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of applications. High-performance FPGAs are designed for
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Instant On
Flash-based Fusion devices are Level 0 Instant On. Instant On Fusion devices greatly simplify total
system design and reduce total system cost by eliminating the need for CPLDs. The Fusion Instant On
clocking (PLLs) replaces off-chip clocking resources. The Fusion mix of Instant On clocking and analog
resources makes these devices an excellent choice for both system supervisor and system management
functions. Instant On from a single 3.3 V source enables Fusion devices to initiate, control, and monitor
multiple voltage supplies while also providing system clocks. In addition, glitches and brownouts in
system power will not corrupt the Fusion device flash configuration. Unlike SRAM-based FPGAs, the
device will not have to be reloaded when system power is restored. This enables reduction or complete
removal of expensive voltage monitor and brownout detection devices from the PCB design. Flash-
based Fusion devices simplify total system design and reduce cost and design risk, while increasing
system reliability. 

Firm Errors
Firm errors occur most commonly when high-energy neutrons, generated in the upper atmosphere, strike
a configuration cell of an SRAM FPGA. The energy of the collision can change the state of the
configuration cell and thus change the logic, routing, or I/O behavior in an unpredictable way. Another
source of radiation-induced firm errors is alpha particles. For an alpha to cause a soft or firm error, its
source must be in very close proximity to the affected circuit. The alpha source must be in the package
molding compound or in the die itself. While low-alpha molding compounds are being used increasingly,
this helps reduce but does not entirely eliminate alpha-induced firm errors.

Firm errors are impossible to prevent in SRAM FPGAs. The consequence of this type of error can be a
complete system failure. Firm errors do not occur in Fusion flash-based FPGAs. Once it is programmed,
the flash cell configuration element of Fusion FPGAs cannot be altered by high-energy neutrons and is
therefore immune to errors from them. 

Recoverable (or soft) errors occur in the user data SRAMs of all FPGA devices. These can easily be
mitigated by using error detection and correction (EDAC) circuitry built into the FPGA fabric.

Low Power
Flash-based Fusion devices exhibit power characteristics similar to those of an ASIC, making them an
ideal choice for power-sensitive applications. With Fusion devices, there is no power-on current surge
and no high current transition, both of which occur on many FPGAs.

Fusion devices also have low dynamic power consumption and support both low power standby mode
and very low power sleep mode, offering further power savings.

Advanced Flash Technology
The Fusion family offers many benefits, including nonvolatility and reprogrammability through an
advanced flash-based, 130-nm LVCMOS process with seven layers of metal. Standard CMOS design
techniques are used to implement logic and control functions. The combination of fine granularity,
enhanced flexible routing resources, and abundant flash switches allows very high logic utilization (much
higher than competing SRAM technologies) without compromising device routability or performance.
Logic functions within the device are interconnected through a four-level routing hierarchy.

Advanced Architecture
The proprietary Fusion architecture provides granularity comparable to standard-cell ASICs. The Fusion
device consists of several distinct and programmable architectural features, including the following
(Figure 1-1 on page 1-5):

• Embedded memories

– Flash memory blocks

– FlashROM 

– SRAM and FIFO
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2 – Device Architecture

Fusion Stack Architecture
To manage the unprecedented level of integration in Fusion devices, Microsemi developed the Fusion
technology stack (Figure 2-1). This layered model offers a flexible design environment, enabling design
at very high and very low levels of abstraction. Fusion peripherals include hard analog IP and hard and
soft digital IP. Peripherals communicate across the FPGA fabric via a layer of soft gates—the Fusion
backbone. Much more than a common bus interface, this Fusion backbone integrates a micro-sequencer
within the FPGA fabric and configures the individual peripherals and supports low-level processing of
peripheral data. Fusion applets are application building blocks that can control and respond to
peripherals and other system signals. Applets can be rapidly combined to create large applications. The
technology is scalable across devices, families, design types, and user expertise, and supports a well-
defined interface for external IP and tool integration.

At the lowest level, Level 0, are Fusion peripherals. These are configurable functional blocks that can be
hardwired structures such as a PLL or analog input channel, or soft (FPGA gate) blocks such as a UART
or two-wire serial interface. The Fusion peripherals are configurable and support a standard interface to
facilitate communication and implementation.

