can also power up the FPGA

Table 2-15 • RTC Control/Status Register

Bit Name Description
Default 
Value

7 rtc_rst RTC Reset

1 – Resets the RTC

0 – Deassert reset on after two ACM_CLK cycle.

6 cntr_en Counter Enable

1 – Enables the counter; rtc_rst must be deasserted as well. First
counter increments after 64 RTCCLK positive edges.

0 – Disables the crystal prescaler but does not reset the counter
value. Counter value can only be updated when the counter is
disabled.

0

5 vr_en_mat Voltage Regulator Enable on Match

1 – Enables RTCMATCH and RTCPSMMATCH to output 1 when the
counter value equals the Match Register value. This enables the 1.5 V
voltage regulator when RTCPSMMATCH connects to the
RTCPSMMATCH signal in VRPSM.

0 – RTCMATCH and RTCPSMMATCH output 0 at all times.

0

4:3 xt_mode[1:0] Crystal Mode

Controls RTCXTLMODE[1:0]. Connects to RTC_MODE signal in
XTLOSC. XTL_MODE uses this value when xtal_en is 1. See the
"Crystal Oscillator" section on page 2-18 for mode configuration.

00

2 rst_cnt_omat Reset Counter on Match

1 – Enables the sync clear of the counter when the counter value
equals the Match Register value. The counter clears on the rising
edge of the clock. If all the Match Registers are set to 0, the clear is
disabled.

0 – Counter increments indefinitely

0

1 rstb_cnt Counter Reset, active Low

0 – Resets the 40-bit counter value

0

0 xtal_en Crystal Enable

Controls RTCXTLSEL. Connects to SELMODE signal in XTLOSC.

0 – XTLOSC enables control by FPGA_EN; xt_mode is not used.
Sleep mode requires this bit to equal 0.

1 – Enables XTLOSC, XTL_MODE control by xt_mode

Standby mode requires this bit to be set to 1.

See the "Crystal Oscillator" section on page 2-18 for further details on
SELMODE configuration.

0
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-26 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.

Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be
undefined. The RAM blocks employ little-endian byte order for read and write operations. 

Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller
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Extended Temperature Fusion Family of Mixed Signal FPGAs
ADC Description
The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models.
Figure 2-79 shows a block diagram of the Fusion ADC.

• Configurable resolution: 8-bit, 10-bit, and 12-bit mode

• DNL: 0.6 LSB for 10-bit mode

• INL: 0.4 LSB for 10-bit mode

• No missing code

• Internal VAREF = 2.56 V

• Maximum Sample Rate = 600 Ksps

• Power-up calibration and dynamic calibration after every sample to compensate for temperature
drift over time

ADC Theory of Operation
An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and
provide a discrete binary representation of the signal. Analog-to-digital converters are generally
characterized in three ways:

• Input voltage range

• Resolution

• Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices
include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The
following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to
2.56 V. 

The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC
approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter.
Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit
operation, the LSB is 2.56 V / 4096 = 0.625 mV.

Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each
second. The bandwidth of an ADC is constrained by its architecture and several key performance
characteristics. 

Figure 2-79 • ADC Simplified Block Diagram
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Extended Temperature Fusion Family of Mixed Signal FPGAs
This process results in a binary approximation of VIN. Generally, there is a fixed interval T, the sampling
period, between the samples. The inverse of the sampling period is often referred to as the sampling
frequency fS = 1 / T. The combined effect is illustrated in Figure 2-81.

Figure 2-81 demonstrates that if the signal changes faster than the sampling rate can accommodate, or if
the actual value of VIN falls between counts in the result, this information is lost during the conversion.
There are several techniques that can be used to address these issues. 

