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Fusion Device Family Overview
FPGA logic or an on-chip soft microprocessor can access flash memory through the parallel interface.
Since the flash parallel interface is implemented in the FPGA fabric, it can potentially be customized to
meet special user requirements. For more information, refer to the CoreCFI Handbook. The flash
memory parallel interface provides configurable byte-wide (×8), word-wide (×16), or dual-word-wide
(×32) data port options. Through the programmable flash parallel interface, the on-chip and off-chip
memories can be cascaded for wider or deeper configurations. 

The flash memory has built-in security. The user can configure either the entire flash block or the small
blocks to prevent unintentional or intrusive attempts to change or destroy the storage contents. Each on-
chip flash memory block has a dedicated controller, enabling each block to operate independently.

The flash block logic consists of the following sub-blocks:

• Flash block – Contains all stored data. The flash block contains 64 sectors and each sector
contains 33 pages of data.

• Page Buffer – Contains the contents of the current page being modified. A page contains 8 blocks
of data.

• Block Buffer – Contains the contents of the last block accessed. A block contains 128 data bits.

• ECC Logic – The flash memory stores error correction information with each block to perform
single-bit error correction and double-bit error detection on all data blocks.

User Nonvolatile FlashROM
In addition to the flash blocks, Fusion devices have 1 Kbit of user-accessible, nonvolatile FlashROM on-
chip. The FlashROM is organized as 8×128-bit pages. The FlashROM can be used in diverse system
applications:

• Internet protocol addressing (wireless or fixed)

• System calibration settings

• Device serialization and/or inventory control

• Subscription-based business models (for example, set-top boxes)

• Secure key storage for secure communications algorithms

• Asset management/tracking

• Date stamping

• Version management

The FlashROM is written using the standard IEEE 1532 JTAG programming interface. Pages can be
individually programmed (erased and written). On-chip AES decryption can be used selectively over
public networks to securely load data such as security keys stored in the FlashROM for a user design. 

The FlashROM can be programmed (erased and written) via the JTAG programming interface, and its
contents can be read back either through the JTAG programming interface or via direct FPGA core
addressing.

The FlashPoint tool in the Fusion development software solutions, Libero SoC and Designer, has
extensive support for flash memory blocks and FlashROM. One such feature is auto-generation of
sequential programming files for applications requiring a unique serial number in each part. Another
feature allows the inclusion of static data for system version control. Data for the FlashROM can be
generated quickly and easily using the Libero SoC and Designer software tools. Comprehensive
programming file support is also included to allow for easy programming of large numbers of parts with
differing FlashROM contents.

SRAM and FIFO
Fusion devices have embedded SRAM blocks along the north and south sides of the device. Each
variable-aspect-ratio SRAM block is 4,608 bits in size. Available memory configurations are 256×18,
512×9, 1k×4, 2k×2, and 4k×1 bits. The individual blocks have independent read and write ports that can
be configured with different bit widths on each port. For example, data can be written through a 4-bit port
and read as a single bitstream. The SRAM blocks can be initialized from the flash memory blocks or via
the device JTAG port (ROM emulation mode), using the UJTAG macro. 

In addition, every SRAM block has an embedded FIFO control unit. The control unit allows the SRAM
block to be configured as a synchronous FIFO without using additional core VersaTiles. The FIFO width
and depth are programmable. The FIFO also features programmable Almost Empty (AEMPTY) and
1-6 Revision 2

http://www.microsemi.com/soc/ipdocs/CoreCFI_HB.pdf


Extended Temperature Fusion Family of Mixed Signal FPGAs
Timing Characteristics

Sample VersaTile Specifications—Sequential Module
The Fusion library offers a wide variety of sequential cells, including flip-flops and latches. Each has a
data input and optional enable, clear, or preset. In this section, timing characteristics are presented for a
representative sample from the library (Figure 2-5). For more details, refer to the IGLOO, ProASIC3,
SmartFusion, and Fusion Macro Library Guide.

