

Welcome to E-XFL.COM

Understanding <u>Embedded - FPGAs (Field</u> <u>Programmable Gate Array)</u>

Embedded - FPGAs, or Field Programmable Gate Arrays, are advanced integrated circuits that offer unparalleled flexibility and performance for digital systems. Unlike traditional fixed-function logic devices, FPGAs can be programmed and reprogrammed to execute a wide array of logical operations, enabling customized functionality tailored to specific applications. This reprogrammability allows developers to iterate designs quickly and implement complex functions without the need for custom hardware.

Applications of Embedded - FPGAs

The versatility of Embedded - FPGAs makes them indispensable in numerous fields. In telecommunications.

Details

E·XFI

Product Status	Active
Number of LABs/CLBs	
Number of Logic Elements/Cells	-
Total RAM Bits	110592
Number of I/O	119
Number of Gates	600000
Voltage - Supply	1.425V ~ 1.575V
Mounting Type	Surface Mount
Operating Temperature	-55°C ~ 100°C (TJ)
Package / Case	256-LBGA
Supplier Device Package	256-FPBGA (17x17)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/m1afs600-fg256k

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Product Ordering Codes

Fusion Device Status

Fusion	Status	Cortex-M1	Status
AFS600	Production	M1AFS600	Production
AFS1500	Production	M1AFS1500	Production

Temperature Grade Offerings

Fusion Devices	AFS600	AFS1500
ARM Cortex-M1 Devices	M1AFS600	M1AFS1500
FG256	C, I, K	C, I, K
FG484	С, І, К	C, I, K

Notes:

1. C = Commercial Temperature Range: 0°C to 85°C Junction. Refer to the commercial Fusion datasheet for details.

2. I = Industrial Temperature Range: -40°C to 100°C Junction. Refer to the commercial Fusion datasheet for details.

3. K = Extended Temperature Range: -55°C to 100°C Junction

No-Glitch MUX (NGMUX)

Positioned downstream from the PLL/CCC blocks, the NGMUX provides a special switching sequence between two asynchronous clock domains that prevents generating any unwanted narrow clock pulses. The NGMUX is used to switch the source of a global between three different clock sources. Allowable inputs are either two PLL/CCC outputs or a PLL/CCC output and a regular net, as shown in Figure 2-24. The GLMUXCFG[1:0] configuration bits determine the source of the CLK inputs (i.e., internal signal or GLC). These are set by SmartGen during design but can also be changed by dynamically reconfiguring the PLL. The GLMUXSEL[1:0] bits control which clock source is passed through the NGMUX to the global network (GL). See Table 2-12.

Figure 2-24 • NGMUX

Table 2-12 •	NGMUX	Configuration	and Selection	Table
--------------	-------	---------------	---------------	-------

GLMUXCFG[1:0]	GLMUXSEL[1:0]		Selected Input Signal	MUX Type
00	Х	0	GLA	2-to-1 GLMUX
	Х	1	GLC	
01	Х	0	GLA	2-to-1 GLMUX
	Х	1	GLINT	

Modes of Operation

There are two read modes and one write mode:

- Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
 onto the RD bus in the same clock cycle following RA and REN valid. The read address is
 registered on the read port clock active edge, and data appears at RD after the RAM access time.
 Setting PIPE to OFF enables this mode.
- Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock delay from the address to the data but enables operation at a much higher frequency. The read address is registered on the read port active clock edge, and the read data is registered and appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.
- Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into the SRAM at the write address when WEN is High. The setup times of the write address, write enables, and write data are minimal with respect to the write clock. Write and read transfers are described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the "FIFO Characteristics" section on page 2-72.

RAM Initialization

Each SRAM block can be individually initialized on power-up by means of the JTAG port using the UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-227 and the *Fusion SRAM/FIFO Blocks* application note). The shift register for a target block can be selected and loaded with the proper bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation.

🔌 Microsemi

ADC Description

The Fusion ADC is a 12-bit SAR ADC. It offers a wide variety of features for different use models. Figure 2-79 shows a block diagram of the Fusion ADC.

- Configurable resolution: 8-bit, 10-bit, and 12-bit mode
- DNL: 0.6 LSB for 10-bit mode
- INL: 0.4 LSB for 10-bit mode
- No missing code
- Internal VAREF = 2.56 V
- Maximum Sample Rate = 600 Ksps
- Power-up calibration and dynamic calibration after every sample to compensate for temperature drift over time

Figure 2-79 • ADC Simplified Block Diagram

ADC Theory of Operation

An analog-to-digital converter is used to capture discrete samples of a continuous analog voltage and provide a discrete binary representation of the signal. Analog-to-digital converters are generally characterized in three ways:

- Input voltage range
- Resolution
- Bandwidth or conversion rate

The input voltage range of an ADC is determined by its reference voltage (VREF). Fusion devices include an internal 2.56 V reference, or the user can supply an external reference of up to 3.3 V. The following examples use the internal 2.56 V reference, so the full-scale input range of the ADC is 0 to 2.56 V.