First, the sampling rate must be chosen to provide enough samples to adequately represent the input
signal. Based on the Nyquist-Shannon Sampling Theorem, the minimum sampling rate must be at least
twice the frequency of the highest frequency component in the target signal (Nyquist Frequency). For
example, to recreate the frequency content of an audio signal with up to 22 KHz bandwidth, the user
must sample it at a minimum of 44 ksps. However, as shown in Figure 2-81, significant post-processing
of the data is required to interpolate the value of the waveform during the time between each sample. 

Similarly, to re-create the amplitude variation of a signal, the signal must be sampled with adequate
resolution. Continuing with the audio example, the dynamic range of the human ear (the ratio of the
amplitude of the threshold of hearing to the threshold of pain) is generally accepted to be 135 dB, and the
dynamic range of a typical symphony orchestra performance is around 85 dB. Most commercial
recording media provide about 96 dB of dynamic range using 16-bit sample resolution. But 16-bit fidelity
does not necessarily mean that you need a 16-bit ADC. As long as the input is sampled at or above the
Nyquist Frequency, post-processing techniques can be used to interpolate intermediate values and
reconstruct the original input signal to within desired tolerances.

If sophisticated digital signal processing (DSP) capabilities are available, the best results are obtained by
implementing a reconstruction filter, which is used to interpolate many intermediate values with higher
resolution than the original data. Interpolating many intermediate values increases the effective number
of samples, and higher resolution increases the effective number of bits in the sample. In many cases,
however, it is not cost-effective or necessary to implement such a sophisticated reconstruction algorithm.
For applications that do not require extremely fine reproduction of the input signal, alternative methods
can enhance digital sampling results with relatively simple post-processing. The details of such
techniques are out of the scope of this chapter; refer to the Improving ADC Results through
Oversampling and Post-Processing of Data white paper for more information.

Figure 2-81 • Conversion Example
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Timing Diagrams

Note: *Refer to EQ 15 on page 2-107 for the calculation on the period of ADCCLK, tADCCLK.

Figure 2-88 • Power-Up Calibration Status Signal Timing Diagram

Figure 2-89 • Input Setup Time
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Injected Conversion

Note: * See EQ 23 on page 2-109 for calculation on the conversion time, tCONV.

Figure 2-92 • Injected-Conversion Timing Diagram
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-82 • Advanced I/O Default Attributes

I/O Standards SLEW (output only) OUT_DRIVE (output only) S
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LVTTL/LVCMOS 3.3 V Refer to the following 
tables for more 
information:

Table 2-79 on page 2-153

Table 2-80 on page 2-153 

Refer to the following tables 
for more information:

Table 2-79 on page 2-153

Table 2-80 on page 2-153 

Off None 35 pF – 

LVCMOS 2.5 V Off None 35 pF –

LVCMOS 2.5/5.0 V Off None 35 pF –

LVCMOS 1.8 V Off None 35 pF –

LVCMOS 1.5 V Off None 35 pF –

PCI (3.3 V) Off None 10 pF –

PCI-X (3.3 V) Off None 10 pF –

LVDS, B-LVDS, M-LVDS Off None – –

LVPECL Off None – –
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Device Architecture
Table 2-83 • Fusion Pro I/O Supported Standards and Corresponding VREF and VTT Voltages
Applicable to all I/O Bank types

I/O Standard

Input/Output Supply 
Voltage 

(VMVtyp/VCCI_TYP)
Input Reference Voltage 

(VREF_TYP)
Board Termination Voltage 

(VTT_TYP)