Table 2-1 • Combinatorial Cell Propagation Delays
Extended Temperature Range Conditions: TJ = 100°C, Worst-Case VCC = 1.425 V

Combinatorial Cell Equation Parameter –2 –1 Std. Units

INV Y = !A tPD 0.41 0.47 0.55 ns

AND2 Y = A · B tPD 0.49 0.55 0.65 ns

NAND2 Y = !(A · B) tPD 0.49 0.55 0.65 ns

OR2 Y = A + B tPD 0.50 0.57 0.67 ns

NOR2 Y = !(A + B) tPD 0.50 0.57 0.67 ns

XOR2 Y = A B tPD 0.76 0.87 1.02 ns

MAJ3 Y = MAJ(A, B, C) tPD 0.72 0.82 0.96 ns

XOR3 Y = A  B C tPD 0.90 1.03 1.21 ns

MUX2 Y = A !S + B S tPD 0.52 0.60 0.70 ns

AND3 Y = A · B · C tPD 0.58 0.66 0.77 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to
Table 3-7 on page 3-10.

Figure 2-5 • Sample of Sequential Cells
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Global Resources (VersaNets)
Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry.
Each chip has six CCCs. The west CCC also contains a PLL core. In the AFS600 and AFS1500, the
west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase shifter (0°, 90°, 180°,
270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four corners each
have access to three quadrant global lines on each quadrant of the chip.

Advantages of the VersaNet Approach
One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks.
Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array
(Figure 2-11). In addition, Fusion devices have three regional globals (quadrant globals) in each of the
four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant
and six chip (main) global networks. There are a total of 18 global networks on the device. Each of these
networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12).
This flexible VersaNet global network architecture allows users to map up to 180 different
internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on
page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several
design requirements. User applications that are clock-resource-intensive can easily route external or
gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce
delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.

Figure 2-11 • Overview of Fusion VersaNet Global Network 
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Device Architecture
Notes:

1. Visit the Microsemi SoC Products Group website for future application notes concerning dynamic PLL reconfiguration.
Refer to the "PLL Macro" section on page 2-27 for signal descriptions.

2. Many specific INBUF macros support the wide variety of single-ended and differential I/O standards for the Fusion family.

3. Refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library Guide for more information.

Figure 2-19 • Fusion CCC Options: Global Buffers with the PLL Macro

Table 2-10 • Available Selections of I/O Standards within CLKBUF and CLKBUF_LVDS/LVPECL Macros

CLKBUF Macros

CLKBUF_LVCMOS5

CLKBUF_LVCMOS331

CLKBUF_LVCMOS18

CLKBUF_LVCMOS15

CLKBUF_PCI

CLKBUF_LVDS2

CLKBUF_LVPECL

Notes:

1. This is the default macro. For more details, refer to the IGLOO, ProASIC3, SmartFusion, and Fusion Macro Library
Guide.

2. The B-LVDS and M-LVDS standards are supported with CLKBUF_LVDS.

PADN

PADP

Y

PAD Y

Input LVDS/LVPECL Macro

INBUF2 Macro

GLA
or
GLA and (GLB or YB)
or
GLA and (GLC or YC)
or
GLA and (GLB or YB) and
(GLC or YC)

Clock Source Clock Conditioning Output

OADIVHALF
OADIV[4:0]
OAMUX[2:0]
DLYGLA[4:0]
OBDIV[4:0]
OBMUX[2:0]
DLYYB[4:0]
DLYGLB[4:0]
OCDIV[4:0]
OCMUX[2:0]
DLYYC[4:0]
DLYGLC[4:0]
FINDIV[6:0]
FBDIV[6:0]
FBDLY[4:0]
FBSEL[1:0]
XDLYSEL
VCOSEL[2:0]

CLKA
EXTFB
POWERDOWN

OADIVRST

GLA
LOCK

GLB
YB

GLC
YC
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Device Architecture
CCC Physical Implementation
The CCC circuit is composed of the following (Figure 2-23):

• PLL core

• 3 phase selectors

• 6 programmable delays and 1 fixed delay

• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in
Figure 2-23 because they are automatically configured based on the user's required frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the
user to dynamically reconfigure the PLL without the need for core programming. The register file is
accessed through a simple serial interface. 

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are
automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block
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Extended Temperature Fusion Family of Mixed Signal FPGAs
PLL Macro
The PLL functionality of the clock conditioning block is supported by the PLL macro. Note that the PLL
macro reference clock uses the CLKA input of the CCC block, which is only accessible from the global
A[2:0] package pins. Refer to Figure 2-22 on page 2-25 for more information.