The resolution (LSB) of the ADC is a function of the number of binary bits in the converter. The ADC approximates the value of the input voltage using 2n steps, where n is the number of bits in the converter. Each step therefore represents VREF÷ 2n volts. In the case of the Fusion ADC configured for 12-bit operation, the LSB is 2.56 V / 4096 = 0.625 mV.

Finally, bandwidth is an indication of the maximum number of conversions the ADC can perform each second. The bandwidth of an ADC is constrained by its architecture and several key performance characteristics.

Device Architecture

Table 2-39 •	Analog	MUX	Channels	(continued)
--------------	--------	-----	----------	-------------

Analog MUX Channel	Signal	Analog Quad Number
16	AV5	Analog Quad 5
17	AC5	1
18	AT5	1
19	AV6	Analog Quad 6
20	AC6	1
21	AT6	1
22	AV7	Analog Quad 7
23	AC7	1
24	AT7	1
25	AV8	Analog Quad 8
26	AC8	1
27	AT8	1
28	AV9	Analog Quad 9
29	AC9	1
30	AT9	1
31	Internal temperature monitor	

The ADC can be powered down independently of the FPGA core, as an additional control or for powersaving considerations, via the PWRDWN pin of the Analog Block. The PWRDWN pin controls only the comparators in the ADC.

ADC Modes

The Fusion ADC can be configured to operate in 8-, 10-, or 12-bit modes, power-down after conversion, and dynamic calibration. This is controlled by MODE[3:0], as defined in Table 2-40.

The output of the ADC is the RESULT[11:0] signal. In 8-bit mode, the Most Significant 8 Bits RESULT[11:4] are used as the ADC value and the Least Significant 4 Bits RESULT[3:0] are logical '0's. In 10-bit mode, RESULT[11:2] are used the ADC value and RESULT[1:0] are logical 0s.

Name	Bits	Function
MODE	3	 0 – Internal calibration after every conversion; two ADCCLK cycles are used after the conversion. 1 – No calibration after every conversion
MODE	2	0 – Power-down after conversion 1 – No Power-down after conversion
MODE	1:0	00 – 10-bit 01 – 12-bit 10 – 8-bit 11 – Unused

Table 2-40 • Mode Bits Function

Integrated Voltage Reference

The Fusion device has an integrated on-chip 2.56 V reference voltage for the ADC. The value of this reference voltage was chosen to make the prescaling and postscaling factors for the prescaler blocks change in a binary fashion. However, if desired, an external reference voltage of up to 3.3 V can be

connected between the VAREF and ADCGNDREF pins. The VAREFSEL control pin is used to select the reference voltage.

Table 2-41 • VAREF Bit Function

Name	Bit	Function
VAREF	0	Reference voltage selection
		0 – Internal voltage reference selected. VAREF pin outputs 2.56 V.
		1 – Input external voltage reference from VAREF and ADCGNDREF

ADC Clock

The speed of the ADC depends on its internal clock, ADCCLK, which is not accessible to users. The ADCCLK is derived from SYSCLK. Input signal TVC[7:0], Time Divider Control, determines the speed of the ADCCLK in relationship to SYSCLK, based on EQ 15.

$$t_{ADCCLK} = 4 \times (1 + TVC) \times t_{SYSCLK}$$

EQ 15

TVC: Time Divider Control (0–255)

 t_{ADCCLK} is the period of ADCCLK, and must be between 0.5 MHz and 10 MHz t_{SYSCLK} is the period of SYSCLK

Table 2-42 • TVC Bits Function

Name	Bits	Function
TVC	[7:0]	SYSCLK divider control

The frequency of ADCCLK, f_{ADCCLK}, must be within 0.5 Hz to 10 MHz.

The inputs to the ADC are synchronized to SYSCLK. A conversion is initiated by asserting the ADCSTART signal on a rising edge of SYSCLK. Figure 2-89 on page 2-111 and Figure 2-90 on page 2-112 show the timing diagram for the ADC.

Acquisition Time or Sample Time Control

Acquisition time (t_{SAMPLE}) specifies how long an analog input signal has to charge the internal capacitor array. Figure 2-87 shows a simplified internal input sampling mechanism of a SAR ADC.

Figure 2-87 • Simplified Sample and Hold Circuitry

The internal impedance (Z_{INAD}), external source resistance (R_{SOURCE}), and sample capacitor (C_{INAD}) form a simple RC network. As a result, the accuracy of the ADC can be affected if the ADC is given insufficient time to charge the capacitor. To resolve this problem, you can either reduce the source resistance or increase the sampling time by changing the acquisition time using the STC signal.

