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Extended Temperature Fusion Family of Mixed Signal FPGAs
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. Flash-
based Fusion devices simplify total system design and reduce cost and design risk, while increasing
system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Last Known State – I/O is set to the last value that was driven out prior to entering the
programming mode, and then held at that value during programming

Z -Tristate: I/O is tristated

6. Click OK to return to the FlashPoint – Programming File Generator window.

Note: I/O States During programming are saved to the ADB and resulting programming files after
completing programming file generation.

Figure 1-3 • I/O States During Programming Window
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Device Architecture
The system application, Level 3, is the larger user application that utilizes one or more applets. Designing
at the highest level of abstraction supported by the Fusion technology stack, the application can be easily
created in FPGA gates by importing and configuring multiple applets.

In fact, in some cases an entire FPGA system design can be created without any HDL coding.

An optional MCU enables a combination of software and HDL-based design methodologies. The MCU
can be on-chip or off-chip as system requirements dictate. System portioning is very flexible, allowing the
MCU to reside above the applets or to absorb applets, or applets and backbone, if desired.

The Fusion technology stack enables a very flexible design environment. Users can engage in design
across a continuum of abstraction from very low to very high.

Core Architecture

VersaTile
Based upon successful ProASIC3/E logic architecture, Fusion devices provide granularity comparable to
gate arrays. The Fusion device core consists of a sea-of-VersaTiles architecture.

As illustrated in Figure 2-2, there are four inputs in a logic VersaTile cell, and each VersaTile can be
configured using the appropriate flash switch connections:

• Any 3-input logic function

• Latch with clear or set

• D-flip-flop with clear or set

• Enable D-flip-flop with clear or set (on a 4th input)

VersaTiles can flexibly map the logic and sequential gates of a design. The inputs of the VersaTile can be
inverted (allowing bubble pushing), and the output of the tile can connect to high-speed, very-long-line
routing resources. VersaTiles and larger functions are connected with any of the four levels of routing
hierarchy.

When the VersaTile is used as an enable D-flip-flop, the SET/CLR signal is supported by a fourth input,
which can only be routed to the core cell over the VersaNet (global) network.

The output of the VersaTile is F2 when the connection is to the ultra-fast local lines, or YL when the
connection is to the efficient long-line or very-long-line resources (Figure 2-2). 

Note: *This input can only be connected to the global clock distribution network.

Figure 2-2 • Fusion Core VersaTile
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Device Architecture
Read Operation
Read operations are designed to read data from the FB Array, Page Buffer, Block Buffer, or status
registers. Read operations support a normal read and a read-ahead mode (done by asserting
READNEXT). Also, the timing for Read operations is dependent on the setting of PIPE.

The following diagrams illustrate representative timing for Non-Pipe Mode (Figure 2-38) and Pipe Mode
(Figure 2-39) reads of the flash memory block interface.  

Figure 2-38 • Read Waveform (Non-Pipe Mode, 32-bit access)

Figure 2-39 • Read Waveform (Pipe Mode, 32-bit access)
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-58 • FIFO Reset

Figure 2-59 • FIFO EMPTY Flag and AEMPTY Flag Assertion
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-63 • Analog Block Macro
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Device Architecture
Analog-to-Digital Converter Block
At the heart of the Fusion analog system is a programmable Successive Approximation Register (SAR)
ADC. The ADC can support 8-, 10-, or 12-bit modes of operation. In 12-bit mode, the ADC can resolve
500 ksps. All results are MSB-justified in the ADC. The input to the ADC is a large 32:1 analog input
multiplexer. A simplified block diagram of the Analog Quads, analog input multiplexer, and ADC is shown
in Figure 2-78 on page 2-96. The ADC offers multiple self-calibrating modes to ensure consistent high
performance both at power-up and during runtime. 

Figure 2-78 • ADC Block Diagram
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Device Architecture
TUE – Total Unadjusted Error

TUE is a comprehensive specification that includes linearity errors, gain error, and offset error. It is the
worst-case deviation from the ideal device performance. TUE is a static specification (Figure 2-86).