Connecting and controlling access to the peripherals is the Fusion backbone, Level 1. The backbone is a
soft-gate structure, scalable to any number of peripherals. The backbone is a bus and much more; it
manages peripheral configuration to ensure proper operation. Leveraging the common peripheral
interface and a low-level state machine, the backbone efficiently offloads peripheral management from
the system design. The backbone can set and clear flags based upon peripheral behavior and can define
performance criteria. The flexibility of the stack enables a designer to configure the silicon, directly
bypassing the backbone if that level of control is desired.

One step up from the backbone is the Fusion applet, Level 2. The applet is an application building block
that implements a specific function in FPGA gates. It can react to stimuli and board-level events coming
through the backbone or from other sources, and responds to these stimuli by accessing and
manipulating peripherals via the backbone or initiating some other action. An applet controls or responds
to the peripheral(s). Applets can be easily imported or exported from the design environment. The applet
structure is open and well-defined, enabling users to import applets from Microsemi, system developers,
third parties, and user groups.

Note: Levels 1, 2, and 3 are implemented in FPGA logic gates.

Figure 2-1 • Fusion Architecture Stack
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Device Architecture
Figure 2-4 • Combinatorial Timing Model and Waveforms
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Global Resources (VersaNets)
Fusion devices offer powerful and flexible control of circuit timing through the use of analog circuitry.
Each chip has six CCCs. The west CCC also contains a PLL core. In the AFS600 and AFS1500, the
west and the east CCCs each contain a PLL. The PLLs include delay lines, a phase shifter (0°, 90°, 180°,
270°), and clock multipliers/dividers. Each CCC has all the circuitry needed for the selection and
interconnection of inputs to the VersaNet global network. The east and west CCCs each have access to
three VersaNet global lines on each side of the chip (six lines total). The CCCs at the four corners each
have access to three quadrant global lines on each quadrant of the chip.

Advantages of the VersaNet Approach
One of the architectural benefits of Fusion is the set of powerful and low-delay VersaNet global networks.
Fusion offers six chip (main) global networks that are distributed from the center of the FPGA array
(Figure 2-11). In addition, Fusion devices have three regional globals (quadrant globals) in each of the
four chip quadrants. Each core VersaTile has access to nine global network resources: three quadrant
and six chip (main) global networks. There are a total of 18 global networks on the device. Each of these
networks contains spines and ribs that reach all VersaTiles in all quadrants (Figure 2-12 on page 2-12).
This flexible VersaNet global network architecture allows users to map up to 180 different
internal/external clocks in a Fusion device. Details on the VersaNet networks are given in Table 2-4 on
page 2-12. The flexibility of the Fusion VersaNet global network allows the designer to address several
design requirements. User applications that are clock-resource-intensive can easily route external or
gated internal clocks using VersaNet global routing networks. Designers can also drastically reduce
delay penalties and minimize resource usage by mapping critical, high-fanout nets to the VersaNet global
network.

Figure 2-11 • Overview of Fusion VersaNet Global Network 
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Device Architecture
CCC Physical Implementation
The CCC circuit is composed of the following (Figure 2-23):

• PLL core

• 3 phase selectors

• 6 programmable delays and 1 fixed delay

• 5 programmable frequency dividers that provide frequency multiplication/division (not shown in
Figure 2-23 because they are automatically configured based on the user's required frequencies)

• 1 dynamic shift register that provides CCC dynamic reconfiguration capability (not shown)

CCC Programming
The CCC block is fully configurable. It is configured via static flash configuration bits in the array, set by
the user in the programming bitstream, or configured through an asynchronous dedicated shift register,
dynamically accessible from inside the Fusion device. The dedicated shift register permits changes of
parameters such as PLL divide ratios and delays during device operation. This latter mode allows the
user to dynamically reconfigure the PLL without the need for core programming. The register file is
accessed through a simple serial interface. 

Note: Clock divider and multiplier blocks are not shown in this figure or in SmartGen. They are
automatically configured based on the user's required frequencies.

Figure 2-23 • PLL Block
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Device Architecture
FlashROM
Fusion devices have 1 kbit of on-chip nonvolatile flash memory that can be read from the FPGA core
fabric. The FlashROM is arranged in eight banks of 128 bits during programming. The 128 bits in each
bank are addressable as 16 bytes during the read-back of the FlashROM from the FPGA core (Figure 2-
45). 