EQ 16 through EQ 18 can be used to calculate the acquisition time required for a given input. The STC signal gives the number of sample periods in ADCCLK for the acquisition time of the desired signal. If the actual acquisition time is higher than the STC value, the settling time error can affect the accuracy of the ADC, because the sampling capacitor is only partially charged within the given sampling cycle. Example acquisition times are given in Table 2-43 and Table 2-44. When controlling the sample time for the ADC

Microsemi

Device Architecture

Table 2-49 • Analog Channel Specifications (continued)

Extended Temperature Range Conditions, $T_J = 100^{\circ}C$ (unless noted otherwise), Typical: VCC33A = 3.3 V, VCC = 1.5 V

Parameter	Description	Condition	Min.	Тур.	Max.	Units
Temperature Monitor Using Analog Pad AT						
External	Resolution	8-bit ADC	4			°C
Temperature		10-bit ADC 1			°C	
(external diode		12-bit ADC		0.25		
2N3904,	Systematic Offset ⁵	AFS090, AFS250, uncalibrated ⁷		5		°C
$I_{\rm J} = 25^{\circ} {\rm C}$)		AFS090, AFS250, calibrated ⁷		0		°C
		AFS600, AFS1500, uncalibrated ⁷		11		°C
		AFS600, AFS1500, calibrated ⁷		0		°C
	Accuracy			±3	±5	°C
	External Sensor Source Current	High level, TMSTBx = 0		10		μA
		Low level, TMSTBx = 1		100		μA
	Max Capacitance on AT pad				1.3	nF
Internal	Resolution	8-bit ADC	4			°C
Temperature Monitor		10-bit ADC	1			°C
Wornton		12-bit ADC	0.25			°C
	Systematic Offset ⁵	AFS090, AFS250, uncalibrated ⁷	5		°C	
		AFS090, AFS250, calibrated ⁷	0		°C	
		AFS600, AFS1500 uncalibrated ⁷	11		°C	
		AFS600, AFS1500 calibrated ⁷		0		°C
	Accuracy			±3	±5	°C
t _{TMSHI}	Strobe High time		10		105	μs
t _{TMSLO}	Strobe Low time		5			μs
t _{TMSSET}	Settling time		5			μs

Notes:

1. VRSM is the maximum voltage drop across the current sense resistor.

- Analog inputs used as digital inputs can tolerate the same voltage limits as the corresponding analog pad. There is no reliability concern on digital inputs as long as V_{IND} does not exceed these limits.
- 3. VIND is limited to VCC33A + 0.2 to allow reaching 10 MHz input frequency.
- 4. An averaging of 1,024 samples (LPF setting in Analog System Builder) is required and the maximum capacitance allowed across the AT pins is 500 pF.
- 5. The temperature offset is a fixed positive value.
- 6. The high current mode has a maximum power limit of 20 mW. Appropriate current limit resistors must be used, based on voltage on the pad.
- 7. When using SmartGen Analog System Builder, CalibIP is required to obtain 0 offset. For further details on CalibIP, refer to the "Temperature, Voltage, and Current Calibration in Fusion FPGAs" chapter of the Fusion FPGA Fabric User's Guide.

Device Architecture

Specification	Performance Up To
LVTTL/LVCMOS 3.3 V	200 MHz
LVCMOS 2.5 V	250 MHz
LVCMOS 1.8 V	200 MHz
LVCMOS 1.5 V	130 MHz
PCI	200 MHz
PCI-X	200 MHz
HSTL-I	300 MHz
HSTL-II	300 MHz
SSTL2-I	300 MHz
SSTL2-II	300 MHz
SSTL3-I	300 MHz
SSTL3-II	300 MHz
GTL+ 3.3 V	300 MHz
GTL+ 2.5 V	300 MHz
GTL 3.3 V	300 MHz
GTL 2.5 V	300 MHz
LVDS	350 MHz
LVPECL	300 MHz

Table 2-73 • Maximum I/O Frequency for Single-Ended, Voltage-Referenced, and Differential I/Os; All I/O Bank Types (maximum drive strength and high slew selected)

Table 2-74 • Maximum I/O Frequency for Single-Ended and Differential I/Os for Advanced I/Os (maximum drive strength and high slew selected)

Specification	Performance Up To
LVTTL/LVCMOS 3.3 V	250 MHz
LVCMOS 2.5 V	300 MHz
LVCMOS 1.8 V	250 MHz
LVCMOS 1.5 V	180 MHz
PCI	300 MHz
PCI-X	300 MHz
LVDS	350 MHz
LVPECL	300 MHz

Microsemi

Device Architecture

Table 2-115 • 1.8 V LVCMOS Low Slew, Extended Temperature Case Conditions: T_J = 100°C, Worst-Case VCC = 1.425 V, Worst-Case VCCI = 1.7 V Applicable to Advanced I/O Banks