ADC Operation
Once the ADC has powered up and been released from reset, ADCRESET, the ADC will initiate a
calibration routine designed to provide optimal ADC performance. The Fusion ADC offers a robust
calibration scheme to reduce integrated offset and linearity errors. The offset and linearity errors of the
main capacitor array are compensated for with an 8-bit calibration capacitor array. The offset/linearity
error calibration is carried out in two ways. First, a power-up calibration is carried out when the ADC
comes out of reset. This is initiated by the CALIBRATE output of the Analog Block macro and is a fixed
number of ADC_CLK cycles (3,840 cycles), as shown in Figure 2-88 on page 2-111. In this mode, the
linearity and offset errors of the capacitors are calibrated. 

To further compensate for drift and temperature-dependent effects, every conversion is followed by post-
calibration of either the offset or a bit of the main capacitor array. The post-calibration ensures that, over
time and with temperature, the ADC remains consistent. 

After both calibration and the setting of the appropriate configurations, as explained above, the ADC is
ready for operation. Setting the ADCSTART signal high for one clock period will initiate the sample and
conversion of the analog signal on the channel as configured by CHNUMBER[4:0]. The status signals
SAMPLE and BUSY will show when the ADC is sampling and converting (Figure 2-90 on page 2-112).
Both SAMPLE and BUSY will initially go high. After the ADC has sampled and held the analog signal,
SAMPLE will go low. After the entire operation has completed and the analog signal is converted, BUSY
will go low and DATAVALID will go high. This indicates that the digital result is available on the
RESULT[11:0] pins.

DATAVALID will remain high until a subsequent ADC_START is issued. The DATAVALID goes low on the
rising edge of SYSCLK, as shown in Figure 2-89 on page 2-111. The RESULT signals will be kept
constant until the ADC finishes the subsequent sample. The next sampled RESULT will be available
when DATAVALID goes high again. It is ideal to read the RESULT when DATAVALID is '1'. The RESULT
is latched and remains unchanged until the next DATAVLAID rising edge.

Figure 2-86 • Total Unadjusted Error (TUE)
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Injected Conversion

Note: * See EQ 23 on page 2-109 for calculation on the conversion time, tCONV.

Figure 2-92 • Injected-Conversion Timing Diagram
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-68 • I/O Bank Support by Device

I/O Bank AFS600 AFS1500

Advanced I/O E, W E, W

Pro I/O N N

Analog Quad S S

Note: E = East side of the device
W = West side of the device
N = North side of the device
S = South side of the device

Table 2-69 • Fusion VCCI Voltages and Compatible Standards

VCCI (typical) Compatible Standards

3.3 V LVTTL/LVCMOS 3.3, PCI 3.3, SSTL3 (Class I and II),* GTL+ 3.3, GTL 3.3,* LVPECL

2.5 V LVCMOS 2.5, LVCMOS 2.5/5.0, SSTL2 (Class I and II),* GTL+ 2.5,* GTL 2.5,* LVDS, B-LVDS,
M-LVDS

1.8 V LVCMOS 1.8

1.5 V LVCMOS 1.5, HSTL (Class I),* HSTL (Class II)*

Note: *I/O standard supported by Pro I/O banks.

Table 2-70 • Fusion VREF Voltages and Compatible Standards*

VREF (typical)  Compatible Standards

1.5 V SSTL3 (Class I and II)

1.25 V SSTL2 (Class I and II)

1.0 V GTL+ 2.5, GTL+ 3.3

0.8 V GTL 2.5, GTL 3.3

0.75 V HSTL (Class I), HSTL (Class II)

Note: *I/O standards supported by Pro I/O banks.
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Device Architecture
Double Data Rate (DDR) Support
Fusion Pro I/Os support 350 MHz DDR inputs and outputs. In DDR mode, new data is present on every
transition of the clock signal. Clock and data lines have identical bandwidths and signal integrity
requirements, making it very efficient for implementing very high-speed systems.

DDR interfaces can be implemented using HSTL, SSTL, LVDS, and LVPECL I/O standards. In addition,
high-speed DDR interfaces can be implemented using LVDS I/O.

Input Support for DDR
The basic structure to support a DDR input is shown in Figure 2-100. Three input registers are used to
capture incoming data, which is presented to the core on each rising edge of the I/O register clock.