The PLL macro provides five derived clocks (three independent) from a single reference clock. The PLL
feedback loop can be driven either internally or externally. The PLL macro also provides power-down
input and lock output signals. During power-up, POWERDOWN should be asserted Low until VCC is up.
See Figure 2-19 on page 2-22 for more information.

Inputs:

• CLKA: selected clock input

• POWERDOWN (active low): disables PLLs. The default state is power-down on (active low). 

Outputs:

• LOCK (active high): indicates that PLL output has locked on the input reference signal

• GLA, GLB, GLC: outputs to respective global networks

• YB, YC: allows output from the CCC to be routed back to the FPGA core

As previously described, the PLL allows up to five flexible and independently configurable clock outputs.
Figure 2-23 on page 2-26 illustrates the various clock output options and delay elements.

As illustrated, the PLL supports three distinct output frequencies from a given input clock. Two of these
(GLB and GLC) can be routed to the B and C global networks, respectively, and/or routed to the device
core (YB and YC).

There are five delay elements to support phase control on all five outputs (GLA, GLB, GLC, YB, and YC).

There is also a delay element in the feedback loop that can be used to advance the clock relative to the
reference clock.

The PLL macro reference clock can be driven by an INBUF macro to create a composite macro, where
the I/O macro drives the global buffer (with programmable delay) using a hardwired connection. In this
case, the I/O must be placed in one of the dedicated global I/O locations.

The PLL macro reference clock can be driven directly from the FPGA core.

The PLL macro reference clock can also be driven from an I/O routed through the FPGA regular routing
fabric. In this case, users must instantiate a special macro, PLLINT, to differentiate it from the hardwired
I/O connection described earlier.

The visual PLL configuration in SmartGen, available with the Libero SoC and Designer tools, will derive
the necessary internal divider ratios based on the input frequency and desired output frequencies
selected by the user. SmartGen allows the user to select the various delays and phase shift values
necessary to adjust the phases between the reference clock (CLKA) and the derived clocks (GLA, GLB,
GLC, YB, and YC). SmartGen also allows the user to select where the input clock is coming from.
SmartGen automatically instantiates the special macro, PLLINT, when needed.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Access to the FB is controlled by the BUSY signal. The BUSY output is synchronous to the CLK signal.
FB operations are only accepted in cycles where BUSY is logic 0.

Write Operation
Write operations are initiated with the assertion of the WEN signal. Figure 2-35 illustrates the multiple
Write operations.

When a Write operation is initiated to a page that is currently not in the Page Buffer, the FB control logic
will issue a BUSY signal to the user interface while the page is loaded from the FB Array into the Page
Buffer. A Copy Page operation takes no less than 55 cycles and could take more if a Write or Unprotect
Page operation is started while the NVM is busy pre-fetching a block. The basic operation is to read a
block from the array into the block register (5 cycles) and then write the block register to the page buffer
(1 cycle) and if necessary, when the copy is complete, reading the block being written from the page
buffer into the block buffer (1 cycle). A page contains 9 blocks, so 9 blocks multiplied by 6 cycles to
read/write each block, plus 1 is 55 cycles total. Subsequent writes to the same block of the page will incur
no busy cycles. A write to another block in the page will assert BUSY for four cycles (five cycles when
PIPE is asserted), to allow the data to be written to the Page Buffer and have the current block loaded
into the Block Buffer.

Write operations are considered successful as long as the STATUS output is '00'. A non-zero STATUS
indicates that an error was detected during the operation and the write was not performed. Note that the
STATUS output is "sticky"; it is unchanged until another operation is started.

Only one word can be written at a time. Write word width is controlled by the DATAWIDTH bus. Users are
responsible for keeping track of the contents of the Page Buffer and when to program it to the array. Just
like a regular RAM, writing to random addresses is possible. Users can write into the Page Buffer in any
order but will incur additional BUSY cycles. It is not necessary to modify the entire Page Buffer before
saving it to nonvolatile memory.

Write errors include the following:

1. Attempting to write a page that is Overwrite Protected (STATUS = '01'). The write is not
performed.

2. Attempting to write to a page that is not in the Page Buffer when Page Loss Protection is enabled
(STATUS = '11'). The write is not performed.

Figure 2-35 • FB Write Waveform
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Device Architecture
Flash Memory Block Characteristics

Figure 2-44 • Reset Timing Diagram

Table 2-24 • Flash Memory Block Timing, Extended Temperature Case Conditions: TJ = 100°C, Worst-Case 
VCC = 1.425 V 

 Parameter  Description –2 –1 Std. 
 