Drive Strength	Speed												
(mA)	Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
2 mA	Std.	0.68	16.70	0.05	1.38	0.44	14.88	16.38	2.93	1.69	17.24	18.73	ns
	-1	0.58	14.21	0.04	1.18	0.38	12.66	13.93	2.49	1.44	14.67	15.94	ns
	-2	0.51	12.47	0.03	1.03	0.33	11.11	12.23	2.19	1.26	12.87	13.99	ns
4 mA	Std.	0.68	12.01	0.05	1.38	0.44	10.98	11.05	3.40	2.88	13.34	13.41	ns
	-1	0.58	10.22	0.04	1.18	0.38	9.34	9.40	2.90	2.45	11.34	11.40	ns
	-2	0.51	8.97	0.03	1.03	0.33	8.20	8.25	2.54	2.15	9.96	10.01	ns
6 mA	Std.	0.68	9.46	0.05	1.38	0.44	8.65	8.27	3.73	3.45	11.00	10.63	ns
	-1	0.58	8.05	004	1.18	0.38	7.35	7.03	3.17	2.94	9.36	9.04	ns
	-2	0.51	7.06	0.03	1.03	0.33	6.46	6.17	2.78	2.58	8.22	7.94	ns
8 mA	Std.	0.68	7.91	0.05	1.38	0.44	8.06	7.70	3.80	3.60	10.42	10.05	ns
	-1	0.58	6.73	0.04	1.18	0.38	6.85	6.55	3.23	3.06	8.86	8.55	ns
	-2	0.51	5.91	0.03	1.03	0.33	6.02	5.75	2.84	2.69	7.78	7.51	ns
12 mA	Std.	0.68	7.69	0.05	1.38	0.44	7.63	7.69	3.91	4.17	9.99	10.05	ns
	-1	0.58	6.54	0.04	1.18	0.38	6.49	6.54	3.32	3.54	8.50	8.55	ns
	-2	0.51	5.74	0.03	1.03	0.33	5.70	5.74	2.92	3.11	7.46	7.50	ns
16 mA	Std.	0.68	7.69	0.05	1.38	0.44	7.63	7.69	3.91	4.17	9.99	10.05	ns
	-1	0.58	6.54	0.04	1.18	0.38	6.49	6.54	3.32	3.54	8.50	8.55	ns
	-2	0.51	5.74	0.03	1.03	0.33	5.70	5.74	2.92	3.11	7.46	7.50	ns

3.3 V GTL+

Gunning Transceiver Logic Plus is a high-speed bus standard (JESD8-3). It provides a differential amplifier input buffer and an open-drain output buffer. The VCCI pin should be connected to 3.3 V.

3.3 V GTL+		VIL	VIH		V _{OL}	VOH	IOL	IOH	IOSL	IOSH	IIL ³	IIH ⁴
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ²	μA ²
35 mA	-0.3	VREF – 0.1	VREF + 0.1	3.6	0.6	-	35	35	181	268	15	15

Table 2-133 • Minimum and Maximum DC Input and Output Levels

Notes:

1. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

2. Currents are measured at 85°C junction temperature.

3. I_{II} is the input leakage current per I/O pin over recommended operation conditions where -0.3 V < VIN < VIL.

 I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

Figure 2-124 • AC Loading

Table 2-134 • 3.3 V GTL+ AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	CLOAD (pF)
VREF – 0.1	VREF + 0.1	1.0	1.0	1.5	10

Note: *Measuring point = V_{trip} . See Table 2-80 on page 2-153 for a complete table of trip points.

Timing Characteristics

Table 2-135 • 3.3 V GTL+

Extended Temperature Case Conditions: T_J = 100°C, Worst Case VCC = 1.425 V, Worst Case VCCI = 3.0 V, VREF = 1.0 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.68	2.17	0.05	1.68	0.44	2.21	2.17			4.57	4.53	ns
-1	0.58	1.84	0.04	1.43	0.38	1.88	1.84			3.88	3.85	ns
-2	0.51	1.62	0.03	1.25	0.33	1.65	1.62			3.41	3.38	ns

SSTL2 Class I

Stub-Speed Terminated Logic for 2.5 V memory bus standard (JESD8-9). Fusion devices support Class I. This provides a differential amplifier input buffer and a push-pull output buffer.

SSTL2 Class I		VIL	VIH		VOL	VOH	IOL	IOH	IOSL	IOSH	IIL ¹	IIH ²
Drive Strength	Min. V	Max. V	Min. V	Max. V	Max. V	Min. V	mA	mA	Max. mA ³	Max. mA ³	μA ⁴	μA ⁴
17 mA	-0.3	VREF – 0.2	VREF + 0.2	3.6	0.54	VCCI – 0.62	17	17	87	83	15	15

Notes:

1. I_{IL} is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

 I_{IH} is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

Figure 2-128 • AC Loading

Table 2-146 • SSTL2 Class I AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V)	Input High (V)	Measuring Point* (V)	VREF (typ.) (V)	VTT (typ.) (V)	CLOAD (pF)
VREF – 0.2	VREF + 0.2	1.25	1.25	1.25	30

Note: *Measuring point = Vtrip. See Table 2-80 on page 2-153 for a complete table of trip points.