Each I/O tile on Fusion devices supports DDR inputs.

Output Support for DDR
The basic DDR output structure is shown in Figure 2-101 on page 2-141. New data is presented to the
output every half clock cycle. Note: DDR macros and I/O registers do not require additional routing. The
combiner automatically recognizes the DDR macro and pushes its registers to the I/O register area at the
edge of the chip. The routing delay from the I/O registers to the I/O buffers is already taken into account
in the DDR macro.

Refer to the application note Using DDR for Fusion Devices for more information.

Figure 2-100 • DDR Input Register Support in Fusion Devices
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-91 • Summary of I/O Timing Characteristics – Software Default Settings, Extended Temperature Case 
Conditions: TJ = 100°C, Worst Case VCC = 1.425 V, Worst Case VCCI as Per Configuration
Applicable to Pro I/O Banks
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3.3 V LVTTL/ 
3.3 V LVCMOS 

12 mA High 35  – 0.51 2.89 0.03 0.95 1.23 0.33 2.94 2.26 2.58 2.85 4.70 4.02 ns

2.5 V LVCMOS 12 mA High 35  – 0.51 2.95 0.03 1.19 1.31 0.33 3.00 2.75 2.65 2.75 4.76 4.51 ns

1.8 V LVCMOS 12 mA High 35  – 0.51 2.99 0.03 1.14 1.50 0.33 2.83 2.40 2.91 3.21 4.60 4.16 ns

1.5 V LVCMOS 12 mA High 35  – 0.51 3.21 0.03 1.13 1.69 0.33 3.27 2.82 3.11 3.31 5.03 4.58 ns

3.3 V PCI Per PCI 
spec

High 10 25 2 0.51 2.21 0.03 0.83 1.32 0.33 2.25 1.57 2.58 2.85 4.01 3.33 ns

3.3 V PCI-X Per PCI-
X spec

High 10 25 2 0.51 2.21 0.03 0.81 1.24 0.33 2.25 1.57 2.58 2.85 4.01 3.33 ns

 3.3 V GTL  20 mA High 10 25 0.51 1.63 0.03 2.31 – 0.33 1.60 1.63 3.36 3.40 ns

 2.5 V GTL  20 mA High 10 25 0.51 1.68 0.03 1.93 – 0.33 1.70 1.68 3.46 3.44 ns

 3.3 V GTL+  35 mA High 10 25 0.51 1.62 0.03 1.25 – 0.33 1.65 1.62 3.41 3.38 ns

 2.5 V GTL+  33mA High 10 25 0.51 1.74 0.03 1.19 – 0.33 1.77 1.65 3.53 3.41 ns

 HSTL (I) 8 mA High 20 50 0.51 2.50 0.03 1.67 – 0.33 2.55 2.48 4.31 4.24 ns

 HSTL (II) 15 mA High 20 25 0.51 2.38 0.03 1.67 – 0.33 2.43 2.14 4.19 3.90 ns

 SSTL2 (I) 17 mA High 30 50 0.51 1.68 0.03 1.05 – 0.33 1.71 1.45 3.47 3.22 ns

 SSTL2 (II) 21 mA High 30 25 0.51 1.71 0.03 1.05 – 0.33 1.74 1.39 3.50 3.15 ns

 SSTL3 (I) 16 mA High 30 50 0.51 1.82 0.03 0.99 – 0.33 1.85 1.45 3.61 3.21 ns

 SSTL3 (II) 24 mA High 30 25 0.51 1.63 0.03 0.99 – 0.33 1.66 1.32 3.42 3.08 ns

LVDS 24 mA High  – – 0.51 1.48 0.03 1.47  –  –  –  –  –  –  –  – ns

LVPECL 24 mA High  – – 0.51 1.42 0.03 1.29  –  –  –  –  –  –  –  – ns

Notes:

1. For the derating values at specific junction temperature and voltage-supply levels, refer to Table 3-7 on page 3-10. 
2. Resistance is used to measure I/O propagation delays as defined in PCI specifications. See Figure 2-100 on page 2-140

for connectivity. This resistor is not required during normal operation. 
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Extended Temperature Fusion Family of Mixed Signal FPGAs
1.5 V LVCMOS 2 mA 200 224

4 mA 100 112

6 mA 67 75

8 mA 33 37

12 mA 33 37

3.3 V PCI/PCI-X Per PCI/PCI-X specification 25 75

Table 2-95 • I/O Weak Pull-Up/Pull-Down Resistances, Minimum and Maximum Weak Pull-Up/Pull-Down 
Resistance Values 

VCCI

R(WEAK PULL-UP) 
1

(ohms)
R(WEAK PULL-DOWN) 

2

(ohms)

Min. Max. Min. Max.