The FlashROM can only be programmed via the IEEE 1532 JTAG port. It cannot be programmed directly
from the FPGA core. When programming, each of the eight 128-bit banks can be selectively
reprogrammed. The FlashROM can only be reprogrammed on a bank boundary. Programming involves
an automatic, on-chip bank erase prior to reprogramming the bank. The FlashROM supports a
synchronous read and can be read on byte boundaries. The upper three bits of the FlashROM address
from the FPGA core define the bank that is being accessed. The lower four bits of the FlashROM
address from the FPGA core define which of the 16 bytes in the bank is being accessed.

The maximum FlashROM access clock is given in Table 2-25 on page 2-55. Figure 2-46 on page 2-55
shows the timing behavior of the FlashROM access cycle—the address has to be set up on the rising
edge of the clock for DOUT to be valid on the next falling edge of the clock.

If the address is unchanged for two cycles:

If the address is unchanged for two cycles:

• D0 becomes invalid tCK2Q ns after the second rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the second falling edge.

If the address unchanged for three cycles:

• D0 becomes invalid tCK2Q ns after the second rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the second falling edge.

• D0 becomes invalid tCK2Q ns after the third rising edge of the clock.

• D0 becomes valid again tCK2Q ns after the third falling edge. 

Figure 2-45 • FlashROM Architecture
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Device Architecture
SRAM and FIFO
All Fusion devices have SRAM blocks along the north side of the device. Additionally, AFS600 and
AFS1500 devices have an SRAM block on the south side of the device. To meet the needs of high-
performance designs, the memory blocks operate strictly in synchronous mode for both read and write
operations. The read and write clocks are completely independent, and each may operate at any desired
frequency less than or equal to 350 MHz. The following configurations are available:

• 4k×1, 2k×2, 1k×4, 512×9 (dual-port RAM—two read, two write or one read, one write)

• 512×9, 256×18 (two-port RAM—one read and one write)

• Sync write, sync pipelined/nonpipelined read

The Fusion SRAM memory block includes dedicated FIFO control logic to generate internal addresses
and external flag logic (FULL, EMPTY, AFULL, AEMPTY). 

During RAM operation, addresses are sourced by the user logic, and the FIFO controller is ignored. In
FIFO mode, the internal addresses are generated by the FIFO controller and routed to the RAM array by
internal MUXes. Refer to Figure 2-47 for more information about the implementation of the embedded
FIFO controller.

The Fusion architecture enables the read and write sizes of RAMs to be organized independently,
allowing for bus conversion. This is done with the WW (write width) and RW (read width) pins. The
different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and 4k×1. For example, the write size can
be set to 256×18 and the read size to 512×9.

Both the write and read widths for the RAM blocks can be specified independently with the WW (write
width) and RW (read width) pins. The different D×W configurations are 256×18, 512×9, 1k×4, 2k×2, and
4k×1.

Refer to the allowable RW and WW values supported for each of the RAM macro types in Table 2-26 on
page 2-58.

When a width of one, two, or four is selected, the ninth bit is unused. For example, when writing 9-bit
values and reading 4-bit values, only the first four bits and the second four bits of each 9-bit value are
addressable for read operations. The ninth bit is not accessible.

Conversely, when writing 4-bit values and reading 9-bit values, the ninth bit of a read operation will be
undefined. The RAM blocks employ little-endian byte order for read and write operations. 

Figure 2-47 • Fusion RAM Block with Embedded FIFO Controller
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Device Architecture
Modes of Operation
There are two read modes and one write mode:

• Read Nonpipelined (synchronous—1 clock edge): In the standard read mode, new data is driven
onto the RD bus in the same clock cycle following RA and REN valid. The read address is
registered on the read port clock active edge, and data appears at RD after the RAM access time.
Setting PIPE to OFF enables this mode.

• Read Pipelined (synchronous—2 clock edges): The pipelined mode incurs an additional clock
delay from the address to the data but enables operation at a much higher frequency. The read
address is registered on the read port active clock edge, and the read data is registered and
appears at RD after the second read clock edge. Setting PIPE to ON enables this mode.