Timing Characteristics

Table 2-147 • SSTL 2 Class IExtended Temperature Range Conditions: T_J = 100°C, Worst-Case VCC = 1.425 V,Worst-Case VCCI = 2.3 V, VREF = 1.25 V

Speed Grade	t _{DOUT}	t _{DP}	t _{DIN}	t _{PY}	t _{EOUT}	t _{ZL}	t _{zH}	t _{LZ}	t _{HZ}	t _{ZLS}	t _{zHS}	Units
Std.	0.68	2.24	0.05	1.41	0.44	2.28	1.95			4.64	4.31	ns
-1	0.58	1.91	0.04	1.20	0.38	1.94	1.66			3.95	3.66	ns
-2	0.51	1.68	0.03	1.05	0.33	1.71	1.45			3.47	3.22	ns

Extended Temperature Fusion Family of Mixed Signal FPGAs

Figure 2-137 • Input Register Timing Diagram

Input Register

Timing Characteristics

Table 2-167 • Input Data Register Propagation DelaysExtended Temperature Case Conditions: TJ = 100°C, Worst-Case VCC = 1.425 V

Parameter	Description	-2	-1	Std.	Units
t _{ICLKQ}	Clock-to-Q of the Input Data Register	0.25	0.28	0.33	ns
t _{ISUD}	Data Setup Time for the Input Data Register	0.27	0.31	0.36	ns
t _{IHD}	Data Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ISUE}	Enable Setup Time for the Input Data Register	0.38	0.44	0.51	ns
t _{IHE}	Enable Hold Time for the Input Data Register	0.00	0.00	0.00	ns
t _{ICLR2Q}	Asynchronous Clear-to-Q of the Input Data Register	0.47	0.53	0.63	ns
t _{IPRE2Q}	Asynchronous Preset-to-Q of the Input Data Register	0.47	0.53	0.63	ns
t _{IREMCLR}	Asynchronous Clear Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECCLR}	Asynchronous Clear Recovery Time for the Input Data Register	0.23	0.26	0.31	ns
t _{IREMPRE}	Asynchronous Preset Removal Time for the Input Data Register	0.00	0.00	0.00	ns
t _{IRECPRE}	Asynchronous Preset Recovery Time for the Input Data Register	0.23	0.26	0.31	ns
t _{IWCLR}	Asynchronous Clear Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{IWPRE}	Asynchronous Preset Minimum Pulse Width for the Input Data Register	0.22	0.25	0.30	ns
t _{ICKMPWH}	Clock Minimum Pulse Width High for the Input Data Register	0.36	0.41	0.48	ns
t _{ICKMPWL}	Clock Minimum Pulse Width Low for the Input Data Register	0.32	0.37	0.43	ns

Symbol	Paramete	r ²	Ext. Temperature	Units	
Т _Ј	Junction temperature		-55 to +100	°C	
VCC	1.5 V DC core supply voltage		1.425 to 1.575	V	
VJTAG	JTAG DC voltage		1.4 to 3.6	V	
VPUMP	Programming voltage	Programming mode ³	3.15 to 3.45	V	
		Operation ⁴	0 to 3.6	V	
VCCPLL	Analog power supply (PLL)		1.425 to 1.575	V	
VCCI	1.5 V DC supply voltage		1.425 to 1.575	V	
	1.8 V DC supply voltage		1.7 to 1.9	V	
	2.5 V DC supply voltage	V DC supply voltage			
	3.3 V DC supply voltage	/ DC supply voltage			
	LVDS differential I/O	DS differential I/O			
	LVPECL differential I/O	3.0 to 3.6	V		
VCC33A	+3.3 V power supply	2.97 to 3.63	V		
VCC33PMP	+3.3 V power supply		2.97 to 3.63	V	
VAREF	Voltage reference for ADC		2.527 to 2.593	V	
VCC15A ⁶	Digital power supply for the analog	system	1.425 to 1.575	V	
VCCNVM	Embedded flash power supply		1.425 to 1.575	V	
VCCOSC	Oscillator power supply		2.97 to 3.63	V	
AV ⁵	Unpowered, ADC reset asserted o	r unconfigured	-10.5 to 11.6	V	
	Analog input (+16 V to +2 V presca	aler range)	-0.3 to 11.6	V	
	Analog input (+1 V to + 0.125 V pr	escaler range)	-0.3 to 3.6	V	
	Analog input (–16 V to –2 V presca	aler range) ⁷	-10.5 to 0.3	V	
	Analog input (-1 V to -0.125 V pre	escaler range) ⁷	-3.6 to 0.3	V	
	Analog input (direct input to ADC)		-0.3 to 3.6	V	
	Analog input (positive current mon	itor) ⁸	-0.3 to 11.6	V	
	Analog input (negative current mor	nitor) ⁷	-10.5 to 0.3	V	
	Digital input		-0.3 to 11.6	V	

Table 3-2 •	Recommended	Operating	Conditions ¹
-------------	-------------	-----------	-------------------------