3.3 V 10 k 45 k 10 k 45 k

2.5 V 11 k 55 k 12 k 74 k

1.8 V 18 k 70 k 17 k 110 k

1.5 V 19 k 90 k 19 k 140 k

Notes:

1. R(WEAK PULL-UP-MAX) = (VCCImax – VOHspec) / I(WEAK PULL-UP-MIN)
2. R(WEAK PULL-DOWN-MAX) = (VOLspec) / I(WEAK PULL-DOWN-MIN)

Table 2-94 • I/O Output Buffer Maximum Resistances 1  (continued)

Standard Drive Strength
RPULL-DOWN

(ohms) 2
RPULL-UP
(ohms) 3

Notes:

1. These maximum values are provided for informational reasons only. Minimum output buffer resistance values depend 
on VCC, drive strength selection, temperature, and process. For board design considerations and detailed output buffer 
resistances, use the corresponding IBIS models located on the Microsemi SoC Products Group website: 
www.microsemi.com/soc/techdocs/models/ibis.html.

2. R(PULL-DOWN-MAX) = VOLspec / IOLspec

3. R(PULL-UP-MAX) = (VCCImax – VOHspec) / IOHspec  
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Device Architecture
Table 2-96 • I/O Short Currents IOSH/IOSL

Drive Strength IOSH (mA)* IOSL (mA)*

Applicable to Pro I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 4 mA 25 27

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

2.5 V LVCMOS 4 mA 16 18

8 mA 32 37

12 mA 65 74

16 mA 83 87

24 mA 169 124

1.8 V LVCMOS 2 mA 9 11

4 mA 17 22

6 mA 35 44

8 mA 45 51

12 mA 91 74

16 mA 91 74

1.5 V LVCMOS 2 mA 13 16

4 mA 25 33

6 mA 32 39

8 mA 66 55

12 mA 66 55

Applicable to Advanced I/O Banks

3.3 V LVTTL / 3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

3.3 V LVCMOS 2 mA 25 27

4 mA 25 27

6 mA 51 54

8 mA 51 54

12 mA 103 109

16 mA 132 127

24 mA 268 181

Note: *TJ = 100°C
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Device Architecture
Timing Characteristics      

Table 2-102 • 3.3 V LVTTL / 3.3 V LVCMOS Low Slew, Extended Temperature Case Conditions: TJ = 100°C, 
Worst-Case VCC = 1.425 V, Worst-Case VCCI = 3.0 V
Applicable to Pro I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS Units