• Write (synchronous—1 clock edge): On the write clock active edge, the write data is written into
the SRAM at the write address when WEN is High. The setup times of the write address, write
enables, and write data are minimal with respect to the write clock. Write and read transfers are
described with timing requirements in the "SRAM Characteristics" section on page 2-63 and the
"FIFO Characteristics" section on page 2-72.

RAM Initialization
Each SRAM block can be individually initialized on power-up by means of the JTAG port using the
UJTAG mechanism (refer to the "JTAG IEEE 1532" section on page 2-227 and the Fusion SRAM/FIFO
Blocks application note). The shift register for a target block can be selected and loaded with the proper
bit configuration to enable serial loading. The 4,608 bits of data can be loaded in a single operation. 
2-62 Revision 2
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Device Architecture
Table 2-51 • Uncalibrated Analog Channel Accuracy*
Worst-Case Extended Temperature Conditions, TJ = 100°C

Total Channel 
Error (LSB)

Channel Input Offset 
Error (LSB)

Channel Input Offset 
Error (mV)

Channel Gain Error 
(%FSR)

Analog 
Pad

Prescaler 
Range (V)

Neg. 
Max. Med.

Pos. 
Max.

Neg 
Max Med.

Pos. 
Max.

Neg. 
Max. Med.

Pos. 
Max. Min. Typ. Max.

Positive Range ADC in 10-Bit Mode

AV, AC 16 –22 –2 12 –11 –2 14 –169 –32 224 3 0 –3

8 –40 –5 17 –11 –5 21 –87 –40 166 2 0 –4

4 –45 –9 24 –16 –11 36 –63 –43 144 2 0 –4

2 –70 –19 33 –33 –20 66 –66 –39 131 2 0 –4

1 –25 –7 5 –11 –3 26 –11 –3 26 3 –1 –3

0.5 –41 –12 8 –12 –7 38 –6 –4 19 3 –1 –3

0.25 –53 –14 19 –20 –14 40 –5 –3 10 5 0 –4

0.125 –89 –29 24 –40 –28 88 –5 –4 11 7 0 –5

AT 16 –3 9 15 –4 0 4 –64 5 64 1 0 –1

4 –10 2 15 –11 –2 11 –44 –8 44 1 0 –1

Negative Range ADC in 10-Bit Mode

AV, AC 16 –35 –10 9 –24 –6 9 –383 –96 148 5 –1 –6

8 –65 –19 12 –34 –12 9 –268 –99 75 5 –1 –5

4 –86 –28 21 –64 –24 19 –254 –96 76 5 –1 –6

2 –136 –53 37 –115 –42 39 –230 –83 78 6 –2 –7

1 –98 –35 8 –39 –8 15 –39 –8 15 10 –3 –10

0.5 –121 –46 7 –54 –14 18 –27 –7 9 10 –4 –11

0.25 –149 –49 19 –72 –16 40 –18 –4 10 14 –4 –12

0.125 –188 –67 38 –112 –27 56 –14 –3 7 16 –5 –14

Note: *Channel Accuracy includes prescaler and ADC accuracies. For 12-bit mode, multiply the LSB count by 4. For
8-bit mode, divide the LSB count by 4. Gain remains the same.
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Device Architecture
Analog Configuration MUX
The ACM is the interface between the FPGA, the Analog Block configurations, and the real-time counter.
Libero SoC will generate IP that will load and configure the Analog Block via the ACM. However, users
are not limited to using the Libero SoC IP. This section provides a detailed description of the ACM's
register map, truth tables for proper configuration of the Analog Block and RTC, as well as timing
waveforms so users can access and control the ACM directly from their designs. 

The Analog Block contains four 8-bit latches per Analog Quad that are initialized through the ACM.
These latches act as configuration bits for Analog Quads. The ACM block runs from the core voltage
supply (1.5 V).

Access to the ACM is achieved via 8-bit address and data busses with enables. The pin list is provided in
Table 2-35 on page 2-78. The ACM clock speed is limited to a maximum of 10 MHz, more than sufficient
to handle the low-bandwidth requirements of configuring the Analog Block and the RTC (sub-block of the
Analog Block).