Notes:

- 1. The ranges given here are for power supplies only. The recommended input voltage ranges specific to each I/O standard are given in Table 2-85 on page 2-158.
- 2. All parameters representing voltages are measured with respect to GND unless otherwise specified.
- 3. The programming temperature range supported is $T_{ambient} = 0^{\circ}C$ to 85°C.
- 4. VPUMP can be left floating during normal operation (not programming mode).
- 5. The input voltage may overshoot by up to 500 mV above the Recommended Maximum (150 mV in Direct mode), provided the duration of the overshoot is less than 50% of the operating lifetime of the device.
- 6. Violating the VCC15A recommended voltage supply during an embedded flash program cycle can corrupt the page being programmed.
- 7. Negative input is not supported between -40°C and -55°C.
- 8. Positive input is not supported between –40°C and –55°C.

Calculating Power Dissipation

Quiescent Supply Current

Table 3-8 • AFS1500 Quiescent Supply Current Characteristics

Parameter	Description	Conditions	Temp.	Min.	Тур.	Max.	Unit
ICC ¹	1.5 V quiescent current	Operational standby ⁴ , VCC = 1.575 V	T _J = 25°C		20	40	mA
			T _J = 85°C		32	65	mA
			T _J = 100°C		59	120	mA
		Standby mode ⁵ or Sleep mode ⁶ , VCC = 0 V			0	0	μA
ICC33 ²	3.3 V analog supplies current	Operational standby ⁴ , VCC33 = 3.63 V	T _J = 25°C		9.8	13	mA
			T _J = 85°C		10.7	14	mA
			T _J = 100°C		10.8	15	mA
		Operational standby, only Analog Quad and –3.3 V output ON, VCC33 = 3.63 V	T _J = 25°C		0.31	2	mA
			T _J = 85°C		0.35	2	mA
			T _J = 100°C		0.45	2	mA
		Standby mode ⁵ , VCC33 = 3.63 V	T _J = 25°C		2.9	3.6	mA
			T _J = 85°C		2.9	4	mA
			T _J = 100°C		3.3	6	mA
		Sleep mode ⁶ , VCC33 = 3.63 V	T _J = 25°C		17	19	μA
			T _J = 85°C		18	20	μA
			T _J = 100°C		24	25	μA
ICCI ³	I/O quiescent current	Operational standby ⁴ , Standby mode, and Sleep Mode ⁶ , VCCIx = 3.63 V	T _J = 25°C		417	649	μA
			T _J = 85°C		417	649	μA
			T _J = 100°C		417	649	μA

Notes:

1. ICC is the 1.5 V power supplies, ICC and ICC15A.

2. ICC33A includes ICC33A, ICC33PMP, and ICCOSC.

3. ICCI includes all ICCI0, ICCI1, ICCI2, and ICCI4.

4. Operational standby is when the Fusion device is powered up, all blocks are used, no I/O is toggling, Voltage Regulator is loaded with 200 mA, VCC33PMP is ON, XTAL is ON, and ADC is ON.

5. XTAL is configured as high gain, VCC = VJTAG = VPUMP = 0 V.

6. Sleep Mode, VCC = VJTAG = VPUMP = 0 V. Sleep mode is not supported between -40°C and -55°C

Methodology

Total Power Consumption—P_{TOTAL}

Operating Mode, Standby Mode, and Sleep Mode

$P_{TOTAL} = P_{STAT} + P_{DYN}$

 $\mathsf{P}_{\mathsf{STAT}}$ is the total static power consumption.

P_{DYN} is the total dynamic power consumption.

Total Static Power Consumption—P_{STAT}

Operating Mode

 $\label{eq:pstat} \begin{array}{l} \mathsf{P}_{\mathsf{STAT}} = \mathsf{PDC1} + (\mathsf{N}_{\mathsf{NVM-BLOCKS}} * \mathsf{PDC4}) + \mathsf{PDC5+} (\mathsf{N}_{\mathsf{QUADS}} * \mathsf{P}_{\mathsf{DC6}}) + (\mathsf{N}_{\mathsf{INPUTS}} * \mathsf{P}_{\mathsf{DC7}}) + (\mathsf{N}_{\mathsf{OUTPUTS}} * \mathsf{P}_{\mathsf{OUTPUTS}}) + (\mathsf{N}_{\mathsf{OUTPUTS}} *$

N_{NVM-BLOCKS} is the number of NVM blocks available in the device.

N_{QUADS} is the number of Analog Quads used in the design.

N_{INPUTS} is the number of I/O input buffers used in the design.

N_{OUTPUTS} is the number of I/O output buffers used in the design.

N_{PLLS} is the number of PLLs available in the device.