LVTTL/LVCMOS 3.3 V 3.30 V – –

LVCMOS 2.5 V 2.50 V – –

LVCMOS 2.5 V / 5.0 V
Input

2.50 V – –

LVCMOS 1.8 V 1.80 V – –

LVCMOS 1.5 V 1.50 V – –

PCI 3.3 V 3.30 V – –

PCI-X 3.3 V 3.30 V – –

GTL+ 3.3 V 3.30 V 1.00 V 1.50 V

GTL+ 2.5 V 2.50 V 1.00 V 1.50 V

GTL 3.3 V 3.30 V 0.80 V 1.20 V

GTL 2.5 V 2.50 V 0.80 V 1.20 V

HSTL Class I 1.50 V 0.75 V 0.75 V

HSTL Class II 1.50 V 0.75 V 0.75 V

SSTL3 Class I 3.30 V 1.50 V 1.50 V

SSTL3 Class II 3.30 V 1.50 V 1.50 V

SSTL2 Class I 2.50 V 1.25 V 1.25 V

SSTL2 Class II 2.50 V 1.25 V 1.25 V

LVDS 2.50 V – –

LVPECL 3.30 V – –
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Device Architecture
Table 2-85 • Fusion Pro I/O Attributes vs. I/O Standard Applications 
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LVTTL/LVCMOS 3.3 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 2.5/5.0 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.8 V 3 3 3 3 3 3 3 3 3 3

LVCMOS 1.5 V 3 3 3 3 3 3 3 3 3 3

PCI (3.3 V) 3 3 3 3 3

PCI-X (3.3 V) 3 3 3 3 3 3

GTL+ (3.3 V) 3 3 3 3 3 3

GTL+ (2.5 V) 3 3 3 3 3 3

GTL (3.3 V) 3 3 3 3 3 3

GTL (2.5 V) 3 3 3 3 3 3

HSTL Class I 3 3 3 3 3 3

HSTL Class II 3 3 3 3 3 3

SSTL2 Class I and II 3 3 3 3 3 3

SSTL3 Class I and II 3 3 3 3 3 3

LVDS, B-LVDS, M-LVDS 3 3 3 3 3

LVPECL 3 3 3 3
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Device Architecture
Summary of I/O Timing Characteristics – Default I/O Software Settings

Table 2-89 • Summary of AC Measuring Points Applicable to All I/O Bank Types

Standard
Input Reference Voltage 

(VREF_TYP)
Board Termination Voltage 

(VTT_REF)
Measuring Trip Point 

(Vtrip)

3.3 V LVTTL / 3.3 V LVCMOS – – 1.4 V

2.5 V LVCMOS – – 1.2 V

1.8 V LVCMOS – –  0.90 V

1.5 V LVCMOS – –  0.75 V

3.3 V PCI – – 0.285 * VCCI (RR)

0.615 * VCCI (FF))

3.3 V PCI-X – – 0.285 * VCCI (RR)

0.615 * VCCI (FF)

3.3 V GTL 0.8 V 1.2 V VREF

2.5 V GTL 0.8 V 1.2 V VREF

3.3 V GTL+ 1.0 V 1.5 V VREF

2.5 V GTL+ 1.0 V 1.5 V VREF

HSTL (I) 0.75 V 0.75 V VREF

HSTL (II) 0.75 V 0.75 V VREF

SSTL2 (I) 1.25 V 1.25 V VREF

SSTL2 (II) 1.25 V 1.25 V VREF

SSTL3 (I) 1.5 V 1.485 V VREF

SSTL3 (II) 1.5 V 1.485 V VREF

LVDS – – Cross point

LVPECL – – Cross point

Table 2-90 • I/O AC Parameter Definitions

Parameter Definition

tDP Data to Pad delay through the Output Buffer

tPY Pad to Data delay through the Input Buffer with Schmitt trigger disabled

tDOUT Data to Output Buffer delay through the I/O interface

tEOUT Enable to Output Buffer Tristate Control delay through the I/O interface

tDIN Input Buffer to Data delay through the I/O interface

tPYS Pad to Data delay through the Input Buffer with Schmitt trigger enabled

tHZ Enable to Pad delay through the Output Buffer—High to Z 

tZH Enable to Pad delay through the Output Buffer—Z to High

tLZ Enable to Pad delay through the Output Buffer—Low to Z

tZL Enable to Pad delay through the Output Buffer—Z to Low

tZHS Enable to Pad delay through the Output Buffer with delayed enable—Z to High

tZLS Enable to Pad delay through the Output Buffer with delayed enable—Z to Low
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Extended Temperature Fusion Family of Mixed Signal FPGAs
1.5 V LVCMOS 2 mA 200 224