4 mA  Std. 0.68 11.61 0.05 1.27 1.65 0.44 11.82 9.55 2.84 2.58 14.18 11.90 ns

 –1 0.58 9.87 0.04 1.08 1.40 0.38 10.06 8.12 2.41 2.19 12.06 10.13 ns

 –2 0.51 8.67 0.03 0.95 1.23 0.33 8.83 7.13 2.12 1.92 10.59 8.89 ns

8 mA  Std. 0.68 8.29 0.05 1.27 1.65 0.44 8.45 6.79 3.20 3.23 10.80 9.15 ns

 –1 0.58 7.05 0.04 1.08 1.40 0.38 7.18 5.78 2.72 2.75 9.19 7.78 ns

–2 0.51 6.19 0.03 0.95 1.23 0.33 6.31 5.07 2.39 2.41 8.07 6.83 ns

12 mA  Std. 0.68 6.35 0.05 1.27 1.65 0.44 6.47 5.29 3.45 3.66 8.83 7.65 ns

 –1 0.58 5.41 0.04 1.08 1.40 0.38 5.51 4.50 2.94 3.11 7.51 6.51 ns

–2 0.51 4.75 0.03 0.95 1.23 0.33 4.83 3.95 2.58 2.73 6.59 5.71 ns

16 mA  Std. 0.68 5.93 0.05 1.27 1.65 0.44 6.04 4.98 3.50 3.77 8.39 7.34 ns

 –1 0.58 5.04 0.04 1.08 1.40 0.38 5.13 4.24 2.98 3.21 7.14 6.24 ns

–2 0.51 4.42 0.03 0.95 1.23 0.33 4.51 3.72 2.62 2.82 6.27 5.48 ns

24 mA  Std. 0.68 5.53 0.05 1.27 1.65 0.44 5.63 4.95 3.57 4.18 7.99 7.31 ns

 –1 0.58 4.70 0.04 1.08 1.40 0.38 4.79 4.21 3.04 3.55 6.80 6.22 ns

–2 0.51 4.13 0.03 0.95 1.23 0.33 4.21 3.70 2.67 3.12 5.97 5.46 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-114 • 1.8 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ =100°C, Worst-Case 
VCC = 1.425 V, Worst-Case VCCI = 1.7 V
Applicable to Pro I/O Banks

Drive 
Strength

 
Speed 
Grade tDOUT tDP tDIN tPY tPYS tEOUT tZL tZH tLZ tHZ tZLS tZHS

 
Units

2 mA  Std. 0.68 12.76 0.05 1.53 2.01 0.44 10.11 12.76 2.93 1.73 12.47 15.12  ns 

 –1 0.58 10.86 0.04 1.30 1.71 0.38 8.60 10.86 2.50 1.47 10.61 12.86  ns 

–2 0.51 9.53 0.03 1.14 1.50 0.33 7.55 9.53 2.19 1.29 9.31 11.29 ns

4 mA  Std. 0.68 7.44 0.05 1.53 2.01 0.44 6.54 7.44 3.43 3.02 8.90 9.79  ns 

 –1 0.58 6.33 0.04 1.30 1.71 0.38 5.56 6.33 2.91 2.57 7.57 8.33  ns 

–2 0.51 5.55 0.03 1.14 1.50 0.33 4.88 5.55 2.56 2.26 6.64 7.31 ns

6 mA  Std. 0.68 4.77 0.05 1.53 2.01 0.44 4.71 4.77 3.76 3.66 7.07 7.13 ns

 –1 0.58 4.06 0.04 1.30 1.71 0.38 4.01 4.06 3.20 3.11 6.01 6.06 ns

–2 0.51 3.56 0.03 1.14 1.50 0.33 3.52 3.56 2.81 2.73 5.28 5.32 ns

8 mA  Std. 0.68 4.35 0.05 1.53 2.01 0.44 4.43 4.21 3.83 3.82 6.79 6.57  ns 

 –1 0.58 3.70 0.04 1.30 1.71 0.38 3.77 3.58 3.26 3.25 5.77 5.59  ns 

–2 0.51 3.25 0.03 1.14 1.50 0.33 3.31 3.14 2.86 2.85 5.07 4.91 ns

12 mA  Std. 0.68 4.00 0.05 1.53 2.01 0.44 3.80 3.21 3.90 4.30 6.15 5.57  ns 

 –1 0.58 3.41 0.04 1.30 1.71 0.38 3.23 2.73 3.32 3.66 5.23 4.73  ns 

–2 0.51 2.99 0.03 1.14 1.50 0.33 2.83 2.40 2.91 3.21 4.60 4.16 ns

16 mA  Std. 0.68 4.00 0.035 1.53 2.01 0.44 3.80 3.21 3.90 4.30 6.15 5.57  ns 

 –1 0.58 3.41 0.04 1.30 1.71 0.38 3.23 2.73 3.32 3.66 5.23 4.73  ns 

–2 0.51 2.99 0.03 1.14 1.50 0.33 2.83 2.40 2.91 3.21 4.60 4.16 ns

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
Table 2-122 • 1.5 V LVCMOS High Slew, Extended Temperature Case Conditions: TJ = 100°C, Worst-Case 
VCC = 1.425 V, Worst-Case VCCI = 1.4 V
Applicable to Advanced I/O Banks