Units 

tCLK2RD Clock-to-Q in 5-cycle read mode of the Read Data 8.24 9.39 11.04  ns 

Clock-to-Q in 6-cycle read mode of the Read Data 5.10 5.81 6.83  ns 

tCLK2BUSY Clock-to-Q in 5-cycle read mode of BUSY 5.19 5.91 6.95  ns 

Clock-to-Q in 6-cycle read mode of BUSY 4.59 5.23 6.15  ns 

tCLK2STATUS Clock-to-Status in 5-cycle read mode 11.59 13.21 15.53  ns 

Clock-to-Status in 6-cycle read mode 4.62 5.26 6.19  ns 

tDSUNVM Data Input Setup time for the Control Logic 1.98 2.26 2.65  ns 

tDHNVM Data Input Hold time for the Control Logic 0.00 0.00 0.00  ns 

tASUNVM Address Input Setup time for the Control Logic 2.84 3.24 3.81  ns 

tAHNVM Address Input Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUDWNVM Data Width Setup time for the Control Logic 1.91 2.17 2.56  ns 

tHDDWNVM Data Width Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSURENNVM Read Enable Setup time for the Control Logic 3.97 4.53 5.32  ns 

tHDRENNVM Read Enable Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUWENNVM Write Enable Setup time for the Control Logic 2.44 2.78 3.27  ns 

tHDWENNVM Write Enable Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUPROGNVM Program Setup time for the Control Logic 2.23 2.54 2.98  ns 

tHDPROGNVM Program Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUSPAREPAGE SparePage Setup time for the Control Logic 3.86 4.40 5.17  ns 

tHDSPAREPAGE SparePage Hold time for the Control Logic 0.00 0.00 0.00  ns 

tSUAUXBLK Auxiliary Block Setup Time for the Control Logic 3.85 4.39 5.16  ns 

tHDAUXBLK Auxiliary Block Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSURDNEXT ReadNext Setup Time for the Control Logic 2.23 2.54 2.99  ns 

tHDRDNEXT ReadNext Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUERASEPG Erase Page Setup Time for the Control Logic 3.87 4.41 5.19  ns 

tHDERASEPG Erase Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUUNPROTECTPG Unprotect Page Setup Time for the Control Logic 2.07 2.36 2.77  ns 

tHDUNPROTECTPG Unprotect Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUDISCARDPG Discard Page Setup Time for the Control Logic 1.94 2.21 2.60  ns 

tHDDISCARDPG Discard Page Hold Time for the Control Logic 0.00 0.00 0.00  ns 

tSUOVERWRPRO Overwrite Protect Setup Time for the Control Logic 1.69 1.92 2.26  ns 

tHDOVERWRPRO Overwrite Protect Hold Time for the Control Logic 0.00 0.00 0.00  ns 

CLK

RESET
Active Low, Asynchronous

 BUSY
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Extended Temperature Fusion Family of Mixed Signal FPGAs
To initiate a current measurement, the appropriate Current Monitor Strobe (CMSTB) signal on the AB
macro must be asserted low for at least tCMSLO in order to discharge the previous measurement. Then
CMSTB must be asserted high for at least tCMSET prior to asserting the ADCSTART signal. The CMSTB
must remain high until after the SAMPLE signal is deasserted by the AB macro. Note that the minimum
sample time cannot be less than tCMSHI. Figure 2-70 shows the timing diagram of CMSTB in relationship
with the ADC control signals.  

Figure 2-71 on page 2-88 illustrates positive current monitor operation. The differential voltage between
AV and AC goes into the 10× amplifier and is then converted by the ADC. For example, a current of 1.5 A
is drawn from a 10 V supply and is measured by the voltage drop across a 0.050  sense resistor, The
voltage drop is amplified by ten times by the amplifier and then measured by the ADC. The 1.5 A current
creates a differential voltage across the sense resistor of 75 mV. This becomes 750 mV after
amplification. Thus, the ADC measures a current of 1.5 A as 750 mV. Using an ADC with 8-bit resolution
and VAREF of 2.56 V, the ADC result is decimal 75. EQ 3 shows how to compute the current from the
ADC result.