4 mA 100 112

6 mA 67 75

8 mA 33 37

12 mA 33 37

3.3 V PCI/PCI-X Per PCI/PCI-X specification 25 75

Table 2-95 • I/O Weak Pull-Up/Pull-Down Resistances, Minimum and Maximum Weak Pull-Up/Pull-Down 
Resistance Values 

VCCI

R(WEAK PULL-UP) 
1

(ohms)
R(WEAK PULL-DOWN) 

2

(ohms)

Min. Max. Min. Max.

3.3 V 10 k 45 k 10 k 45 k

2.5 V 11 k 55 k 12 k 74 k

1.8 V 18 k 70 k 17 k 110 k

1.5 V 19 k 90 k 19 k 140 k

Notes:

1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

Table 2-94 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend 
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer 
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: 
www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
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Device Architecture
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 2.5 V applications.   

Minimum and Maximum DC Input and Output Levels

2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 18 16 10 10

8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 37 32 10 10

12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10

16 mA –0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10

24 mA –0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10

4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10

6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10

8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10

12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10

16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 87 83 10 10

24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 124 169 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-118 • AC Loading

Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 2.5 1.2 – 35

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Voltage Referenced I/O Characteristics
3.3 V GTL
Gunning Transceiver Logic is a high-speed bus standard (JESD8-3). It provides a differential amplifier
input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.  

Timing Characteristics  

Table 2-127 • Minimum and Maximum DC Input and Output Levels

3.3 V GTL VIL VIH VOL VOH IOL IOH IOSL IOSH IIL4 IIH5

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA1

Max.
mA1 µA2 µA2

20 mA3 –0.3 VREF – 0.05 VREF + 0.05 3.6 0.4 – 20 20 181 268 15 15

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.
2. Currents are measured at 85°C junction temperature.

3. Output drive strength is below JEDEC specification.

4. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL

5. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.

Figure 2-122 • AC Loading

Table 2-128 • 3.3 V GTL AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.05 VREF + 0.05 0.8 0.8 1.2 10

Note: *Measuring point = Vtrip. See Table 2-80 on page 2-153 for a complete table of trip points.

Test Point

10 pF

25GTL

VTT

Table 2-129 • 3.3 V GTL
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 3.0 V, VREF = 0.8 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

Std. 0.68 2.19 0.05 3.09 0.44 2.15 2.19 4.51 4.55 ns

–1 0.58 1.86 0.04 2.63 0.38 1.83 1.86 3.83 3.87 ns

–2 0.51 1.63 0.03 2.31 0.33 1.60 1.63 3.36 3.40 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
VAREF Analog Reference Voltage

The Fusion device can be configured to generate a 2.56 V internal reference voltage that can be used by
the ADC. While using the internal reference, the reference voltage is output on the VAREF pin for use as
a system reference. If a different reference voltage is required, it can be supplied by an external source
and applied to this pin. The valid range of values that can be supplied to the ADC is 1.0 V to 3.3 V. When
VAREF is internally generated by the Fusion device, a bypass capacitor must be connected from this pin
to ground. The value of the bypass capacitor should be between 3.3 µF and 22 µF, which is based on the
needs of the individual designs. The choice of the capacitor value has an impact on the settling time it
takes the VAREF signal to reach the required specification of 2.56 V to initiate valid conversions by the
ADC. If the lower capacitor value is chosen, the settling time required for VAREF to achieve 2.56 V will
be shorter than when selecting the larger capacitor value. The above range of capacitor values supports
the accuracy specification of the ADC, which is detailed in the datasheet. Designers choosing the smaller
capacitor value will not obtain as much margin in the accuracy as that achieved with a larger capacitor
value. Depending on the capacitor value selected in the Analog System Builder, a tool in Libero SoC, an
automatic delay circuit will be generated using logic tiles available within the FPGA to ensure that VAREF
has achieved the 2.56 V value. Microsemi recommends customers use 10 µF as the value of the bypass
capacitor. Designers choosing to use an external VAREF need to ensure that a stable and clean VAREF
source is supplied to the VAREF pin before initiating conversions by the ADC. Designers should also
make sure that the ADCRESET signal is deasserted before initiating valid conversions.2 