Table 2-54 decodes the ACM address space and maps it to the corresponding Analog Quad and
configuration byte for that quad.

Table 2-54 • ACM Address Decode Table for Analog Quad

ACMADDR [7:0] 
in Decimal Name Description

Associated 
Peripheral

0 – – Analog Quad

1 AQ0 Byte 0 Analog Quad

2 AQ0 Byte 1 Analog Quad

3 AQ0 Byte 2 Analog Quad

4 AQ0 Byte 3 Analog Quad

5 AQ1 Byte 0 Analog Quad

… … … Analog Quad

36 AQ8 Byte 3 Analog Quad

37 AQ9 Byte 0 Analog Quad

38 AQ9 Byte 1 Analog Quad

39 AQ9 Byte 2 Analog Quad

40 AQ9 Byte 3 Analog Quad

41 Undefined Analog Quad

… … Undefined Analog Quad

63 Undefined RTC

64 COUNTER0 Counter bits 7:0 RTC

65 COUNTER1 Counter bits 15:8 RTC

66 COUNTER2 Counter bits 23:16 RTC

67 COUNTER3 Counter bits 31:24 RTC

68 COUNTER4 Counter bits 39:32 RTC

72 MATCHREG0 Match register bits 7:0 RTC

73 MATCHREG1 Match register bits 15:8 RTC

74 MATCHREG2 Match register bits 23:16 RTC

75 MATCHREG3 Match register bits 31:24 RTC

76 MATCHREG4 Match register bits 39:32 RTC

80 MATCHBITS0 Individual match bits 7:0 RTC
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Device Architecture
For the internal temperature monitor to function, Bit 0 of Byte 2 for all 10 Quads must be set.

Table 2-66 • Internal Temperature Monitor Control Truth Table

Control Lines B2[0] PDTMB Chip Internal Temperature Monitor

0 0 Off

1 1 On
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Features Supported on Pro I/Os
Table 2-72 lists all features supported by transmitter/receiver for single-ended and differential I/Os.

Table 2-72 • Fusion Pro I/O Features

Feature Description

Single-ended and voltage-
referenced transmitter
features 

• Hot insertion in every mode except PCI or 5 V input tolerant (these modes use
clamp diodes and do not allow hot insertion)

• Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.

• Weak pull-up and pull-down

• Two slew rates

• Skew between output buffer enable/disable time: 2 ns delay (rising edge) and
0 ns delay (falling edge); see "Selectable Skew between Output Buffer
Enable/Disable Time" on page 2-150 for more information

• Five drive strengths

• 5 V–tolerant receiver ("5 V Input Tolerance" section on page 2-145)

• LVTTL/LVCMOS 3.3 V outputs compatible with 5 V TTL inputs ("5 V Output
Tolerance" section on page 2-149)

• High performance (Table 2-77 on page 2-144)

Single-ended receiver features • Schmitt trigger option

• ESD protection

• Programmable delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• High performance (Table 2-77 on page 2-144)

• Separate ground planes, GND/GNDQ, for input buffers only to avoid output-
induced noise in the input circuitry

Voltage-referenced differential
receiver features

• Programmable Delay: 0 ns if bypassed, 0.625 ns with '000' setting, 6.575 ns
with '111' setting, 0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• High performance (Table 2-77 on page 2-144)

• Separate ground planes, GND/GNDQ, for input buffers only to avoid output-
induced noise in the input circuitry

CMOS-style LVDS, B-LVDS,
M-LVDS, or LVPECL
transmitter 

• Two I/Os and external resistors are used to provide a CMOS-style LVDS,
B-LVDS, M-LVDS, or LVPECL transmitter solution.

• Activation of hot insertion (disabling the clamp diode) is selectable by I/Os.