Drive 
Strength

 Speed 
Grade tDOUT tDP tDIN tPY tEOUT tZL tZH tLZ tHZ tZLS tZHS  Units 

2 mA  Std. 0.68 9.00 0.05 1.79 0.44 7.20 8.82 3.57 2.92 9.55 11.18  ns 

 –1 0.58 7.65 0.04 1.52 0.38 6.12 7.50 3.04 2.48 8.13 9.51  ns 

 –2 0.51 6.72 0.03 1.34 0.33 5.37 6.59 2.67 2.18 7.13 8.35  ns 

4 mA  Std. 0.68 5.71 0.05 1.79 0.44 5.11 5.60 3.94 3.59 7.47 7.96  ns 

 –1 0.58 4.85 0.04 1.52 0.38 4.35 4.77 3.36 3.05 6.36 6.77  ns 

 –2 0.51 4.26 0.03 1.34 0.33 3.82 4.18 2.95 2.68 5.58 5.95  ns 

6 mA  Std. 0.68 5.07 0.05 1.79 0.44 4.80 4.92 4.03 3.76 7.15 7.28 ns

 –1 0.58 4.31 0.04 1.52 0.38 4.08 4.19 3.43 3.20 6.09 6.19 ns

 –2 0.51 3.78 0.03 1.34 0.33 3.58 3.68 3.01 2.81 5.34 5.44 ns

8 mA  Std. 0.68 4.66 0.05 1.79 0.44 4.38 3.77 4.16 4.43 6.74 6.13 ns

–1 0.58 3.96 0.04 1.52 0.38 3.73 3.21 3.54 3.77 5.73 5.21  ns 

 –2 0.51 3.48 0.03 1.34 0.33 3.27 2.82 3.11 3.31 5.03 4.58  ns 

12 mA  Std. 0.68 4.66 0.05 1.79 0.44 4.38 3.77 4.16 4.43 6.74 6.13  ns 

 –1 0.58 3.96 0.04 1.52 0.38 3.73 3.21 3.54 3.77 5.73 5.21  ns 

 –2 0.51 3.48 0.03 1.34 0.33 3.27 2.82 3.11 3.31 5.03 4.58  ns 

Note: For the derating values at specific junction temperature and voltage supply levels, refer to Table 3-7 on
page 3-10.
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Device Architecture
Pin Descriptions

Supply Pins

GND Ground

Ground supply voltage to the core, I/O outputs, and I/O logic.

GNDQ Ground (quiet)

Quiet ground supply voltage to input buffers of I/O banks. Within the package, the GNDQ plane is
decoupled from the simultaneous switching noise originated from the output buffer ground domain. This
minimizes the noise transfer within the package and improves input signal integrity. GNDQ needs to
always be connected on the board to GND. Note: In FG256, FG484, and FG676 packages, GNDQ and
GND pins are connected within the package and are labeled as GND pins in the respective package pin
assignment tables.

ADCGNDREF Analog Reference Ground

Analog ground reference used by the ADC. This pad should be connected to a quiet analog ground.

GNDA Ground (analog)

Quiet ground supply voltage to the Analog Block of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.

GNDAQ Ground (analog quiet)

Quiet ground supply voltage to the analog I/O of Fusion devices. The use of a separate analog ground
helps isolate the analog functionality of the Fusion device from any digital switching noise. A 0.2 V
maximum differential voltage between GND and GNDA/GNDQ should apply to system implementation.
Note: In FG256, FG484, and FG676 packages, GNDAQ and GNDA pins are connected within the
package and are labeled as GNDA pins in the respective package pin assignment tables. 

GNDNVM Flash Memory Ground

Ground supply used by the Fusion device's flash memory block module(s).

GNDOSC Oscillator Ground

Ground supply for both integrated RC oscillator and crystal oscillator circuit.

VCC15A Analog Power Supply (1.5 V)

1.5 V clean analog power supply input for use by the 1.5 V portion of the analog circuitry.

VCC33A Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the 3.3 V portion of the analog circuitry.