Standby Mode

P_{STAT} = PDC2

Sleep Mode

P_{STAT} = PDC3

Total Dynamic Power Consumption—P_{DYN}

Operating Mode

P_{DYN} = P_{CLOCK} + P_{S-CELL} + P_{C-CELL} + P_{NET} + P_{INPUTS} + P_{OUTPUTS} + P_{MEMORY} + P_{PLL} + P_{NVM}+ P_{XTL-OSC} + P_{RC-OSC} + P_{AB}

Standby Mode

 $P_{DYN} = P_{XTL-OSC}$

Sleep Mode

 $P_{DYN} = 0 W$

Global Clock Dynamic Contribution—P_{CLOCK}

Operating Mode

 $P_{CLOCK} = (PAC1 + N_{SPINE} * PAC2 + N_{ROW} * PAC3 + N_{S-CELL} * PAC4) * F_{CLK}$

N_{SPINE} is the number of global spines used in the user design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

N_{ROW} is the number of VersaTile rows used in the design—guidelines are provided in the "Spine Architecture" section of the Global Resources chapter in the *Fusion and Extended Temperature Fusion FPGA Fabric User's Guide*.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

N_{S-CELL} is the number of VersaTiles used as sequential modules in the design.

Standby Mode and Sleep Mode

 $P_{CLOCK} = 0 W$

Sequential Cells Dynamic Contribution—P_{S-CELL}

Operating Mode

 $P_{S-CELL} = N_{S-CELL} * (PAC5 + (\alpha_1 / 2) * PAC6) * F_{CLK}$

 N_{S-CELL} is the number of VersaTiles used as sequential modules in the design. When a multi-tile sequential cell is used, it should be accounted for as 1.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-14 on page 3-23.

 $\mathsf{F}_{\mathsf{CLK}}$ is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{S-CELL} = 0 W$

Combinatorial Cells Dynamic Contribution—P_{C-CELL}

Operating Mode

 $P_{C-CELL} = N_{C-CELL} * (\alpha_1 / 2) * PAC7 * F_{CLK}$

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-14 on page 3-23.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{C-CELL} = 0 W$

Routing Net Dynamic Contribution-P_{NET}

Operating Mode

 $\mathsf{P}_{\mathsf{NET}} = (\mathsf{N}_{\mathsf{S}\text{-}\mathsf{CELL}} + \mathsf{N}_{\mathsf{C}\text{-}\mathsf{CELL}}) * (\alpha_1 / 2) * \mathsf{PAC8} * \mathsf{F}_{\mathsf{CLK}}$

N_{S-CELL} is the number VersaTiles used as sequential modules in the design.

N_{C-CELL} is the number of VersaTiles used as combinatorial modules in the design.

 α_1 is the toggle rate of VersaTile outputs—guidelines are provided in Table 3-14 on page 3-23.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

 $P_{NET} = 0 W$

I/O Input Buffer Dynamic Contribution—PINPUTS

Operating Mode

 $P_{INPUTS} = N_{INPUTS} * (\alpha_2 / 2) * PAC9 * F_{CLK}$

N_{INPUTS} is the number of I/O input buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-14 on page 3-23.

F_{CLK} is the global clock signal frequency.

Standby Mode and Sleep Mode

P_{INPUTS} = 0 W

I/O Output Buffer Dynamic Contribution—POUTPUTS

Operating Mode

 $P_{OUTPUTS} = N_{OUTPUTS} * (\alpha_2 / 2) * \beta_1 * PAC10 * F_{CLK}$

N_{OUTPUTS} is the number of I/O output buffers used in the design.

 α_2 is the I/O buffer toggle rate—guidelines are provided in Table 3-14 on page 3-23.

 β_1 is the I/O buffer enable rate—guidelines are provided in Table 3-15 on page 3-23.

F_{CLK} is the global clock signal frequency.

4 – Pin Assignments

FG256

Note

For Package Manufacturing and Environmental information, visit the Resource Center at www.microsemi.com/soc/products/solutions/package/default.aspx.