• Weak pull-up and pull-down

• Fast slew rate 

LVDS/LVPECL differential
receiver features 

• ESD protection

• High performance (Table 2-77 on page 2-144)

• Programmable delay: 0.625 ns with '000' setting, 6.575 ns with '111' setting,
0.85-ns intermediate delay increments (at 25°C, 1.5 V)

• Separate input buffer ground and power planes to avoid output-induced noise
in the input circuitry
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Figure 2-116 • Tristate Output Buffer Timing Model and Delays (example)
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Table 2-88 • Summary of Maximum and Minimum DC Input Levels Applicable to Extended Temperature 
Conditions in all I/O Bank Types

DC I/O Standards

Extended Temperature (K)1

IIL2 IIL3

µA µA

3.3 V LVTTL / 3.3 V LVCMOS 15 15

2.5 V LVCMOS 15 15

1.8 V LVCMOS 15 15

1.5 V LVCMOS 15 15

3.3 V PCI 15 15

3.3 V PCI-X 15 15

3.3 V GTL 15 15

2.5 V GTL 15 15

3.3 V GTL+ 15 15

2.5 V GTL+ 15 15

HSTL (I) 15 15

HSTL (II) 15 15

SSTL2 (I) 15 15

SSTL2 (II) 15 15

SSTL3 (I) 15 15

SSTL3 (II) 15 15

Notes:

1. Extended Temperature range (–55°C < TJ < 100°C)
2. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

3. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Single-Ended I/O Characteristics
3.3 V LVTTL / 3.3 V LVCMOS
Low-Voltage Transistor–Transistor Logic is a general-purpose standard (EIA/JESD) for 3.3 V
applications. It uses an LVTTL input buffer and push-pull output buffer. The 3.3 V LVCMOS standard is
supported as part of the 3.3 V LVTTL support.

Table 2-100 • Minimum and Maximum DC Input and Output Levels
Applicable to Pro I/O banks

3.3 V LVTTL / 
3.3 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max
mA3 µA4 µA4

Applicable to Pro I/O Banks

4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 15 15

8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 15 15

12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 15 15

16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 15 15

24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 15 15

Applicable to Advanced I/O Banks

2 mA –0.3 0.8 2 3.6 0.4 2.4 2 2 27 25 15 15

4 mA –0.3 0.8 2 3.6 0.4 2.4 4 4 27 25 15 15

6 mA –0.3 0.8 2 3.6 0.4 2.4 6 6 54 51 15 15

8 mA –0.3 0.8 2 3.6 0.4 2.4 8 8 54 51 15 15

12 mA –0.3 0.8 2 3.6 0.4 2.4 12 12 109 103 15 15

16 mA –0.3 0.8 2 3.6 0.4 2.4 16 16 127 132 15 15

24 mA –0.3 0.8 2 3.6 0.4 2.4 24 24 181 268 15 15

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-117 • AC Loading

Table 2-101 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 3.3 1.4 – 35

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Device Architecture
2.5 V LVCMOS
Low-Voltage CMOS for 2.5 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 2.5 V applications.   

Minimum and Maximum DC Input and Output Levels

2.5 V LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2

Drive Strength
Min.

V
Max.

V
Min.

V
Max.

V
Max.

V
Min.

V mA mA
Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

4 mA –0.3 0.7 1.7 3.6 0.7 1.7 4 4 18 16 10 10

8 mA –0.3 0.7 1.7 3.6 0.7 1.7 8 8 37 32 10 10

12 mA –0.3 0.7 1.7 3.6 0.7 1.7 12 12 74 65 10 10

16 mA –0.3 0.7 1.7 3.6 0.7 1.7 16 16 87 83 10 10

24 mA –0.3 0.7 1.7 3.6 0.7 1.7 24 24 124 169 10 10

Applicable to Advanced I/O Banks

2 mA –0.3 0.7 1.7 2.7 0.7 1.7 2 2 18 16 10 10

4 mA –0.3 0.7 1.7 2.7 0.7 1.7 4 4 18 16 10 10

6 mA –0.3 0.7 1.7 2.7 0.7 1.7 6 6 37 32 10 10

8 mA –0.3 0.7 1.7 2.7 0.7 1.7 8 8 37 32 10 10

12 mA –0.3 0.7 1.7 2.7 0.7 1.7 12 12 74 65 10 10

16 mA –0.3 0.7 1.7 2.7 0.7 1.7 16 16 87 83 10 10

24 mA –0.3 0.7 1.7 2.7 0.7 1.7 24 24 124 169 10 10

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-118 • AC Loading

Table 2-106 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input High (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 2.5 1.2 – 35

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Extended Temperature Fusion Family of Mixed Signal FPGAs
1.8 V LVCMOS
Low-Voltage CMOS for 1.8 V is an extension of the LVCMOS standard (JESD8-5) used for general-
purpose 1.8 V applications. It uses a 1.8 V input buffer and push-pull output buffer.