VCC33N Negative 3.3 V Output

This is the –3.3 V output from the voltage converter. A 2.2 µF capacitor must be connected from this pin
to ground.

VCC33PMP Analog Power Supply (3.3 V)

3.3 V clean analog power supply input for use by the analog charge pump. To avoid high current draw,
VCC33PMP should be powered up simultaneously with or after VCC33A.

VCCNVM Flash Memory Block Power Supply (1.5 V)

1.5 V power supply input used by the Fusion device's flash memory block module(s). To avoid high
current draw, VCC should be powered up before or simultaneously with VCCNVM.

VCCOSC Oscillator Power Supply (3.3 V)

Power supply for both integrated RC oscillator and crystal oscillator circuit. The internal 100 MHz
oscillator, powered by the VCCOSC pin, is needed for device programming, operation of the VDDN33
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Extended Temperature Fusion Family of Mixed Signal FPGAs
E9 NC IO08PDB0V1

E10 GND GND

E11 IO15NDB1V0 IO22NDB1V0

E12 IO15PDB1V0 IO22PDB1V0

E13 GND GND

E14 NC IO32PPB1V1

E15 NC IO36NPB1V2

E16 VCCIB1 VCCIB1

E17 GND GND

E18 NC IO47NPB2V0

E19 IO33PDB2V0 IO49PDB2V0

E20 VCCIB2 VCCIB2

E21 IO32NDB2V0 IO46NDB2V0

E22 GBC2/IO32PDB2V0 GBC2/IO46PDB2V0

F1 IO80NDB4V0 IO118NDB4V0

F2 IO80PDB4V0 IO118PDB4V0

F3 NC IO119NSB4V0

F4 IO84NDB4V0 IO124NDB4V0

F5 GND GND

F6 VCOMPLA VCOMPLA

F7 VCCPLA VCCPLA

F8 VCCIB0 VCCIB0

F9 IO08NDB0V1 IO12NDB0V1

F10 IO08PDB0V1 IO12PDB0V1

F11 VCCIB0 VCCIB0

F12 VCCIB1 VCCIB1

F13 IO22NDB1V0 IO30NDB1V1

F14 IO22PDB1V0 IO30PDB1V1

F15 VCCIB1 VCCIB1

F16 NC IO36PPB1V2

F17 NC IO38NPB1V2

F18 GND GND

F19 IO33NDB2V0 IO49NDB2V0

F20 IO34PDB2V0 IO50PDB2V0

F21 IO34NDB2V0 IO50NDB2V0

FG484

Pin 
Number AFS600 Function AFS1500 Function

F22 IO35PDB2V0 IO51PDB2V0

G1 IO77PDB4V0 IO115PDB4V0

G2 GND GND

G3 IO78NDB4V0 IO116NDB4V0

G4 IO78PDB4V0 IO116PDB4V0

G5 VCCIB4 VCCIB4

G6 NC IO117PDB4V0

G7 VCCIB4 VCCIB4

G8 GND GND

G9 IO04NDB0V0 IO06NDB0V1

G10 IO04PDB0V0 IO06PDB0V1

G11 IO12NDB0V1 IO16NDB0V2

G12 IO12PDB0V1 IO16PDB0V2

G13 NC IO28NDB1V1

G14 NC IO28PDB1V1

G15 GND GND

G16 NC IO38PPB1V2

G17 NC IO53PDB2V0

G18 VCCIB2 VCCIB2

G19 IO36PDB2V0 IO52PDB2V0

G20 IO36NDB2V0 IO52NDB2V0

G21 GND GND

G22 IO35NDB2V0 IO51NDB2V0

H1 IO77NDB4V0 IO115NDB4V0

H2 IO76PDB4V0 IO113PDB4V0

H3 VCCIB4 VCCIB4

H4 IO79NDB4V0 IO114NDB4V0

H5 IO79PDB4V0 IO114PDB4V0

H6 NC IO117NDB4V0

H7 GND GND

H8 VCC VCC

H9 VCCIB0 VCCIB0

H10 GND GND

H11 VCCIB0 VCCIB0

H12 VCCIB1 VCCIB1

FG484

Pin 
Number AFS600 Function AFS1500 Function
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