User Pins

I/O User Input/Output

The I/O pin functions as an input, output, tristate, or bidirectional buffer. Input and output signal levels are
compatible with the I/O standard selected. Unused I/O pins are configured as inputs with pull-up
resistors.

During programming, I/Os become tristated and weakly pulled up to VCCI. With the VCCI and VCC
supplies continuously powered up, when the device transitions from programming to operating mode, the
I/Os get instantly configured to the desired user configuration.

Unused I/Os are configured as follows:

• Output buffer is disabled (with tristate value of high impedance)

• Input buffer is disabled (with tristate value of high impedance)

• Weak pull-up is programmed

Axy Analog Input/Output

Analog I/O pin, where x is the analog pad type (C = current pad, G = Gate driver pad, T = Temperature
pad, V = Voltage pad) and y is the Analog Quad number (0 to 9). There is a minimum 1 M to ground on
AV, AC, and AT. This pin can be left floating when it is unused.

ATRTNx Temperature Monitor Return

AT returns are the returns for the temperature sensors. The cathode terminal of the external diodes
should be connected to these pins. There is one analog return pin for every two Analog Quads. The x in
the ATRTNx designator indicates the quad pairing (x = 0 for AQ1 and AQ2, x = 1 for AQ2 and AQ3, ...,
x = 4 for AQ8 and AQ9). The signals that drive these pins are called out as ATRETURNxy in the software
(where x and y refer to the quads that share the return signal). ATRTN is internally connected to ground.
It can be left floating when it is unused. The maximum capacitance allowed across the AT pins is 500 pF.

GL Globals

GL I/Os have access to certain clock conditioning circuitry (and the PLL) and/or have direct access to the
global network (spines). Additionally, the global I/Os can be used as Pro I/Os since they have identical
capabilities. Unused GL pins are configured as inputs with pull-up resistors. See more detailed
descriptions of global I/O connectivity in the "Clock Conditioning Circuits" section on page 2-21.

2. The ADC is functional with an external reference down to 1V, however to meet the performance parameters highlighted in
the datasheet refer to the VAREF specification in Table 3-2 on page 3-3.
2-224 Revision 2



3 – DC and Power Characteristics

General Specifications

Operating Conditions
Stresses beyond those listed in Table 3-1 may cause permanent damage to the device.

Exposure to absolute maximum rated conditions for extended periods may affect device reliability.
Devices should not be operated outside the recommended operating ranges specified in Table 3-2 on
page 3-3.

Table 3-1 • Absolute Maximum Ratings 

Symbol Parameter Limit Units

VCC DC core supply voltage –0.3 to 1.65 V

VJTAG JTAG DC voltage –0.3 to 3.75 V

VPUMP Programming voltage –0.3 to 3.75 V

VCCPLL Analog power supply (PLL) –0.3 to 1.65 V

VCCI DC I/O output buffer supply voltage –0.3 to 3.75 V

VI I/O input voltage 1 –0.3 V to 3.6 V (when I/O hot insertion
mode is enabled)
–0.3 V to (VCCI + 1 V) or 3.6 V,
whichever voltage is lower (when I/O
hot-insertion mode is disabled)

V

VCC33A +3.3 V power supply –0.3 to 3.75 2 V

VCC33PMP +3.3 V power supply –0.3 to 3.75 2 V

VAREF Voltage reference for ADC –0.3 to 3.75 V

VCC15A Digital power supply for the analog system –0.3 to 1.65 V

VCCNVM Embedded flash power supply –0.3 to 1.65 V

VCCOSC Oscillator power supply –0.3 to 3.75 V

Notes:

1. The device should be operated within the limits specified by the datasheet. During transitions, the input signal may
undershoot or overshoot according to the limits shown in Table 3-4 on page 3-5.