EQ 3

where

I is the current flowing through the sense resistor

ADC is the result from the ADC

VAREF is the Reference voltage

N is the number of bits

Rsense is the resistance of the sense resistor

Figure 2-70 • Timing Diagram for Current Monitor Strobe

VADC

tCMSET

 

CMSTBx

ADCSTART can be asserted
after this point to start ADC
sampling. 

tCMSHI

ADCSTART

tCMSLO

I ADC VAREF  10 2
N Rsense =
Revision 2 2-87



Extended Temperature Fusion Family of Mixed Signal FPGAs
CGS is not a fixed capacitance but, depending on the circuitry connected to its drain terminal, can vary
significantly during the course of a turn-on or turn-off transient. Thus, EQ 6 on page 2-90 can only be
used for a first-order estimate of the switching speed of the external MOSFET.

Figure 2-74 • Gate Driver Example
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Features Supported on Pro I/Os
Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features

Feature Description

Single-ended and voltage-
referenced transmitter
features 

• Hot insertion in every mode except PCI or 5 V input tolerant (these modes use
clamp diodes and do not allow hot insertion)

• Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.

• Weak pull-up and pull-down

• Two slew rates

• Skew between output buffer enable/disable time: 2 ns delay (rising edge) and
0 ns delay (falling edge); see "Selectable Skew between Output Buffer
Enable/Disable Time" on page 2-150 for more information

• Five drive strengths

• 5 V–tolerant receiver ("5 V Input Tolerance" section on page 2-145)

• LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output
Tolerance" section on page 2-149)

• High performance (Table 2-77 on page 2-144)

Single-ended receiver features • Schmitt trigger option

• ESD protection

• Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• High performance (Table 2-77 on page 2-144)

• Separate ground planes, GND/GNDQ, for input buffers only to avoid output-
induced noise in the input circuitry

Voltage-referenced differential
receiver features

• Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• High performance (Table 2-77 on page 2-144)

• Separate ground planes, GND/GNDQ, for input buffers only to avoid output-
induced noise in the input circuitry

CMOS-style LVDS, B-LVDS,
M-LVDS, or LVPECL
transmitter 

• Two I/Os and external resistors are used to provide a CMOS-style LVDS,
B-LVDS, M-LVDS, or LVPECL transmitter solution.

• Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.

• Weak pull-up and pull-down

• Fast slew rate 

LVDS/LVPECL differential
receiver features 

• ESD protection

• High performance (Table 2-77 on page 2-144)

• Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting,
0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• Separate input buffer ground and power planes to avoid output-induced noise
in the input circuitry
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Device Architecture
Double Data Rate (DDR) Support
Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every
transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition,
high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR
The basic structure to support a DDR input is shown in Figure 2-100. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 2-101 on page 2-141. New data is presented to the
output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The
combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the
edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account
in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-100 • DDR Input Register Support in Fusion Devices
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Figure 2-101 • DDR Output Support in Fusion Devices
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Device Architecture
User I/O Characteristics

Timing Model

Figure 2-113 • Timing Model
Operating Conditions: –2 Speed, Extended Temperature Range (TJ = 100°C), 
Worst-Case VCC = 1.425 V
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Timing Characteristics     

Table 2-107 • 2.5 V LVCMOS Low Slew, Extended Temperature Case Conditions: TJ = 100°C, Worst Case 
VCC = 1.425 V, Worst Case VCCI = 2.3 V 
Applicable to Pro I/O Banks