Table 2-111 • Minimum and Maximum DC Input and Output Levels

1.8 V 
LVCMOS VIL VIH VOL VOH IOL IOH IOSH IOSL IIL1 IIH2

Drive 
Strength

Min.
V

Max.
V

Min.
V

Max.
V

Max.
V

Min.
V mA mA

Max.
mA3

Max.
mA3 µA4 µA4

Applicable to Pro I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 2 2 11 9 15 15

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 4 4 22 17 15 15

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 6 6 44 35 15 15

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 8 8 51 45 15 15

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 12 12 74 91 15 15

16 mA –0.3 0.35 * VCCI 0.65 * VCCI 3.6 0.45 VCCI – 0.45 16 16 74 91 15 15

Applicable to Advanced I/O Banks

2 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 2 2 11 9 15 15

4 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 4 4 22 17 15 15

6 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 6 6 44 35 15 15

8 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 8 8 51 45 15 15

12 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 12 12 74 91 15 15

16 mA –0.3 0.35 * VCCI 0.65 * VCCI 1.9 0.45 VCCI – 0.45 16 16 74 91 15 15

Notes:

1. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.
2. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is

larger when operating outside recommended ranges.

3. Currents are measured at high temperature (100°C junction temperature) and maximum voltage.

4. Currents are measured at 85°C junction temperature.

5. Software default selection highlighted in gray.

Figure 2-119 • AC Loading

Table 2-112 • AC Waveforms, Measuring Points, and Capacitive Loads

Input Low (V) Input Low (V) Measuring Point* (V) VREF (typ.) (V) CLOAD (pF)

0 1.8 0.9 – 35

Note: *Measuring point = Vtrip. See Table 2-89 on page 2-166 for a complete table of trip points.

Test Point
Test Point

Enable PathData Path 35 pF

R = 1 k R to VCCI for tLZ / tZL / tZLS
R to GND for tHZ / tZH / tZHS

35 pF for tZH / tZHS / tZL / tZLS
35 pF for tHZ / tLZ
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Differential I/O Characteristics
Configuration of the I/O modules as a differential pair is handled by the Microsemi Designer
software when the user instantiates a differential I/O macro in the design.

Differential I/Os can also be used in conjunction with the embedded Input Register (InReg), Output
Register (OutReg), Enable Register (EnReg), and Double Data Rate (DDR). However, there is no
support for bidirectional I/Os or tristates with these standards.

LVDS
Low-Voltage Differential Signal (ANSI/TIA/EIA-644) is a high-speed differential I/O standard. It requires
that one data bit be carried through two signal lines, so two pins are needed. It also requires external
resistor termination. 

The full implementation of the LVDS transmitter and receiver is shown in an example in Figure 2-132.
The building blocks of the LVDS transmitter–receiver are one transmitter macro, one receiver macro,
three board resistors at the transmitter end, and one resistor at the receiver end. The values for the three
driver resistors are different from those used in the LVPECL implementation because the output standard
specifications are different.    

Figure 2-132 • LVDS Circuit Diagram and Board-Level Implementation

Table 2-157 • LVDS Minimum and Maximum DC Input and Output Levels

DC Parameter Description Min. Typ. Max. Units

VCCI Supply Voltage 2.375  2.5  2.625 V

VOL Output Low Voltage  0.9  1.075  1.25 V

VOH Output High Voltage  1.25  1.425  1.6 V

IOL 1 Output Lower Current 0.65 0.91 1.16 mA

IOH 1 Output High Current 0.65 0.91 1.16 mA

VI Input Voltage  0   2.925 V

IIL 2,3 Input High Leakage Current 10 A

IIH 2,4 Input Low Leakage Current 10 A

VODIFF Differential Output Voltage  250  350  450 mV

VOCM Output Common Mode Voltage  1.125  1.25  1.375 V

VICM Input Common Mode Voltage  0.05  1.25  2.35 V

VIDIFF Input Differential Voltage  100  350  mV

Notes:

1. IOL/IOH defined by I/O diff/(Resistor Network)
2. Currents are measured at 85°C junction temperature. 

3. IIL is the input leakage current per I/O pin over recommended operation conditions where –0.3 V < VIN < VIL.

4. IIH is the input leakage current per I/O pin over recommended operating conditions VIH < VIN < VCCI. Input current is
larger when operating outside recommended ranges.
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Extended Temperature Fusion Family of Mixed Signal FPGAs
Fully Registered I/O Buffers with Synchronous Enable and Asynchronous Clear

Figure 2-136 • Timing Model of the Registered I/O Buffers with Synchronous Enable and Asynchronous Clear
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Extended Temperature Fusion Family of Mixed Signal FPGAs
pump, and eNVM operation. VCCOSC is off only when VCCA is off. VCCOSC must be powered
whenever the Fusion device needs to function.

VCC Core Supply Voltage

Supply voltage to the FPGA core, nominally 1.5 V. VCC is also required for powering the JTAG state
machine, in addition to VJTAG. Even when a Fusion device is in bypass mode in a JTAG chain of
interconnected devices, both VCC and VJTAG must remain powered to allow JTAG signals to pass
through the Fusion device.

VCCIBx I/O Supply Voltage

Supply voltage to the bank's I/O output buffers and I/O logic. Bx is the I/O bank number. There are five
(AFS600 and AFS1500) I/O banks on the Fusion devices plus a dedicated VJTAG bank. 

Each bank can have a separate VCCI connection. All I/Os in a bank will run off the same VCCIBx supply.
VCCI can be 1.5 V, 1.8 V, 2.5 V, or 3.3 V, nominal voltage. Unused I/O banks should have their
corresponding VCCI pins tied to GND.

VCCPLA/B PLL Supply Voltage

Supply voltage to analog PLL, nominally 1.5 V, where A and B refer to the PLL. The AFS600 and
AFS1500 devices each have two PLLs. Microsemi recommends tying VCCPLX to VCC and using proper
filtering circuits to decouple VCC noise from PLL.

If unused, VCCPLA/B should be tied to GND. 

VCOMPLA/B Ground for West and East PLL

VCOMPLA is the ground of the west PLL (CCC location F) and VCOMPLB is the ground of the east PLL
(CCC location C). 

VJTAG JTAG Supply Voltage

Fusion devices have a separate bank for the dedicated JTAG pins. The JTAG pins can be run at any
voltage from 1.5 V to 3.3 V (nominal). Isolating the JTAG power supply in a separate I/O bank gives
greater flexibility in supply selection and simplifies power supply and PCB design. If the JTAG interface is
neither used nor planned to be used, the VJTAG pin together with the TRST pin could be tied to GND. It
should be noted that VCC is required to be powered for JTAG operation; VJTAG alone is insufficient. If a
Fusion device is in a JTAG chain of interconnected boards and it is desired to power down the board
containing the Fusion device, this may be done provided both VJTAG and VCC to the Fusion part remain
powered; otherwise, JTAG signals will not be able to transition the Fusion device, even in bypass mode.

VPUMP Programming Supply Voltage

Fusion devices support single-voltage ISP programming of the configuration flash and FlashROM. For
programming, VPUMP should be in the 3.3 V +/-5% range. During normal device operation, VPUMP can
be left floating or can be tied to any voltage between 0 V and 3.6 V.

When the VPUMP pin is tied to ground, it shuts off the charge pump circuitry, resulting in no sources of
oscillation from the charge pump circuitry.

For proper programming, 0.01 µF and 0.33 µF capacitors (both rated at 16 V) are to be connected in
parallel across VPUMP and GND, and positioned as close to the FPGA pins as possible.

User-Defined Supply Pins

VREF I/O Voltage Reference

Reference voltage for I/O minibanks. Both AFS600 and AFS1500 (north bank only) support Microsemi
Pro I/Os. These I/O banks support voltage reference standard I/O. The VREF pins are configured by the
user from regular I/Os, and any I/O in a bank, except JTAG I/Os, can be designated as the voltage
reference I/O. Only certain I/O standards require a voltage reference—HSTL (I) and (II), SSTL2 (I) and
(II), SSTL3 (I) and (II), and GTL/GTL+. One VREF pin can support the number of I/Os available in its
minibank.
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