2. Analog data not valid beyond 3.65 V.

3. The high current mode has a maximum power limit of 15 mW. Appropriate current limit resistors must be used, based on
voltage on the pad.

4. For flash programming and retention maximum limits, refer to Table 3-5 on page 3-5. For recommended operating limits
refer to Table 3-2 on page 3-3.

5. Negative input is not supported between –40°C and –55°C.

6. Positive input is not supported between –40°C and –55°C.
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DC and Power Characteristics
Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 3.3 – 16.22

2.5 V LVCMOS 2.5 – 4.65

1.8 V LVCMOS 1.8 – 1.66

1.5 V LVCMOS (JESD8-11) 1.5 – 1.01

3.3 V PCI 3.3 – 17.64

3.3 V PCI-X 3.3 – 17.64

Differential

LVDS 2.5 2.26 46.90

LVPECL 3.3 5.72 118.10

Table 3-10 • Summary of I/O Input Buffer Power (per pin)—Default I/O Software Settings  (continued)

VMV (V) 
Static Power
PDC7 (mW)1 

Dynamic Power
PAC9 (µW/MHz)2

Notes:

1. PDC7 is the static power (where applicable) measured on VMV.
2. PAC9 is the total dynamic power measured on VCC and VMV.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 3-11 • Summary of I/O Output Buffer Power (per pin)—Default I/O Software Settings1 

CLOAD (pF) VCCI (V) 
Static Power
PDC8 (mW)2 

Dynamic Power
PAC10 (µW/MHz)3

Applicable to Pro I/O Banks

Single-Ended 

3.3 V LVTTL/LVCMOS 35 3.3 – 474.70 

2.5 V LVCMOS 35 2.5 – 270.73 

1.8 V LVCMOS 35 1.8 – 151.78 

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55 

3.3 V PCI 10 3.3 – 204.61 

3.3 V PCI-X 10 3.3 – 204.61 

Voltage-Referenced 

3.3 V GTL 10 3.3 – 24.08

2.5 V GTL 10 2.5 – 13.52

3.3 V GTL+ 10 3.3 – 24.10

2.5 V GTL+ 10 2.5 – 13.54

HSTL (I) 20 1.5 7.08 26.22

HSTL (II) 20 1.5 13.88 27.18

SSTL2 (I) 30 2.5 16.69 105.65

SSTL2 (II) 30 2.5 25.91 116.48

SSTL3 (I) 30 3.3 26.02 114.67

SSTL3 (II) 30 3.3 42.21 131.69

Differential 

LVDS – 2.5 7.70 90.17

LVPECL – 3.3 19.42 168.70

Applicable to Advanced I/O Banks

Single-Ended 

3.3 V LVTTL / 3.3 V LVCMOS 35 3.3 – 466.67

2.5 V LVCMOS 35 2.5 – 267.48

1.8 V LVCMOS 35 1.8 – 151.78

1.5 V LVCMOS (JESD8-11) 35 1.5 – 104.55

3.3 V PCI 10 3.3 – 201.02

3.3 V PCI-X 10 3.3 – 201.02

Differential 

LVDS – 2.5 7.74 89.82

LVPECL – 3.3 19.54 167.55

Notes:

1. Dynamic power consumption is given for standard load and software-default drive strength and output slew.
2. PDC8 is the static power (where applicable) measured on VCCI.

3. PAC10 is the total dynamic power measured on VCC and VCCI.
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