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

4 mA  Std. 0.68 12.66 0.05 1.59 1.75 0.44 12.89 12.24 2.87 2.32 15.25 14.60  ns 

 –1 0.58 10.77 0.04 1.36 1.49 0.38 10.97 10.42 2.44 1.97 12.97 12.42  ns 

–2 0.51 9.45 0.03 1.19 1.31 0.33 9.63 9.14 2.14 1.73 11.39 10.90 ns

8 mA  Std. 0.68 9.21 0.05 1.59 1.75 0.44 9.38 8.45 3.27 3.09 11.74 10.81  ns 

 –1 0.58 7.83 0.04 1.36 1.49 0.38 7.98 7.19 2.78 2.63 9.98 9.19  ns 

–2 0.51 6.88 0.03 1.19 1.31 0.33 7.00 6.31 2.44 2.31 8.76 8.07 ns

12 mA  Std. 0.68 7.14 0.05 1.59 1.75 0.44 7.28 6.44 3.55 3.58 9.63 8.80  ns 

 –1 0.58 6.08 0.04 1.36 1.49 0.38 6.19 5.48 3.02 3.04 8.20 7.48  ns 

–2 0.51 5.33 0.03 1.19 1.31 0.33 5.43 4.81 2.65 2.67 7.19 6.57 ns

16 mA  Std. 0.68 6.65 0.05 1.59 1.75 0.44 6.77 6.04 3.61 3.71 9.13 8.40  ns 

 –1 0.58 5.66 0.04 1.36 1.49 0.38 5.76 5.14 3.07 3.16 7.77 7.14  ns 

–2 0.51 4.97 0.03 1.19 1.31 0.33 5.06 4.51 2.69 2.77 6.82 6.27 ns

24 mA  Std. 0.68 6.25 0.05 1.59 1.75 0.44 6.37 6.02 3.69 4.22 8.73 8.37  ns 

 –1 0.58 5.32 0.04 1.36 1.49 0.38 5.42 5.12 3.14 3.59 7.43 7.12  ns 

–2 0.51 4.67 0.03 1.19 1.31 0.33 4.76 4.49 2.75 3.15 6.52 6.25 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Table 2-122 • 1.5 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ = 100°C, Worst-Case 
VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.68 9.00 0.05 1.79 0.44 7.20 8.82 3.57 2.92 9.55 11.18  ns 

 –1 0.58 7.65 0.04 1.52 0.38 6.12 7.50 3.04 2.48 8.13 9.51  ns 

 –2 0.51 6.72 0.03 1.34 0.33 5.37 6.59 2.67 2.18 7.13 8.35  ns 

4 mA  Std. 0.68 5.71 0.05 1.79 0.44 5.11 5.60 3.94 3.59 7.47 7.96  ns 

 –1 0.58 4.85 0.04 1.52 0.38 4.35 4.77 3.36 3.05 6.36 6.77  ns 

 –2 0.51 4.26 0.03 1.34 0.33 3.82 4.18 2.95 2.68 5.58 5.95  ns 

6 mA  Std. 0.68 5.07 0.05 1.79 0.44 4.80 4.92 4.03 3.76 7.15 7.28 ns

 –1 0.58 4.31 0.04 1.52 0.38 4.08 4.19 3.43 3.20 6.09 6.19 ns

 –2 0.51 3.78 0.03 1.34 0.33 3.58 3.68 3.01 2.81 5.34 5.44 ns

8 mA  Std. 0.68 4.66 0.05 1.79 0.44 4.38 3.77 4.16 4.43 6.74 6.13 ns

–1 0.58 3.96 0.04 1.52 0.38 3.73 3.21 3.54 3.77 5.73 5.21  ns 

 –2 0.51 3.48 0.03 1.34 0.33 3.27 2.82 3.11 3.31 5.03 4.58  ns 

12 mA  Std. 0.68 4.66 0.05 1.79 0.44 4.38 3.77 4.16 4.43 6.74 6.13  ns 

 –1 0.58 3.96 0.04 1.52 0.38 3.73 3.21 3.54 3.77 5.73 5.21  ns 

 –2 0.51 3.48 0.03 1.34 0.33 3.27 2.82 3.11 3.31 5.03 4.58  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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HSTL Class I
High-Speed Transceiver Logic is a general-purpose high-speed 1.5 V bus standard (EIA/JESD8-6).
Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output
buffer.    

Timing Characteristics

Table 2-139 • Minimum and Maximum DC Input and Output Levels

HSTL 
Class I VIL VIH VOL VOH IOL IOH IOSL IOSH IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

8 mA –0.3 VREF – 0.1 VREF + 0.1 3.6 0.4 VCCI – 0.4 8 8 39 32 15 15

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-126 • AC Loading

Table 2-140 • HSTL Class I AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) VTT (typ.) (V) CLOAD (pF)

VREF – 0.1 VREF + 0.1 0.75 0.75 0.75 20

Note: *Measuring point = Vtrip. See Table 2-80 on page 2-153 for a complete table of trip points.