Pin Assignments

FG484			FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function AFS1500 Functi		
H13	GND	GND	K4	IO75NDB4V0	IO110NDB4V0	
H14	VCCIB1	VCCIB1	K5	GND	GND	
H15	GND	GND	K6	NC	IO104NDB4V0	
H16	GND	GND	K7	NC	IO111NDB4V0	
H17	NC	IO53NDB2V0	K8	GND	GND	
H18	IO38PDB2V0	IO57PDB2V0	K9	VCC	VCC	
H19	GCA2/IO39PDB2V0	GCA2/IO59PDB2V0	K10	GND	GND	
H20	VCCIB2	VCCIB2	K11	VCC	VCC	
H21	IO37NDB2V0	IO54NDB2V0	K12	GND	GND	
H22	IO37PDB2V0	IO54PDB2V0	K13	VCC	VCC	
J1	NC	IO112PPB4V0	K14	GND	GND	
J2	IO76NDB4V0	IO113NDB4V0	K15	GND	GND	
J3	GFB2/IO74PDB4V0	GFB2/IO109PDB4V0	K16	IO40NDB2V0	IO60NDB2V0	
J4	GFA2/IO75PDB4V0	GFA2/IO110PDB4V0	K17	NC	IO58PDB2V0	
J5	NC	IO112NPB4V0	K18	GND	GND	
J6	NC	IO104PDB4V0	K19	NC	IO68NPB2V0	
J7	NC	IO111PDB4V0	K20	IO41NDB2V0	IO61NDB2V0	
J8	VCCIB4	VCCIB4	K21	GND	GND	
J9	GND	GND	K22	IO42NDB2V0	IO56NDB2V0	
J10	VCC	VCC	L1	IO73NDB4V0	IO108NDB4V0	
J11	GND	GND	L2	VCCOSC	VCCOSC	
J12	VCC	VCC	L3	VCCIB4	VCCIB4	
J13	GND	GND	L4	XTAL2	XTAL2	
J14	VCC	VCC	L5	GFC1/IO72PDB4V0	GFC1/IO107PDB4V0	
J15	VCCIB2	VCCIB2	L6	VCCIB4	VCCIB4	
J16	GCB2/IO40PDB2V0	GCB2/IO60PDB2V0	L7	GFB1/IO71PDB4V0	GFB1/IO106PDB4V0	
J17	NC	IO58NDB2V0	L8	VCCIB4	VCCIB4	
J18	IO38NDB2V0	IO57NDB2V0	L9	GND	GND	
J19	IO39NDB2V0	IO59NDB2V0	L10	VCC	VCC	
J20	GCC2/IO41PDB2V0	GCC2/IO61PDB2V0	L11	GND	GND	
J21	NC	IO55PSB2V0	L12	VCC	VCC	
J22	IO42PDB2V0	IO56PDB2V0	L13	GND	GND	
K1	GFC2/IO73PDB4V0	GFC2/IO108PDB4V0	L14	VCC	VCC	
K2	GND	GND	L15	VCCIB2	VCCIB2	
K3	IO74NDB4V0	IO109NDB4V0	L16	IO48PDB2V0	IO70PDB2V0	

static Microsemi.

Extended	Temperature	Fusion	Family of	Mixed 3	Sianal	FPGAs
Externaca	remperature	1 401011	r anning Or	WIINCU V	oigiiui	110/10

FG484			FG484			
Pin Number	AFS600 Function	AFS1500 Function	Pin Number	AFS600 Function	AFS1500 Function	
V3	VCCIB4	VCCIB4	W16	GNDA	GNDA	
V4	GEA1/IO61PDB4V0	GEA1/IO88PDB4V0	W17	AV9	AV9	
V5	GEA0/IO61NDB4V0	GEA0/IO88NDB4V0	W18	VCCIB2	VCCIB2	
V6	GND	GND	W19	NC	IO68PPB2V0	
V7	VCC33PMP	VCC33PMP	W20	ТСК	ТСК	
V8	NC	NC	W21	GND	GND	
V9	VCC33A	VCC33A	W22	NC	IO76PPB2V0	
V10	AG4	AG4	Y1	GEC2/IO60PDB4V0	GEC2/IO87PDB4V0	
V11	AT4	AT4	Y2	IO60NDB4V0	IO87NDB4V0	
V12	ATRTN2	ATRTN2	Y3	GEA2/IO58PDB4V0	GEA2/IO85PDB4V0	
V13	AT5	AT5	Y4	IO58NDB4V0	IO85NDB4V0	
V14	VCC33A	VCC33A	Y5	NCAP	NCAP	
V15	NC	NC	Y6	AC0	AC0	
V16	VCC33A	VCC33A	Y7	VCC33A	VCC33A	
V17	GND	GND	Y8	AC1	AC1	
V18	TMS	TMS	Y9	AC2	AC2	
V19	VJTAG	VJTAG	Y10	VCC33A	VCC33A	
V20	VCCIB2	VCCIB2	Y11	AC3	AC3	
V21	TRST	TRST	Y12	AC6	AC6	
V22	TDO	TDO	Y13	VCC33A	VCC33A	
W1	NC	IO93PDB4V0	Y14	AC7	AC7	
W2	GND	GND	Y15	AC8	AC8	
W3	NC	IO93NDB4V0	Y16	VCC33A	VCC33A	
W4	GEB2/IO59PDB4V0	GEB2/IO86PDB4V0	Y17	AC9	AC9	
W5	IO59NDB4V0	IO86NDB4V0	Y18	ADCGNDREF	ADCGNDREF	
W6	AV0	AV0	Y19	PTBASE	PTBASE	
W7	GNDA	GNDA	Y20	GNDNVM	GNDNVM	
W8	AV1	AV1	Y21	VCCNVM	VCCNVM	
W9	AV2	AV2	Y22	VPUMP	VPUMP	
W10	GNDA	GNDA		-		
W11	AV3	AV3				
W12	AV6	AV6				
W13	GNDA	GNDA				
W14	AV7	AV7				
W15	AV8	AV8				