Test Point

20 pF

50

HSTL
Class I

VTT

Table 2-141 • HSTL Class I
Extended Temperature Case Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case 
VCCI = 1.4 V, VREF = 0.75 V

Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

Std. 0.68 3.25 0.05 2.24 0.44 3.41 3.31 5.77 5.67 ns

–1 0.58 2.85 0.04 1.91 0.38 2.90 2.82 4.91 4.83 ns

–2 0.51 2.50 0.03 1.67 0.33 2.55 2.48 4.31 4.24 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Theta-JA
Junction-to-ambient thermal resistance (JA) is determined under standard conditions specified by
JEDEC (JESD-51), but it has little relevance in actual performance of the product. It should be used with
caution but is useful for comparing the thermal performance of one package to another.

A sample calculation showing the maximum power dissipation allowed for the AFS600-FG484 package
under forced convection of 1.0 m/s and 75°C ambient temperature is as follows:

EQ 4

where  

EQ 5

The power consumption of a device can be calculated using the Microsemi power calculator. The
device's power consumption must be lower than the calculated maximum power dissipation by the
package. If the power consumption is higher than the device's maximum allowable power dissipation, a
heat sink can be attached on top of the case, or the airflow inside the system must be increased.

Theta-JB
Junction-to-board thermal resistance (JB) measures the ability of the package to dissipate heat from the
surface of the chip to the PCB. As defined by the JEDEC (JESD-51) standard, the thermal resistance
from junction to board uses an isothermal ring cold plate zone concept. The ring cold plate is simply a
means to generate an isothermal boundary condition at the perimeter. The cold plate is mounted on a
JEDEC standard board with a minimum distance of 5.0 mm away from the package edge.

Theta-JC
Junction-to-case thermal resistance (JC) measures the ability of a device to dissipate heat from the
surface of the chip to the top or bottom surface of the package. It is applicable for packages used with
external heat sinks. Constant temperature is applied to the surface in consideration and acts as a
boundary condition. This only applies to situations where all or nearly all of the heat is dissipated through
the surface in consideration. 

Calculation for Heat Sink 
For example, in a design implemented in an AFS600-FG484 package with 2.5 m/s airflow, the power
consumption value using the power calculator is 3.00 W. The user-dependent Ta and Tj are given as
follows:

From the datasheet:  

EQ 6

JA = 19.00°C/W (taken from Table 3-6 on page 3-8). 

TA = 75.00°C 

TJ = 100.00°C

TA = 70.00°C

JA = 17.00°C/W

JC = 8.28°C/W

Maximum Power Allowed
TJ(MAX) TA(MAX)–

JA
---------------------------------------------=

Maximum Power Allowed
100.00°C 75.00°C–

19.00°C/W
---------------------------------------------------- 1.3 W= =

P
TJ TA–

JA
------------------- 100°C 70°C–

17.00 W
------------------------------------ 1.76 W= = =
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Sequential Cells Dynamic Contribution—PS-CELL

Operating Mode

PS-CELL = NS-CELL * (PAC5 + (1 / 2) * PAC6) * FCLK

NS-CELL is the number of VersaTiles used as sequential modules in the design. When a multi-tile
sequential cell is used, it should be accounted for as 1.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-14 on page 3-23.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PS-CELL = 0 W

Combinatorial Cells Dynamic Contribution—PC-CELL

Operating Mode

PC-CELL = NC-CELL* (1 / 2) * PAC7 * FCLK

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-14 on page 3-23.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PC-CELL = 0 W

Routing Net Dynamic Contribution—PNET

Operating Mode

PNET = (NS-CELL + NC-CELL) * (1 / 2) * PAC8 * FCLK

NS-CELL is the number VersaTiles used as sequential modules in the design.

NC-CELL is the number of VersaTiles used as combinatorial modules in the design.

1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-14 on page 3-23.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PNET = 0 W

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

PINPUTS = NINPUTS * (2 / 2) * PAC9 * FCLK

NINPUTS is the number of I/O input buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-14 on page 3-23.

FCLK is the global clock signal frequency.

Standby Mode and Sleep Mode

PINPUTS = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

POUTPUTS = NOUTPUTS * (2 / 2) * 1 * PAC10 * FCLK

NOUTPUTS is the number of I/O output buffers used in the design.

2 is the I/O buffer toggle rate—guidelines are provided in Table 3-14 on page 3-23.

1 is the I/O buffer enable rate—guidelines are provided in Table 3-15 on page 3-23.

FCLK is the global clock signal frequency.
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